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Abstract

Laser based detection and tracking of persons can be
used for numerous tasks, like statistical measurements for
determining bottlenecks in public buildings, optimizing pas-
senger flow, or planning camera placement. Only a network
of multiple LRF is sufficient to fulfill these tasks in larger
spaces. Calibrating multiple LRF into a global coordinate
system is usually done by hand in a time consuming proce-
dure. In this paper, we address the problem of automatically
calibrating such a sensor network. We introduce an auto-
matic calibration mechanism, which is able to obtain the
positions and orientations of all LRF in a global coordinate
system, without any prior knowledge of the scene. Our ap-
proach is based on comparing person tracks, determined by
each individual LRF unit and matching them in order to ob-
tain constraints between the LRF units. By resolving these
constraints, we are able to estimate the poses of all LRF.
We evaluate and compare our method to the current state of
the art approach methodically and experimentally. Experi-
ments show that our calibration approach outperforms this
approach.

1. Introduction
Detecting and tracking people with laser range finders

(LRF) yield a lot of applications in the field of surveillance.
The utilization vary from simple statistical measurements,
like determining bottlenecks in public buildings and op-
timizing passenger flows, up to more sophisticated tasks,
such as detecting irregular behaviors [13]. Additionally,
tracking persons with laser range finders does not violate
personal rights and puts privacy law advocates at ease to a
certain degree.

∗This work has received funding from the German Federal Ministry of
Education and Research as part of the APFel project under grant agreement
no. 13N10797.

Using only one static LRF limits the area for tracking
to its maximum detection range. Also occlusions may dis-
turb the tracking. Both problems can be avoided by adding
more LRF to the scene. However by doing so, a new prob-
lem comes up: all laser range finders need to be calibrated
into one global coordinate system in order to continuously
track persons over larger distances. This can be done by
measuring their position and orientation by hand. Since
this procedure is very time consuming, we present a cali-
bration algorithm, which is able to automatically determine
the positions and orientations of all laser range finders in
a global coordinate system without any prior knowledge of
the scene.

The remainder of this paper is organized as following:
We present the state of the art for matching static and dy-
namic objects for calibration in Sect. 2, followed by the de-
scription of the calibration algorithm in Sect. 3. Addition-
ally, we benchmark our approach and compare it to the state
of the art in various challenging setups in Sect. 4. Finally,
we are summarizing the results in Sect. 5 and giving an out-
look.

2. State of the Art
Calibration of a sensor network with unknown topol-

ogy is a common problem. For multiple LRF, three cate-
gories for estimating their positions can be applied. First,
approaches known in mobile robotics may be adopted for
calibration (Sect. 2.1). Second, static objects in scan data
can be matched to align all laser range finder (Sect. 2.2).
Third, dynamic objects observed in scan data over time are
applicable for matching (Sect. 2.3).

2.1. Robotic Matching Techniques

In mobile robotics, localization in an unknown environ-
ment is a similar problem to calibration of a sensor network.
As the robot moves through the scene, scan data from differ-
ent locations can be regarded as scans from different sensors
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Figure 1. General workflow of the proposed calibration method. First, all persons are tracked for each single LRF. Afterwards, tracks
between the LRF are associated. After pairing all sensors with constraints, their poses are initially estimated. In order to take every
constraint into account, a relaxation algorithm is applied. Finally, the LRF are aligned on static background objects with ICP.

in a sensor network. SLAM or other robot matching tech-
niques [6, 14] can be used to resolve their positions. Un-
fortunately these techniques are only applicable for robots,
since the relative positions between multiple observations
are known from odometry information. When using a net-
work of stationary sensors, the relative distances between
different sensors are unknown, so robot localization meth-
ods are not applicable for the scenario of stationary sensors.

2.2. Matching of static objects

Static objects, which can be observed by multiple laser
range finders, can be used as reference objects for cal-
ibration. Scan matching methods, like Iterative Closest
Point (ICP) [1], Polar Scan Matching (PSM) [2], or others
[15, 16, 21], can be used to rectify the sensors. Also point
registration methods from computer vision are applicable
[9]. As stated in [5] the use of scan matching techniques
should be avoided in our scenario, since several problems
exist:

• occlusions, caused by obstacles or disadvantageous ar-
rangements

• ambiguities and symmetries in the environment may
lead to false matches

• no static object may exist, which is mutually observed
by multiple LRF

Another possibility to calibrate multiple LRF is to add
markers to the sensors (e.g. reflectors for laser range find-
ers) and use them as landmarks. In this case, irresolvable
ambiguities or obstacles can disturb the alignment. In gen-
eral, matching with static objects is not preferable as cali-
bration method as long as no initial hypothesis is available.

2.3. Matching of dynamic objects

Dynamic objects, as for example persons walking
through the scene, can be used for calibration as well. Based
on tracking all persons individually for each LRF, a cal-
ibration algorithm was presented in [5] and [17]. These

algorithms use several randomly picked pairs of observa-
tions of the same person to estimate the constraints be-
tween the laser range finders. In contrast to comparing a
few single observations, as in [5] and [17], point registra-
tion methods can be used to align the tracks. This yields
into better precision for the constraints, since not only two
single matches of person detections are used for triangula-
tion, but the whole track. For matching tracks, the follow-
ing methods are applicable: Longest Common Subsequence
(LCS) [20], Quaternion-based Rotationally Invariant LCS
(QRLCS) [8], Levenshtein Distance on trajectories [7], or
track matching based on ICP [1]. The latter is used in our
approach. Also a representation of tracks as feature vectors
and comparing the features [11] is possible.

The calibration algorithm presented here was devel-
oped in parallel and independently to the methods of Glas
et al. [5] and Sasaki et al. [17]. The algorithm of [17] can
not be compared to our approach due to insufficient evalua-
tion in its experimental section. Also several details are are
not clear and, therefore, a reimplementation was not possi-
ble. The general workflow of our method is similar to [5],
but the implementation differs. As their calibration needs to
run iteratively in parallel to the tracking, our algorithm can
calibrate the network in only one step, after acquiring a suf-
ficient amount of tracks. The differences between both ap-
proaches are addressed subsequently in the respective sub-
sections.

3. Calibration

In order to calibrate the sensor network, six tasks are
performed (see Fig. 1). At first, the tracks of people need
to be recorded for each laser range finder (Sect. 3.1). By
comparing these tracks, mutual observations between the
LRF units are detected (Sect. 3.2). Based on the mutual
observations, constraints between LRF units are identified
(Sect. 3.3). The main calibration step is performed by re-
solving these constraints (Sect. 3.4). An additional relax-
ation algorithm is included to resolve multiple constraints
(Sect. 3.5). In order to improve the calibration, a final ICP-
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Figure 2. Aligning a pair of LRF units based on two individual ob-
servations (marked as crosses) as described in Glas et al. [5]. On
the left side, both LRF units have observed a person twice. The
two relating tracks are associated and the LRF units are aligned
accordingly on the right side. The alignment minimizes the dis-
tance between both observations.

alignment is performed (Sect. 3.6).

3.1. Tracking

In order to obtain tracks for each person, tracking needs
to be performed for each LRF in its local cartesian coordi-
nate system. Almost any tracking method, which extracts
the individual tracks of persons from laser range data in
real-time [10, 18, 19], is suitable for our calibration method.
The tracking algorithm we have chosen applies a histogram
based background subtraction on the range data in order to
get detections of people [18]. Multiple particle filters are
applied to track persons independently, as described in [18].

After tracking people for an initial period, their tracks
can be used to identify mutual observations between laser
range finders.

3.2. Track Association

For each pair (m,n) of LRF, their tracks are compared
in order to find pairs, belonging to the same person. In Glas
et al. [5], the tracks are compared by their velocity profile.
Since matching tracks by velocity holds more occasions for
false associations as matching them by mean Euclidean er-
ror after alignment, we followed the latter approach. Not
only the geometrical shapes are considered this way, but
also the velocities are incorporated indirectly by the dis-
tance between two adjacent sampling points.

A track Ta = (p1,a,p2,a, . . . ,pN,a) consists of N sam-
pling points pi,a = (xi,a, yi,a, ti)

T
, i = 1, . . . , N, where

(xi,a, yi,a)
T is the position of the person a at the time ti.

Before associating the tracks of two LRF, all tracks from
LRF m are paired with all tracks from LRF n. Afterwards,
the two tracks Tma and Tnb of each pair are trimmed to the
period, where they have an overlap in time. Since our sen-
sor network is synchronized in time, the two resulting tracks
T̃ma and T̃nb are sampled at the same time steps and have the

Figure 3. Aligning a pair of LRF units based on the whole ob-
served track as implemented in our approach. On the left side,
both LRF units have observed a person. The two tracks are associ-
ated, and the LRF units are aligned accordingly on the right side.
The alignment minimizes the distance between all sampling points
of the two tracks.

same amount of sampling points. Now, they can be easily
aligned onto each other and the mean Euclidean error be-
tween their sampling points is calculated.

A track T̃ma can be aligned onto another track T̃nb by
transforming its sampling points pi,a to p̂i,a according to
Eq. 1, with φa,b being the optimal rotation and (xa,b, ya,b)

T

the optimal translation.

p̂i,a =

 cos (φa,b) sin (φa,b) 0
− sin (φa,b) cos (φa,b) 0

0 0 1

·

pi,a −

 xa,b
ya,b
0


(1)

The optimal rotation and translation can be calculated by
minimizing the mean Euclidean error da,b (see Eq. 2) with
an approach, introduced in [1] and [12]. It uses singular
value decomposition for registering two point sets.

da,b =

N∑
i=1

√
(x̂i,a − xi,b)

2
+ (ŷi,a − yi,b)

2

N
(2)

After aligning two tracks T̃ma and T̃nb , they are consid-
ered belonging to the same person, if their error da,b is be-
low an experimentally evaluated threshold of 20 cm.

3.3. Pairing Sensors

Based on all pairs of tracks belonging to the same per-
son, relative positions between sensor nodes can be calcu-
lated for each pair of LRF independently. Glas et al. [5],
uses only the positions of people for the current iteration
to constrain pairs of LRF units. With a pair of observa-
tions, the relative positions of both laser range finders can
be triangulated (see Fig. 2). In contrast to this approach, we
incorporated the whole tracks for alignment (see Fig. 3). At
first, all matched Tracks T̃mj and T̃nj , j = 1, . . . , J of LRF
unit m and n are joined into two virtual tracks Tm and Tn
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Figure 4. Overview of the four LRF setups used in our experiments. The LRF and their coverage angles are shown as gray arcs.

with Eq. 3.

Tm =
(
T̃m1 , T̃

m
2 , . . . , T̃

m
J

)
(3)

Since the matched Tracks are synchronized in time and are
of the same length, the resulting virtual tracks are also syn-
chronized in time and of the same length. Therefore, they
can easily be aligned onto each other using the same proce-
dure, described in 3.2. The resulting optimal rotation φ̌m,n,
translation (x̌m,n, y̌m,n)

T and their error dm,n can be used
to form a constraint for the corresponding pair of laser range
finders. A constraint for LRF units m and n contains the
relative pose θ̌m,n =

(
x̌m,n, y̌m,n, φ̌m,n

)T
of unit m in the

local space of unit n and θ̌n,m vice versa. Additionally, a
weight wm,n is calculated for the constraint according to
Eq. 4, with N being the amount of sampling points of Tm.
Long matched tracks with small errors in matching results
in a higher weight than short matched tracks with big errors
in matching. Therefore, the weight of a constraint depicts
its confidence.

wm,n =
N

dm,n
(4)

3.4. Pose Estimation

All LRF pairs are sorted in descending order of their
weight wm,n. One LRF unit of the pair with the highest
weight is placed at the origin of the global coordinate sys-
tem. The other unit is then placed corresponding to their
constraint. Afterwards, every other pair containing one
LRF unit, which is already placed, is aligned iteratively. If
θm = (xm, ym, φm)

T is the pose of a placed LRF unit,
θn = (xn, yn, φn)

T can be computed with Eq. 5. This is

done, until all LRF are placed.

θn =

 cos (−φm) sin (−φm) 0
− sin (−φm) cos (−φm) 0

0 0 1

·θ̌n,m+θm (5)

3.5. Relaxation
Additionally, the relaxation algorithm introduced in [3]

refines all constraints iteratively, after the initial pose es-
timation. This procedure takes every constraint into ac-
count and, therefore, closes loops in constraints. This ap-
proach was adopted for our algorithm in order to improve
the results. For each LRF m, new positions (xm,n, ym,n)
are estimated with Eq. 6 based on all neighboring LRF
n = 1, . . . , L and the corresponding constraints θ̌m,n.

xm,n = xn + cos (−φn) · x̌m,n + sin (−φn) · y̌m,n

ym,n = yn − sin (−φn) · x̌m,n + cos (−φn) · y̌m,n
(6)

Afterwards, a weight vm,n is calculated for each position
estimate, based on the weight of each neighbor wn and the
weight wm,n of the corresponding constraint according to
Eq. 7.

vm,n =
wn · wm,n
wn + wm,n

(7)

After calculating all position estimates and their weights for
all LRF, a new weight wm and position (xm, ym) for a LRF
m can be calculated with Eq. 8 and Eq. 9.

wm =

L∑
n=1

vm,n (8)

xm =

L∑
n=1

xm,n · vm,n

wm
ym =

L∑
n=1

ym,n · vm,n

wm
(9)
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Figure 5. Calibrated scene utilizing three laser range finders at the
Erfurt-Weimar airport, Germany. The background scans are col-
ored blue and the foreground scans are colored red. The LRF and
their coverage angles are shown as gray arcs. The tracks of all
persons are shown green.

Finally, the rotations φm are adjusted by minimizing
Eq. 10.

φm = argmin
φ

(
L∑
n=1

∣∣∣∣(φ+ φ̌n,m
)
− atan

(
yn − ym
xn − xm

)∣∣∣∣
)

(10)

3.6. Final ICP Alignment

For a laser range finder, a person is only observable from
one side. Therefore, the tracking mechanism may have
an offset, depending of the angle from which the person
is observed. This also results in an offset of the calibra-
tion. To counteract the offset and further improve the cali-
bration accuracy, an ICP algorithm is applied on the scan
points of each laser range finder. Only points classified
as background by the background subtraction, mentioned
in 3.1, are used for alignment. The generic ICP assigns
a point from the target set to every point from the source
set and performs a transformation in order to minimize the
distances between them iteratively [1]. Since the overlap
between laser range finders is usually small, such a proce-
dure would seriously thwart the calibration. In contrast to
the basic ICP, as presented in [1], we only take points into
account, which are close to each other. This way, only scan
points which may be caused by the same observed object
are tightened.

4. Experiments
We already employed the calibration in several situations

utilizing multiple LRF, as described in [4] and depicted in
Fig. 5. Since no precise ground truth was obtainable in these
situations, we conducted several experiments at our lab to
evaluate the calibration performance. We recorded 13 se-
quences at two locations with four setups. The first location
represents an open space, at which calibration yields no dif-

(a) 

(b) 

(c) 

(d) 

Figure 6. Walking paths in setup C and D (see Fig. 4). In (a), a
single person (shown blue) walked an eight-shaped path through
the corridors. In (b), two persons (shown red and blue) walked an
eight-shaped path in opposite directions. In (c), a single person
(shown blue) walked around the left block. In (d), two persons
(shown red and blue) walked an eight-shaped path in mirrored di-
rections.

ficulties. The second location is used to test the calibration
under more challenging situations in corridors with junc-
tions. In the first location we used two setups. Setup A
(see Fig. 4(a)) covers an area of approximately 15m × 6m
where a person can be observed by every LRF at almost any
time. Setup B (see Fig. 4(b)) was designed to force errors
in alignment to sum up. It covers an area of approximately
30m×6m with the LRF placed in a chain. In the second lo-
cation we also used two setups. In setupC (see Fig. 4(c)) we
placed the LRF with an overlap as large as possible while
covering the whole area. It is assumed, that closing loops
in constraints with relaxation helps improving the calibra-
tion results. Setup D (see Fig. 4(d)) was chosen to give
a more challenging situation since the overlap between the
most right LRF is diminished.

4.1. Conducted Experiments

An overview of the conducted experiments is shown in
Table 1. Additionally, the walking paths in setup C and D

Pattern Setup (Fig. 4)
A B C D

walking straight from left to
right and back with constant speed A1 B1
tottering around to cover a
large area A2 B2
walking with varying speed
from left to right and back A3
randomly strolling around for a
minute A4
one person walking an eight
(see Fig. 6(a)) C1 D1
two persons walking an eight in
opposite directions (see Fig. 6(b)) C2 D2
one person walking around the
left block (see Fig. 6(c)) C3
two persons walking an eight in
mirrored directions (see Fig. 6(d)) C4 D3

Table 1. Overview over different setups used in our experiments.
The used location and LRF placement (A to D) can be seen in
Fig.4
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are depicted in Fig. 6.
For the addressed setups, we used five laser range finders

LMS151 from SICK. They scan 270◦ with a 0.5◦ resolution
at 50 Hz with a maximum range of 50 m. The ground truth
was obtained by manually measuring their positions. The
LMS151 has an internal clock and tags every scan data with
a timestamp, enabling us to compensate for delays, caused
by the network, with time synchronization. In order to syn-
chronize the clocks of the LRF and the receiving computer,
the offset between the two clocks needs to be known. Local
Area Networks usually have round-trip-times lower than the
time between two laser scans, which is 20 ms. Therefore, it
is sufficient to maintain the minimum offset observed be-
tween the timestamp of a laser scan and the time of recep-
tion at the computer. The residual error may be addressed
with more sophisticated methods but this simple solution
proved to be sufficient in our scenario.

4.2. Results and Discussion

For evaluation, each scenario was calibrated 1000 times,
and the final result of every calibration belonging to one
scenario was examined. The translational and rotational er-
rors were calculated. The mean and standard deviation of
all 1000 translational and rotational errors for each scene
are shown in Table 2. Exemplary, the calibration error over
time of a reimplementation of [5] and our approach is shown
for scene B2 in Fig. 7.

In order to provide a fair comparison, we used the same
synchronized data for evaluating our approach and the algo-
rithm presented in [5].

First of all, it can be seen that our approach performs ex-
cellent in easy settings (Scene A and B in Table 2). Even
in scene B, where the LRF are placed in a chain and errors
may sum up, the alignment is as good as in the easier scene
A. Since the calibration errors are within the measurement
errors of the used type of laser range finders (systematic er-
ror of ±3cm and a statistical error of ±1.2cm), the calibra-
tion of our approach can be considered perfect in scenes A

our approach Glas et al. [5]
Setup positional rotational positional rotational

error in cm error in ◦ error in cm error in ◦

mean std mean std mean std mean std
A1 2.1 0.3 0.3 <0.1 33.5 3.9 1.0 0.5
A2 2.0 0.3 0.2 0.1 8.8 2.2 0.5 0.2
A3 1.9 0.3 0.3 <0.1 8.1 2.0 0.5 0.3
A4 1.6 0.3 0.3 0.1 6.5 2.1 0.5 0.3
B1 1.9 0.5 0.2 <0.1 7.5 2.6 0.5 0.2
B2 1.5 0.5 0.2 <0.1 10.3 3.3 0.6 0.3
C1 9.2 4.7 0.7 0.6 − − − −
C2 86.5 154 5.8 10.6 583 257 58.2 19.7
C3 34.8 8.2 4.4 1.5 − − − −
C4 66.6 42.9 6.8 7.3 − − − −
D1 47.9 26.8 3.4 2.2 − − − −
D2 90.4 58.1 4.0 4.5 488 36.1 54.6 8.0
D3 29.3 20.3 3.7 7.5 561 177 38.6 15.6

Table 2. Calibration errors

Figure 7. Calibration error of scene B2 over time. In (a), the error
of the method by Glas et al. [5] is shown. In (b), the error of
our approach is presented. After t = 13s, all LRF have observed
mutual tracks and the first alignment was done.

and B. Additionally, the rotational error is below the angu-
lar resolution of the used LRF. The method of Glas et al. [5]
performs only slightly worse compared to our approach.

The algorithm presented in [5] performed poorly in
scene C and D. In some cases the algorithm was not able
to align all five LRF (marked with a ”−”). The missing
LRF was always the one standing in the middle corridor
(Fig. 4(c,d)). Its overlapping areas to the other four LRF
are very small, and mutual observations only appear for a
short time. Since the algorithm in [5] takes observations ev-
ery 1.3 s, there is only a small chance to sample more than
one mutual observation with another LRF. Also matching
tracks based on the velocities leads to more confusions as
matching them by shape, as the results in C2, D2 and D3
show.

Our approach was able to obtain good calibration results
in difficult scenes (C and D). The standard deviation of the
alignment error shows that a few calibrations failed (C2).
The tracks of both persons are similar in scene C2 (see
Fig. 6(b): turning left followed by turning right). Thus,
two distant LRF with no overlapping scan areas are some-
times matching their tracks by mistake due to their almost
similar shape. These false matches are causing erroneous
constraints leading to large errors in calibration. This prob-
lem may be addressed by observing the scene for a longer

our approach with ICP our approach without ICP
Setup positional rotational positional rotational

error in cm error in ◦ error in cm error in ◦

mean std mean std mean std mean std
A1 2.1 0.3 0.3 <0.1 5.4 0.7 0.2 0.2
A2 2.0 0.3 0.2 0.1 5.6 0.6 0.5 0.3
A3 1.9 0.3 0.3 <0.1 4.5 0.9 0.2 0.2
A4 1.6 0.3 0.3 0.1 4.1 0.9 0.4 0.2
B1 1.9 0.5 0.2 <0.1 4.8 1.2 0.4 0.2
B2 1.5 0.5 0.2 <0.1 4.5 1.0 0.4 0.2
C1 9.2 4.7 0.7 0.6 10.2 5.0 1.2 0.9
C2 86.5 154 5.8 10.6 83.2 156 5.6 10.6
C3 34.8 8.2 4.4 1.5 22.0 5.8 4.0 1.3
C4 66.6 42.9 6.8 7.3 70.6 44.5 6.8 7.4
D1 47.9 26.8 3.4 2.2 45.5 26.9 2.9 2.2
D2 90.4 58.1 4.0 4.5 80.4 63.6 3.3 4.5
D3 29.3 20.3 3.7 7.5 29.4 20.7 3.4 7.3

Table 3. Influence of ICP
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time. As long, as ambiguous tracks are outnumbered by
unique tracks, our approach is able to calibrate correctly. In
C4 and D3, the tracks of both persons are mirrored (see
Fig. 6(d)). Therefore, their shapes are different, even if the
velocity profile, which is used for matching in [5], is simi-
lar. Since our approach applies a track assignment incorpo-
rating the shapes, false assignments are prevented and the
obtained constraints are acceptable.

We additionally calculated the positional errors before
the ICP step was applied to evaluate its influence on the
quality of calibration. The comparison of our approach with
ICP to our approach without ICP is shown in Table 3. It can
be seen that ICP improves the calibration, if a good initial
estimation was found (Setup A and B). If the estimation is
only moderate (Setup C and D), ICP is not always able to
improve the results.

Finally, our calibration algorithm shows perfect results
in ordinary situations with a lot of scan overlap (Setup A
and B). In challenging situations (Setup C and D), the
limits of our approach are perceivable but calibration still
succeeded. The advantages of shape-based track matching
and full track alignment, as used in our calibration method,
could be successfully demonstrated.

5. Conclusion
We have proposed a new method for calibrating multi-

ple LRF units into a global coordinate system by observing
person tracks, without any knowledge of the scene. Fur-
thermore, we evaluated the performance on 13 different
scenes and compared it to the state of the art algorithm, pre-
sented in Glas et al. [5]. Our experiments show, that our
method outperforms [5] in easy settings as well as in diffi-
cult scenes. The results in ordinary scenes can be consid-
ered to be perfect. We also conclude, that post processing
the results with ICP improves the alignment.
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