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Abstract. Noise disturbance in training data prevents a good approxi-
mation of a function by neural networks. To achieve better approximation
results we combine neural networks with noise reduction algorithms. We
compare different methods to distinguish between samples with high noise
level (outliers) in a dataset and samples with low noise level. Drawbacks
of common outlier detection approaches are analysed and a new approach
is defined which increases the quality of network function approximation.
We demonstrate the effects of noise reduction on artificial datasets and on
real data from the process control domain.

1 Introduction

In the context of signal processing, noise describes a disturbance superimposed
on a measurement signal. Noise occurs in all scopes of applications were a mea-
suring device is used to determine a value. The measured value does not equal
the actual value due to inaccuracies of the measuring device or influences of the
environment. This inaccuracy is known as noise [1].
Since the value of noise is random, it can not be approximated. The mean error
of any function approximator on a noisy dataset can therefore never be less than
the average noise on the dataset [2]. Apart from this error bound, noise on the
training data also reduces the ability of data-driven function approximators to
learn a function correctly. In Table 1, we show the influence of noise on ap-
proximation quality of a neural network. Training algorithm and approximated
function are explained in Section 4.

σtarget / σnoise 1.0 / 0 1.0 / 0.05 1.0 / 0.2 1.0 / 0.5 1.0 /1.0
MSEQ50 0.0002 0.0005 0.0039 0.0198 0.0630

Table 1: Effect of increasing training data noise on the approximation of noiseless
test data. σtarget denotes the standard deviation of the target signal. σnoise

denotes the standard deviation of the N (0, σ2
noise) distributed noise added to

the target. Every test was repeated 100 times. MSEQ50 is the median of the
mean squared error of all 100 network approximations.
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The approximation on noiseless test data is getting worse, the more intense
the noise on the training data is. So, noise in the data significantly worsens the
capability of a neural network to approximate a target function. If a very good
approximation of a target is required, it is therefore advantageous if the training
data has a low noise level.
In the following, we compare different approaches to reduce the negative effects of
noisy training data on neural network function approximation. We present a new
approach to detect samples with the largest noise level and to reduce the average
noise on a dataset. We show the improvement of the target approximation on
artificial data and on real data from an industrial cement production process.

2 State of the Art

Different approaches exist to separate information from noise. Most concentrate
on certain types of information or noise, like audio noise or noise in images. A
comprehensive overview of common approaches to detect noise for special appli-
cations is given in [1]. If the characteristics of the signal are not known more
general approaches are needed. In [2] the Gamma-Test was introduced which
approximates the average noise level of a dataset and can distinguish noisy input
channels. But still the algorithm is not able to estimate the noise level of a single
data sample and hence to select samples for a network training.
Data samples with a high noise level are commonly referred to as outliers. In
[3] several approaches to detect outliers are compared. The authors argue that
most common statistical approaches as explained in [4] or [1] are not useful for
real datasets because they require the assumption of a specific data distribution.
Instead the best approaches tested in [3] use local neighbourhoods in combina-
tion with global data attributes. The best approach tested in [3] was the Local
outlier factor (LOF) from [5].
A Support Vector Data Description (SVDD) was proposed in [6] and improved
in [7] to separate outliers and normal data. However the SVDD is a pure clas-
sification approach with best results obtained if two classes existed to train the
SVDD: one with known outliers and one with normal data. This precondition
does not apply to industrial data we use for our experiments.
In [4] and [8] both authors assert that outliers (especially gross outliers) worsen
the results of common regression approaches, but do not give examples for train-
ing with neural networks. Bishop [9] argues that outliers have a negative effect
on network trainings mainly because the Mean Squared Error (MSE) used to
train networks reinforces the negative effects of outliers. [10] agrees and pro-
poses the Least Mean Log Squares (LMLS) to train networks that are robust to
outliers. Unfortunately this approach also reduces the training effects of samples
which are not outliers but have a large initial network approximation error.
A more general approach to detect samples which support a good approximation
is the RANSAC algorithm [12].
In the following, we compare the above mentioned approaches with regard to
their capability to achieve better approximation results with neural networks.
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3 Noise Reduction Algorithm

We implemented the LOF- [5], LMLS- [10], and RANSAC- [12] approach as
explained in the respective paper. The purpose of the algorithms is to determine
a value for the noise intensity of every sample of a dataset and weight each sample
in the network training depending on its noise value.
Since most approaches have difficulties to distinguish between noisy samples
and samples with uncommon input values, we also defined a new approach to
determine the noise intensity of a sample through the use of Local Linear Models
[11] at the neighbourhood of each sample. In the following we call this approach
NELLM (Noise Estimation with Local Linear Models).
Precondition for the application of the algorithm is a dataset with n sample
points. Each sample is a tuple si = (x1, . . . , xm, y), where x1, . . . , xm are the
input values for m input dimensions and y is the target value of the respective
sample. Our new algorithm works as follows:

1. for all si ∈ S where si = (x1, . . . , xm, y), i = 1 . . . n do:

1.1. find the k nearest neighbours {sj} to si with euclidian distance in the
inputspace dij = ‖si − sj‖2 for sj ∈ S, si 6= sj and group them in Ni

1.2. determine a linear regression model yp
j = p1x1j+p2x2j+. . .+pmxmj+

pm+1 for the targets {yj} with sj ∈ Ni

1.3. calculate regression error ei = |yi − yp
i | for the current sample si

2. train a network with S but weight each si ∈ S influence on the training
depending on ei; weighting can be done in two ways:

2.(a) every sample si with ei > elimit is deleted from S

2.(b) a new training dataset S̃ is generated; samples si with ei < elimit

are added to S̃ more than once; we use batch-training to train the
networks hence the number of appearances of a sample in a dataset
influences its impact on the training process

The method described in 2.(a) reduces the noise more effective than 2.(b), how-
ever samples are deleted from the dataset. In cases were only few samples exist
this reduces the available information more than the noise on the data restrains
the learning (see also [4] for the dilemma of deleting noisy samples). Therefore
we use method 2.(b) in our approach.

4 Experiments

In Section 1 we showed the negative effects of increasing noise at the approxi-
mation capability of a neural network. The target function y(t), which should
be approximated, was calculated from three input signals x1(t), x2(t) and x3(t)
and normal distributed noise d(t) with the formula:

y(t) = α · (x1(t) · x2(t) + sin(x3(t)) · x1(t)) + d(t) (1)
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x1(t), x2(t) and x3(t) have a Gaussian distribution of N (0.5, 0.03). The target
function y(t) (without noise) is normalized with the parameter α to a distribu-
tion of N (0, 1). We created two dataset of 300 samples based on formula (1).
One set was used to train the network, the second one to test the accuracy of the
trained approximator. We used a Multi-Layer-Perceptron with 5 hidden neurons
which was trained using the Levenberg-Marquardt training algorithm.
We applied different Noise-Reduction algorithms as mentioned in Section 2 on
the training dataset to test the ability of the algorithms to reduce negative ef-
fects of noise on the network training. The results are shown in Table 2. For
the LOF -approach [5] we got the best results with a local neighbourhood of 15
samples. The NELLM -algorithm was applied with a neighbourhood of 60 sam-
ples. We set elimit to be higher than 15% of the train data and weighted the
samples below elimit 10 times as much as the other samples.
For the RANSAC algorithm [12] we used 50 iterations per test. The results
got better the more iterations RANSAC used, but it also required much more
computation time. The LMLS -training method from [10] needed no extra pa-
rameters. To get an impression of the neural network approximation quality we
also used a linear regression model to approximate target values and compared
it with the neural network.

σtarget/σnoise 1.0/0 1.0/0.05 1.0/0.2 1.0/0.5 1.0/1.0
MSEQ50 normal 0.0002 0.0005 0.0039 0.0198 0.0630
MSEQ50 NELLM 0.0003 0.0012 0.0045 0.0156 0.0455
MSEQ50 LOF 0.0003 0.0016 0.0187 0.0650 0.1480
MSEQ50 RANSAC 1 · 10−5 0.0011 0.0112 0.0527 0.1695
MSEQ50 LMLS 0.0002 0.0005 0.0040 0.0203 0.0613
MSEQ50 Regression 0.0392 0.0379 0.0384 0.0422 0.0512

Table 2: Approximation results for data with different noise levels. σtarget de-
notes the standard deviation of the target signal (without noise). σnoise denotes
the standard deviation of N (0, σ2

noise) distributed noise added to the target.
The test data was always noiseless. Every test was repeated 100 times. normal
denotes experiments without any noise reduction algorithm applied. Displayed
are the median approximation errors MSEQ50. We evaluated the median and
not the mean because a small percentage (< 1%) of networks produced very
high errors which influence the mean error.

With a noise of σnoise = 0 and σnoise = 0.05 all approaches produced very
low errors nearly equal to the results achieved without applying any noise reduc-
tion algorithm. With noise levels of σnoise = 0.2, σnoise = 0.5 and σnoise = 1.0
the approximation quality decreased. The linear regression approach produced
the worst results with low noise levels but the negative influence of high noise
is not as high as on neural networks. Only the NELLM -algorithm reduced the
error compared to training without noise reduction. This result is surprising
since all algorithms are designed to reduce noise and hence should improve the
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approximation result. Thus we analysed the weighted dataset produced by the
LOF-, NELLM- and RANSAC-algorithm and compared the noise of the samples
with the original dataset in the case of very high noise with a σnoise = 1.0. The
result is shown in Table 3.

Dataset original LOF NELLM RANSAC
σnoise 1.0 0.65 0.20 0.97
MSEQ50 0.0630 0.1480 0.0455 0.1695
σx 0.523 0.3347 0.518 0.524

Table 3: Noise-Level σnoise, median approximation error MSEQ50 and input
standard deviation σx of dataset produced by noise reduction algorithms.

The RANSAC algorithm only slightly reduces the noise. The LOF approach
reduces the noise by nearly 35% but nonetheless does not reduce the approx-
imation error. The reason is that the LMLS- and LOF-algorithm prefer data
samples with a low standard deviation in the input space and classifie samples
as outliers which are far away from the mean value of the data, regardless if they
are true outliers or seldom observed inputs. The NELLM-algorithm reduces the
noise by nearly 80% and does not reduce the standard deviation of the chosen
samples
To test the capability of the different algorithms at an application with a real
world dataset, we used data from three cement plants. The target for the ap-
proximation was the free lime value of the cement produced by the plant. The
free lime value [13] is a major criterion for the quality of the cement. If a good
prediction of this value is possible, the whole production process can be sta-
bilized. Network inputs were signals obtained from the process such as kiln
rotation speed, kiln temperature and raw meal feed. The resulting errors for the
approximation of the free lime value are shown in Table 4.

approximation errors

no
is

e
le

ve
l

no
rm

al

L
O

F

N
E

L
L
M

R
A

N
SA

C

L
M

L
S

R
eg

re
ss

io
n

plant A 0.145 0.594 0.587 0.572 0.599 0.579 0.600
plant B 0.583 0.699 0.665 0.640 0.679 0.674 0.696
plant C 0.437 0.751 0.718 0.704 0.691 0.727 0.550

Table 4: Noise levels and median approximation results for the free lime values
of three cement plants. normal denotes experiments without any noise reduction
algorithm applied. Every test was repeated 100 times. The noise of the free lime
value measurement was determined through repeated measure of the same free
lime sample
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The NELLM-approach still produces the best approximation results but the
improvement of 3.7%, 8.4% and 6.2% compared to trainings without noise re-
duction is not as high as at the artificial dataset. The main reason is that the
test dataset of the artificial data was noiseless while the test dataset for the
cement plants has the same noise as the training dataset. Hence an optimal ap-
proximation of the test dataset is not possible. Nonetheless all noise reduction
algorithms enable better approximation results for neural networks.

5 Conclusion

We compared several noise reduction and outlier detection algorithms with spe-
cial regard to their effects on neural network training for regression tasks. We
applied approaches to detect outliers and reduced the weight of outliers in the
training dataset. We observed that most outlier detection approaches marked
seldom observed samples as outliers. Since such samples are important for net-
work training we designed a new approach called NELLM (Noise Estimation
with Local Linear Models) which improves the differentiation between real out-
liers and uncommon samples. A network trained with the weighted dataset
achieved a much better result than with the original noisy data. We compared
the approaches on artificial data and data obtained from real cement plants.
The cement results were not as good as results on artificial data but still showed
an improvement compared to training without noise reduction.
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