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Abstract. Neural Networks can be used for the prognosis of important
quality measures in industrial processes to complement or reduce costly
laboratory analysis. Problems occur if the system dynamics change over
time (concept drift). We survey different approaches to handle concept
drift and to ensure good prognosis quality over long time ranges. Two
main approaches - data accumulation and ensemble learning - are ex-
plained and implemented. We compare the concepts on artificial datasets
and on industrial data from three cement production plants and analyse
strengths and weaknesses of different approaches.
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1 Introduction

Artificial Neural Networks (ANN) for function approximation can be used for
modern process monitoring and process control. One of the most common ap-
proaches is to use ANN to predict future values of a measurement [1]. If this
prediction is used in combination with a controller, the system is known as Model
Predictive Control (MPC).
One of the most important problems with MPC in industrial applications is a
slightly changing environment which results in a drift of properties and dynamics
of the process. This changing is known as concept drift [2]. Hence, the prognosis
of the ANN will worsen the more time has passed since training the ANN.
To counter this worsening, the ANN has to be retrained with new data to adapt
to changes of the process. In this paper, we compare different methods to retrain
neural networks (in particular Multi-Layer Perceptrons) with new data. We are
especially interested in long term effects of different retraining approaches. We
compare all methods on artificial data and on data obtained from several indus-
trial cement production plants.
The remainder of this paper is organized as follows: we present a Model Predic-
tive Control scenario and the data we used to benchmark different algorithms
in Sect. 2. Accordingly in Sect. 3, we give a brief review of related approaches
to adapt Neural Networks for function approximation to new data and compare
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their applicability to the environment. The algorithms we used are explained in
Sect. 4 and a description of the experimental investigations is given in Sect. 5.
We conclude with a summary and outlook on possible improvements.

2 Experimental Environment and Prerequisites

Automatic learning and continuous adaptation are required in process control if
the dynamics of the controlled system changes over time. Industrial combustion
processes as used in coal-fired power plants, waste incineration plants, or cement
plants are a good example for such changing dynamics. Carbon black and slag are
combustion by-products and coat the furnace walls. Over time, the coating grows
and changes properties of the combustion process. An even more challenging
issue are the fast changes in raw material qualities.
Cement plants are very challenging but also very promising applications for
Model Predictive Control. Today cement usually is produced with rotary kiln
plants [3]. The residence time of the raw material in the rotary kiln varies from
35 to 60 minutes and depends on the steepness, length, and rotation speed of the
kiln. The quality of the produced cement is determined by laboratory analysis
which can take from five minutes (X-ray analysis) up to two hours (chemical
analysis). A cement sample is usually taken every two hours. Hence it may take
up to four hours until a quality measurement is available for the current process
situation. If a neural network can predict and estimate cement quality from
continuous measurements, like air temperature, kiln rotation speed, raw meal
feed etc. a controller can react much faster to changes of the cement quality.
Figure 1 shows the prognosis of one main quality measure, the free lime value,
obtained with a Multi-Layer Perceptron.

Fig. 1. Free lime value prognosis at a cement plant. The plot shows three days of plant
operation with laboratory measurements and neural network prognosis of the free lime
value. While a laboratory measurement is only available every four hours, the prognosis
is available the whole time.

The free lime value [3] is a major quality criterion of the cement. If a good
prediction of this value is possible, the whole production process can be stabi-
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lized. This prognosis can only be used for control purposes if it is correct. To
obtain a correct prognosis over a long time range of two or more years is very
demanding as process dynamics of the cement plant change as mentioned afore.
Figure 2 shows long term changes of an important process measurement from a
cement plant over a period of two years. To test the capability of different long-
term network adaptation algorithms, we used data from three cement plants.
The target for the approximation was the free lime value of the cement pro-
duced by the plant. Network inputs were signals obtained from the process such
as kiln rotation speed, kiln temperature, and raw meal feed.

Fig. 2. Time plot of kiln inlet meal temperature over the period of two years. The
measurement is low-pass filtered with a sliding time window of one week. Time spans
without signal denote stops of the plant. Over the whole time, a change in the level
and dynamics of the signal of about 80 degrees is visible.

3 State-of-the-Art

One of the first publications that mentions the difficulties in long term adaptivity
of artificial neural networks in changing environments is [4]. The author anal-
ysed the problem of catastrophic interference in neural networks. Catastrophic
interference describes the phenomenon that learning of new facts disrupts per-
formance on previously learned old facts, however, in [4] the author did not give
solutions how the problem could be solved or avoided.
In [5] the author proposes the FLORA framework which accepts only certain
samples for training of a classificator. Old samples, that do not suit to the cur-
rent window are not used for training. A method to weight old and new samples
for a two layered network is introduced in [6] by using a forgetting function
which reduces influence of old samples in the training process.
Other approaches use not only one approximator but an ensemble. Examples are
Learn++ [7], dynamic weighted majority [8], incremental adaptive learning [9],
or iRGLVQ [10]. All ensemble based approaches are similar in their use of more
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than one model, where each model is trained with different data. They can be
discerned by the basic model used and the way the ensemble members are used
to compute an approximation.
Summarizing aforementioned publications, two different classes for handling con-
cept drift can be distinguished:

1. Data accumulation/Instance selection [5, 6, 9]: learn a new model with
all/selected data acquired; discard the old model

2. Ensemble learning [7–10]: learn a new model with new data; select the
best model for every situation or merge output of old and new model

While comparing these different approaches two major problems occur: first,
every approach uses a different basic approximation model which is adapted
to concept drift. In [10] Learning Vector Quantisation (LVQ) is used, in [9, 7]
Multi-Layer Perceptrons (MLP), in [6] a combination of two subnetworks, in [5]
attribute-value logic, and in [8] an Incremental Tree Inducer (ITI) and Bayes
learners. The second problem is that most results are obtained on artificial data
or real data with artificially induced concept drift.
In the following, we compare algorithms on industrial data, use the same basic
approximator (MLP), and compare results of different adaptation algorithms.
For purpose of explanation and to allow for other researchers to reproduce our
results, we also use three artificial datasets for benchmarking.

4 Algorithms for Automatic Network Adaptation

In Sec. 3 we showed that there are two paradigms how to adapt a model to
concept drift: 1. data accumulation and 2. ensemble learning. In this section we
propos algorithms to apply these paradigms to training of Multi-Layer Percep-
trons as function approximator for the purpose of Model Predictive Control.
Every approach starts with the same preconditions: there is an initial dataset
Sinit with si ∈ Sinit, si = (x1, . . . , xm, y), where x1, . . . , xm are the input val-
ues/measurements for m input dimensions and y is the target value of the re-
spective sample. This dataset is used to train a MLP Ninit with Levenberg-
Marquardt training algorithm.

4.1 Data Accumulation

The principle of data accumulation is to have one model which is adapted when
a certain amount of new data Snew is available. We applied three variations of
this concept:

– data acc.1: create a dataset Saccu = Sinit ∪ Snew and retrain Ninit with
dataset Saccu

– data acc.2: retrain Ninit only with dataset Snew; ignore old data
– data acc.3: split Snew in training data Strain

new and validation data Sval
new

create a new MLP Nnew and train it with Strain
new

if the approximation error of Nnew on Sval
new is lower than approximation

error of Ninit on Sval
new delete Ninit and use Nnew
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Each of the three concepts is repeated every time a new dataset Snew is available
(the exact number of samples sufficient to create a new dataset depends on the
data used). The first concept uses all samples/information acquired over time
but may suffer catastrophic interference as described in [4]. The second concept
is a very basic version of sliding time window used in [5]. The third concept tries
to compensate drawbacks of the first two concepts: a new (retrained) model is
only accepted if its results are better than old model results.

4.2 Ensemble Learning

The principle of ensemble learning is to train a new model Nnew if sufficiently
new data Snew is available. This results in a pool P of models Ni ∈ P, i = 1 . . . n
where n is the number of currently available models. The important question is
which model Ni is activated at a certain time step t? We compare two different
ways to determine the active model Ni:

– ensemble1: use all Ni ∈ P to simulate target y for the last d time steps:
ys = (ys

t−d, . . . , y
s
t−1) and compare prognosis error e =

∑
|ys − y| for all

Ni ∈ P ; the model with lowest error is chosen
– ensemble2: compare current input and training data of each model Ni ∈ P

to choose the best model; therefore:
• cluster the training data (for example with a k-means clusterer) of each

network i into k cluster K and calculate the characteristic input values
xik = (xik

1 , . . . , xik
m) and the mean prognosis error eik for each cluster

centre
• for every new sample snew = (x1, . . . , xm) calculate the Euclidean dis-

tance dik to each cluster centre xik = (xik
1 , . . . , xik

m)
• calculate the distance weighted error ei =

∑
c∈K

ec·dc
P

j
dj

of mean prognosis

error for each cluster centre c ∈ K of each model Ni ∈ P
• the model Ni with the minimal ei is chosen and set active

Both approaches are simpler versions of the ensemble methods used in [7–10].
The comparison of input/output-relations is not as easy in Multi Layer Percep-
trons as in LVQs or rule based systems. Nevertheless both approaches enable to
use adaptive ensembles of MLPs for Model Predictive Control.

5 Experiments

In this section, we apply the adaptation algorithms explained in Sec. 4 to data
with concept drift. We use two different types of data. The first three data sets
are obtained from rotary kiln cement production plants. The target y for the
MLP prognosis is the free lime value which indicates the quality of the cement
produced [3]. Five to ten different measurements from each kiln, such as kiln
inlet temperature, secondary air temperature, raw meal feed, etc (see [3] for a
detailed description of the measurements) are used as input values for a sample
si = (x1, . . . , xm, y). We use two years of data of each plant which results in
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2,100-4,000 samples, depending on the sample rate of the laboratory (from three
up to eight hours) and the revision times of the plants.
For purpose of explanation and to allow for other researchers to reproduce our
results, we also use three simple artificial datasets. We generate a target y(t)
from five input signals x1(t), . . . , x5(t) as shown in equation 1:

y(t) = α · x1(t) · x2(t) + x3(t) + α · x4(t) + x1(t) · x5(t) + d(t) (1)

Each input xi(t) is randomly sampled from a Gaussian distribution of N (0, 1).
We add noise data d(t) sampled from N (0, 0.3). Linear concept drift is induced
by the parameter α which changes over the simulation time. We apply three
different variations for the concept drift:

1. α changes linear from 0.1 to 1 and is set back to 0.1 at certain times; this
corresponds to slagging in industrial plants which grows over time but is set
back to a low level after a plant revision

2. α is linearly changing from 0.1 to 1

3. α does not change, which corresponds to a process without concept drift

Fig. 3 illustrates the progress of parameter α at all three artificial datasets.

Fig. 3. Progress of parameter α used to model concept drift in three artificial datasets.

For the prognosis of the target, we use a Multi-Layer Perceptron featur-
ing one hidden layer with five neurons to approximate the target. Training
algorithm is standard Levenberg-Marquardt training as included in the Neu-
ral Network library of Matlab. All networks (except approach data acc.1) are
trained/retrained with 250 samples of data where the last 50 samples are used
for validation. For data acc.1, we use a growing training set which includes all
samples available since starting retraining. For ensemble2, we apply a k-means
clusterer with k = 10 to cluster the training set of each network. The test per-
formed in ensemble1 to determine the best model is carried out with the last 50
samples observed. No additional pruning algorithms are used as we are focused

in: Proc. 22. Int. Conf. on Artificial Neural Networks (ICANN 2012), Lausanne, Switzerland, Part II, LNCS 7553, pp. 50-57, Springer 2012 



Comparison of Long-Term Adaptivity for Neural Networks 7

eQ50% plant1 plant2 plant3
P

plant art.data1 art.data2 art.data3
P

art.

no adapt. 0.635 0.871 0.782 2.288 0.309 0.334 0.135 0.778

data acc.1 0.492 0.766 0.714 1.972 0.220 0.217 0.124 0.561

data acc.2 0.701 0.773 0.768 2.242 0.201 0.156 0.124 0.481

data acc.3 0.520 0.801 0.779 2.100 0.249 0.167 0.134 0.550

ensemble1 0.478 0.795 0.749 2.022 0.193 0.168 0.134 0.495

ensemble2 0.524 0.850 0.793 2.167 0.306 0.275 0.185 0.766

revisions 3 4 0 3 0 0
Table 1. Median prognosis error eQ50% of 200 trials network training. The two best
results of each data set are marked with a grey background. The number of plant
revision (resets of the concept drift) and the sum

P

of errors over all datasets are also
listed.

on effects the different adaptation algorithms have on long term prognosis error.
Table 1 shows results on the different datasets.

For evaluation of the results, we repeated every simulation 200 times. The
mean prognosis error over the whole time period was calculated. Afterwards,
we compared the median eQ50% of all 200 trials for each concept and data set.
We chose the median and not the mean because approximately 1% of the net-
works trained produces a very high error because of disadvantageous initialisa-
tion which influences the mean error of all 200 simulations disproportionately.
Prognosis without adaptation of the network produces the worst result. This
was expected as it does not counter the concept drift. ensemble2 also performs
very bad. This is a result of the imprecise representation of the input space we
choose with the k-means clustering. If a better method is aquired to map and
compare input/output relations in trained MLPs, this approach would surely
produce better results. The potential of ensembles is revealed by ensemble1,
which is the second best method of the six approaches we tested. Only if the
concept does not change (art.data3) or there is no revision of the plant included
in the data (art.data2, plant3), data accumulation approaches outperform this
ensemble approach.
Of the three different data accumulation approaches data acc.1 performs best
on real world data. This is surprising, since data acc.1 uses all data available,
which results in ambiguous data due to the changing parameters (boiler slag-
ging in plants and α in artificial data). Nonetheless the prediction acquired with
unambiguous data but fewer training samples is worse. We expect the results of
data acc.2/3 to get better if the sampling rate is increased and more samples
are available for the used time window.
On plant3 the differences between the approaches are smaller than on other
plants. The reason is that in plant3 other sensor measurements than in plant1
and plant2 had to be used because of the plant architecture. Hence the over-
all prognosis quality decreases and differences between the adaptation concepts
disappear.
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6 Conclusion

Concept drift does influence the quality of neural network prognosis in indus-
trial combustion processes. Through growing boiler slagging and the use of other
fuels, the prognosis of important performance figures is getting worse if the net-
works used are not adapted to changing data. We applied different approaches
to adapt networks to concept drift over long time ranges. The best approach
depends on the type of the concept drift. If dynamics and properties of the plant
change very slowly and old states do not appear again, it is advantageous to
use sliding window technic and data accumulation to constantly retrain a single
network with new data.
If changes in the dynamics and properties appear very abrupt and old states
reappear (due to revisions of a plant or a small selection of used fuels) ensemble
learning with more than one model is superior to other concepts.
Our future work concentrates on improving the use of ensemble methods. Fur-
thermore we want to apply the approaches to other industrial MPC problems
and compare them with the results gained on cement plants.
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learning method for neural networks in adaptive environments. Int. Joint Conf. on
Neural Networks (IJCNN) 2010, pp. 1–8, (2010)

7. Elwell, R., Polikar, R.: Incremental Learning of Concept Drift in Nonstationary En-
vironments. IEEE Transactions on Neural Networks 22(10), pp. 1517–1531 (2011)

8. Kolter, J.Z. ,Maloof, M.A.: Dynamic weighted majority: A new ensemble method
for tracking concept drift. In Proc. IEEE Int. Conf. on Data Mining (ICDM2003),
pp. 123–130 (2003)

9. He, H.: Self-Adaptive Systems for Machine Intelligence. John Wiley & Sons (2011)
10. Kirstein, S., Wersing, H., Gross, H.-M., Koerner, E.: A life-long learning vector

quantization approach for interactive learning of multiple categories. Neural Net-
works 28, pp. 90–105 (2012)

in: Proc. 22. Int. Conf. on Artificial Neural Networks (ICANN 2012), Lausanne, Switzerland, Part II, LNCS 7553, pp. 50-57, Springer 2012 




