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Abstract. We interpret biological motion trajectories as composed of
sequences of sub-blocks or motion primitives. Such primitives, together
with the information, when they occur during a motion, provide a com-
pact representation of movement. We present a two-layer model for move-
ment generation, where the higher level consists of a number of spiking
neurons that trigger motion primitives in the lower level. Given a set of
handwritten character trajectories, we learn motion primitives, together
with the timing information, with a variant of shift-NMF that is able
to cope with large data sets. From the timing information for a class
of characters, we then learn a generative model based on a stochastic
Integrate-and-Fire neuron model. We show that we can generate good
reconstructions of characters with shared primitives for all characters
modeled.

Keywords: non-negative matrix factorization, motion primitives, spik-
ing neurons

1 Introduction

Studies in animal motor control suggest that the motor system consists of a
control hierarchy, where a number of low-level motor primitives control muscle
activations to perform small movements and a higher level controls the sequential
activation of those motor primitives to perform complex movements [1].

We present a model for the generation of motion trajectories that is inspired
from those results. We demonstrate our model on the generation of handwritten
character velocity trajectories. Our model consists of two layers. The lower layer
consists of a set of motion primitives that, once activated, generate character-
istic temporal sequence of values in 2D space for a short time period. Multiple
motion primitives can be activated in sequence to generate complex trajectories.
The upper layer consists of a mechanism and the knowledge to control acti-
vation of the motion primitives over longer time scales, i.e. when a particular
motion primitive has to be activated to generate an instance of a certain class
of trajectories, i.e. a certain character.
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2 Sparse Activation of Learned Motion Primitives

In the lower layer, we use a sparse coding algorithm, specifically the Non-
negative Matrix Factorization (NMF), for learning the motion primitives, to-
gether with their activation times from a number of complex training trajec-
tories. Early works for sparse coding of time series have shown that one can
interpret the resulting representation as spike-like temporal activations of basis
functions, i.e. our motion primitives, that are adapted to the problem domain [2].
In general, with NMF one can decompose a set of IV input samples into a small
number K < N of basis vectors and coefficients, called activations, to superim-
pose these to reconstruct the inputs. By imposing a non-negativity constraint
and specific sparsity constraints on the activations, the resulting basis vectors
are interpretable as parts that are shared amongst the inputs and constitute an
alphabet or dictionary underlying the data [3].

NMEF has been applied to find patterns in data like neural spike trains [4] or
walking cycles of human legs with constant frequency [5]. The length of the basis
vectors must be specified manually and is typically chosen to be of the length
of the expected patterns, e.g. a single spike pattern or a single walking cycle.
However, for human movement data like handwriting, where a pattern in this
sense is a whole character, NMF in this form can not be applied due to temporal
variations of the underlying patters, like different speed profiles. Our approach
is to interpret a pattern to be a combination even of smaller sub-parts (see Fig.
1), where the parts themselves have low temporal variability and the variability
of the whole pattern is captured by shifting the parts in a small local region.

In the upper layer of our two-layered model, the exact order and timing of
the primitives is controlled with a timing model that stores knowledge about the
typical activation times of the primitives for a desired class of trajectories, i.e.
a character. Inspired by [6], we use the Integrate-and-Fire (I&F) spiking neuron
model, which is parametrized by an intensity matriz that stores the relative
frequency of activation for each primitive for a certain time interval. We learn
this model by aligning and averaging over the primitive activations computed
for the training trajectories.

Our work is conceptually similar to [6], where the primitives are modeled by
a factorial HMM (fHMM), and the primitive control is also modeled by an 1&F
model. By using NMF in the lower level, we present an alternative approach,
which is computationally less demanding.

We describe our approach in detail in Sec. 2. In Sec. 3, we show that we
can generate visually appealing characters and illustrate some crucial parameter
dependencies. Finally, we discuss our work in Sec. 4.

2 Method

Motion Primitive Learning We use a combination of two variants of NMF called
semi-NMF and shift-NMF for learning the motion primitives from the handwrit-
ten character velocity profiles. Semi-NMF [7] relaxes the non-negativity con-
straint, such that only the activations are required to be non-negative. This
allows the motion primitives to have positive and negative values. Shift-NMF [8]
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Fig. 1: Reconstruction of one character ’a’ from the training data set after de-
composition with NMF, according to eqs. 1 to 6. Left: reconstruction of the
velocity profile of one input character (black line) by the learned parts (colored
thick lines), scaled by their corresponding learned activations (vertical colored
lines) Right: velocity reconstruction (left) integrated over time, resulting in the
position of the pen. The parts have also been colored. Note that shown here are
the temporally integrated versions of the actual parts.

introduces a translational degree of freedom to the basis vectors, i.e. there is not
only one coefficient for each basis vector anymore, but one coefficient for each
possible translation of a basis vector.

Let V4 € RVXT denote the matrix of N training trajectories of length T', with
elements Vr‘it. The the single trajectories are denoted as vectors V<. For ease
of notation, we separate the spatial dimensions of the trajectories into distinct
matrices, denoted by the upper index d. Let W¢ € RX*L be the matrix of K
basis vectors of length L, with elements W,f’l. We denote the single basis vectors
by W¢. Let H € RV*EXT he the tensor of contributions H,, x ; of the k-th basis
vector to the n-th input under translation .

The NMF can be formulated by minimizing the following energy function

F= ;zd:HVd_Rde"‘)‘gg(H)—F)\hh(H)_ 1)

R? € RV*T is the reconstruction matrix that is formed by temporal convolution
of the activities with basis vectors

Rﬁ,t = Z Hﬂ,kJand,t—m (2)
k,m

Here, we introduced normalized basis vectors Wg, where the normalization is
done jointly over all dimensions. The normalization is necessary to avoid scaling
problems as described in [8]. The functions g and h implement the sparseness
constraints and will be described later.

This optimization problem can be solved by alternatingly updating one of
the factors H or W<, while holding the other fixed. For semi-NMF usually a
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combination of least-squares regression of the basis vectors and multiplicative
update of the activations is used [7]. The former, however has very high compu-
tational demands in the case of shift-NMF and is not applicable for our problem.
We thus have to resort to gradient descent techniques. The following steps are
repeated iteratively until convergence after initializing H and W% randomly.

1. Build reconstruction according to Eq. 2
2. Update the activities by gradient descent and make them non-negative

Hn,k,t <— max (Hn,k,t - nHVHn,k,tFa 0) (3)
Vi, F ==Y (Vi RS )W +Va, 9+ MV, b (4)
d,t’

3. Build reconstruction according to Eq. 2
4. Update the basis vectors by gradient descent

Wi« Wi = nw Vi F (5)
Vi F = =33 (Vith = REL) Hopo Vo, Wi (6)
n,d’ t

The factors ny and ny are the learning rates. Note that the temporal corre-
lations (sums over ¢ and t’, respectively) can be computed very efficiently in
Fourier space. Note further, that expansion of the gradient in eq. 6 leads to a
computationally simpler form, which is omitted here due to lack of space.

The function g enforces sparseness of the activities by penalizing the overall
sum of activities. It’s effect is the emergence of interpretable basis vectors as
described in [§].

gH) = Hppy (7)

n,k,t

Since smooth basis vectors shifted only slightly are similar to themselves, there
are multiple non-zero activities at adjacent locations, which contradicts our idea
of spike-like activations that are temporally isolated. In most approaches this is
handled by a heuristic approach called Matching Pursuit [2], which is suboptimal.
Instead, we add a term h to the energy function, that introduces a competition
between adjacent activities. The competition is implemented by convolution with
a triangular kernel function zg (k, k', t — t').

h(H) = Z H’!L,k,t Z ZH(k7 k,, t— tl)Hn,k/7t/ (8)

n,k,t k't

0 k=K, t—t =0
kK t—t") = ’
2 ) {1—(t—t’)/w| -t Jw] < 1

: 9)
where w is the kernel width, which we set to twice the length of the basis vectors.
In the case of k = k’, activities of the same basis vector and adjacent to t are
penalized, such that isolated spike-like activities emerge. In the case of k # k',
the activities of all other basis vectors that try to reconstruct the same part
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of the input are penalized. Thus, we enforce, that only one basis vector can be
active during a time interval of L (the length of a basis vector) steps.

After applying NMF to the data, we interpret the basis vectors as motion
primitives and their corresponding activities as temporal activations thereof. See
Fig. 1 for an illustration of the resulting representation.
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Fig. 2: Left: unaligned (I) and aligned (I) intensity matrices for the character 'a’
for the first ten basis vectors with highest maximum intensity. The intensities
have been normalized to the maximum intensity of 0.235. Right: scaling matrix
obtained from the aligned activity patterns for the same set of basis vectors. The
scaling values have been normalized to the maximum value of 5.83.

Alignment of Activity Patterns On top of the primitive extraction we build a
generative model for the generation of a character trajectory, given a character
class. This model will be parameterized by an intensity matrix I € R5*T which
is the relative frequency of an activation greater than zero of primitive Wy at
time ¢ and a scaling matrix S € RE*T which is the average value or strength of
an activation of the k-th primitive at time ¢

1 i Hy g
I = N zn:Hn,k,t , o Sk = M,

NI+ (10)
where H,, 1 = O(H, k) is the binarized activity and © is the Heavyside func-
tion. The training trajectories in the data set, however, exhibit some variation
in start time and average speed, which is also reflected in the activation patterns
after the NMF step. This negatively affects the computation of I (see blue line in
Fig. 2 (left)) and S. Thus, we associate with each training trajectory an offset a,,
and stretching factor b,,. We optimize a,, and b, iteratively by gradient ascent
on the correlation ) between the individual activity pattern Hn,k,t and I ¢

Q(a,b) =Y Hppilo(r(tan,bn)),  In(r) = Iwpz(r—t), (11)
n,k t +

where 7(t,a,b) = b(t + a) is a translation and stretching of time index ¢, and
Ij(+) is an interpolation of I; with a triangular interpolation kernel z; that is
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evaluated at the time index transformed by 7. After this optimization, we sum
the aligned activations to get the aligned intensity matrix i Accordingly, the
aligned scaling matrix S is computed from the aligned intensity I (eq. 10). See
Fig. 2 for an illustration of the resulting alignment and scaling matrix.
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Fig. 3: Generation of trajectories through spiking neurons. Left: Process of spike
generation, where the upper plot shows the aligned intensity matrix I, the mid-
dle plot shows the resulting load ug+ from the integration by the I&F model
according to eq. 12, and the lowest plot shows the spikes vy ; that are generated
and scaled by Sk,t. Right: the trajectory that results from the convolution of the
basis vectors with the scaled spikes in pen space, according to eq. 13.

Activity Generation To model the generation of activities in the upper layer,
we use a stochastic Integrate-and-Fire (I&F) model, that is parametrized by
the aligned intensity matrix IA;M and generates spikes vy, € {0, 1}, which are
interpreted as activation times of basis primitives, and thus are the generated
counterpart of Hn&t. The internal state uy; of the k-th neuron is modelled by
a leaky integrator

Upt1 — Vg + Dpy it —1 > Otyes
Uy = { Tpp — Vg1 t—t' =1 (12)
0 1<t —t < Otpey

where ¢’ is the time of the last spike before ¢, ¢,y is the absolute refractory time,
during which the load remains zero, and v € (0, 1) controls the amount of leakage.
The neuron fires, i.e. vy = 1, when uy; exceeds a noisy threshold 6;, which is
sampled from a Gaussian. Our model is conceptually similar to that of [6], but
also models a hyperpolarizing spike-afterpotential by an absolute refractory time
dtres to prevent multiple firing in regions with high intensity. For reconstruction
of the actual trajectory, we also need the scaling of the activation, which we
computed earlier as the scaling matrix S. The generated trajectory Y¢ € RT is
then computed by the convolution of the basis vectors with the scaled spikes

Y;d = Z Z Uk,tsk,tW]g,tft/ . (13)
kot

See Fig. 3 for an exemplary illustration of the generation process.
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3 Results

We demonstrate our model on the Character Trajectories Data Set [6] available
from the UJI Machine Learning Repository. The motion primitive learning was
done jointly over 20 character classes (all small one-stroked characters), with 119
samples in each class. The alignment and generation was done per class. Figure
4 (left) shows the reconstruction error dependent on the number of character
classes |C| in the training data set and the number of basis components used.
It shows that for numbers of basis vectors of greater than 15, the reconstruction
error only decreases insignificantly. If we train on smaller data sets, less basis
vectors are necessary to get the same error. Figure 4 (right) shows the 20 learned
basis vectors. Figure 5 shows a number of generated characters for all classes.

2 3 5 7 10 15 20 -4 -3 -2 -1 0 1 2 3 4 5
T

Fig. 4: Left: relation between cost F' (normalized on number of inputs N), number
of basis vectors K and number of classes |C|. Choosing more then K = 15 basis
vectors does not result in significant decrease of reconstruction error. Right: 20
learned basis primitives in pen space (i.e. temporally integrated). Basis vectors
that appear very similar here, differ in the speed of execution.

The quality of the generated characters is sensible on the parameters of the
Gaussian firing threshold p and o. If p is chosen too high, some parts are not
activated and thus missing in the trajectory, which results in defects in some
characters. Further the scaling of the basis vectors sometimes results in overlong
strokes like in the characters '’ and 'm’.

4 Conclusion

We presented a model for the generation of handwritten characters based on
a locally sparsified and translationally invariant NMF decomposition followed
by an event-based activation through spiking neurons. The decomposition of
the input patterns into smaller parts and their corresponding composition by
learning their timing regime allows for an efficient handling of the temporal
variations inherent in human movement data. We have shown that with the
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Fig. 5: The top row shows one example training character for each class from the
training data set. The other rows show generated samples for all 20 character
classes. In some classes of the generated characters, like 'd’ and ’z’, defects like
missing parts are obvious.

proposed model the handwritten characters can be synthesized as a sequence of
successive stroke parts.

The Integrate-and-Fire model for activation of primitives, however, some-
times results in defects in the resulting trajectories. Here we see room for im-
provement, and the fact that our model delivers single, isolated spikes in regions
with high intensity, invites for direct statistical models e.g. of Hidden Markov
type. This will be investigated in future research.
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