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Abstract. We interpret biological motion trajectories as being com-
posed of sequences of sub-blocks or motion primitives. Such primitives,
together with the information, when they occur during an observed tra-
jectory, provide a compact representation of movement in terms of events
that is invariant to temporal shifts. Based on this representation, we
present a model for the generation of motion trajectories that consists
of two layers. In the lower layer, a trajectory is generated by activat-
ing a number of motion primitives from a learned dictionary, according
to a given set of activation times and amplitudes. In the upper layer,
the process generating the activation times is modeled by a group of
Integrate-and-Fire neurons that emits spikes, dependent on a given class
of trajectories, that activate the motion primitives in the lower layer.
We learn the motion primitives together with their activation times and
amplitudes in an unsupervised manner from unpartitioned data, with a
variant of shift-NMF that is extended to support the event-like encoding.
We present our model on the generation of handwritten character trajec-
tories and show that we can generate good reconstructions of characters
with shared primitives for all characters modeled.

Keywords: sparse coding, non-negative matrix factorization, motion
primitives, spiking neurons

1 Introduction

Studies in animal motor control suggest that the motor system consists of a
control hierarchy, where a number of low-level motor primitives control muscle
activations to perform small movements and a higher level controls the sequen-
tial activation of those motor primitives to perform complex movements [1]. In
addition, motor primitives are shared amongst high-level motions.
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2 Modeling Human Motion Trajectories

We present a model for the generation of motion trajectories that is inspired
from those results. We demonstrate our model on the generation of handwritten
character velocity trajectories (see Fig. 1).
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ẋ

0 50 100 150
t

1.0

0.5

0.0

0.5

1.0

ẏ
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Fig. 1: Ten example handwritten character trajectories of the letter ’a’ of our
dataset, plotted as velocity space over time (left) and in pen space (right).
Throughout this paper, training of the models and generation of trajectories
is done in velocity space. The pen space representation is obtained by integrat-
ing the velocity over time. The pen space is shown for an intuitive visualization.

We model a trajectory as being composed of short parts that are shared
between different trajectories and form a dictionary. We call those parts motion
primitives. In a generative interpretation, a motion primitive can be activated at
a certain point in time to generate a characteristic temporal sequence of points
in space for a short time period. This dictionary can be learned from data, as
will be presented later. See Fig. 2 for an exemplary set of motion primitives that
have been learned from handwritten character trajectories. Given a dictionary of
motion primitives, a trajectory can then be represented by the activation times
and amplitudes of those primitives for generating the trajectory (see Fig. 3).
This representation provides an alternative encoding of the trajectory in terms
of sparse events, also called a sparse code.

As will be shown later, for similar trajectories, the activation times and am-
plitudes are again similar. Thus, we can characterize different classes of trajec-
tories, e.g. the character classes ’a’, ’b’, etc., by the typical activation times and
amplitudes of the motion primitives for those classes. To generate a trajectory
from a desired class, first the activations have to be sampled and then the motion
primitives have to be activated according to those activations.

Thus, we have a two-layered model for character trajectory generation. In the
lower layer, given a set of activation times, a trajectory is generated by activating
a number of motion primitives, that have been learned beforehand. As learning
algorithm, we use the Non-negative Matrix Factorization (NMF).

In the upper layer of our two-layered model, the exact order and timing of
the primitives is controlled with a timing model that stores knowledge about the
typical activation times and amplitudes of the primitives for a desired class of
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Fig. 2: Exemplary selection of motion primitives learned from the handwritten
character data set in velocity space (left) and in pen space (right). In the left
plot, the motion primitives (separated by dashed lines) have been appended to
each other for visualization.

trajectories. The process generating the activation times is modeled by a group of
Integrate-and-Fire (I&F) neurons (one for each motion primitive) that generate
spikes, dependent on a given class of trajectories. The spikes are interpreted
as activation times for the motion primitives in the lower layer. The input to
the I&F neurons is the class-specific temporal activation density, which is also
learned from the data.

We discuss related work in Sec. 2. Our approach is described in detail in Sec.
3. In Sec. 4, we show that we can generate visually appealing characters and
illustrate some crucial parameter dependencies. Finally, we conclude our work
in Sec. 5.

2 Related Work

There are a variety of approaches for sequencing of motion by means of motion
primitives. The research in this area can be divided into two groups. In the
first group, the existence of motion models is assumed that have been hand-
crafted or learned in isolation in a supervised manner. In this group the most
prominent approaches model motion primitives with Hidden Markov Models
(see e.g. [6]) or Dynamic Movement Primitives (see e.g. [9]). Approaches in this
group typically aim at a representation that can be used for reproduction on
humanoid robots. In the second group, motion models are learned from the data
in an unsupervised manner (see e.g. [12] and [5]). Those approaches typically aim
at finding representations of data that are interpretable and uncover interesting
features in the data. Our approach belongs to the second group.

In the domain of time series processing, sparse coding has been mainly used
for auditory signal coding. In [8], the authors aim at computing a sparse rep-
resentation of natural audio signals in form of spike trains, where the spikes
mark activations of a fixed and hand-crafted set of basis functions. Given this
set of basis functions, the amplitude and timing of their activations are learned.
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4 Modeling Human Motion Trajectories

The authors argue that such a representation provides a very efficient encoding
and uncovers the underlying event-like structure of the signal. This work has
been extended (e.g. in [11]) to also learn the basis functions to find an optimal
dictionary or code of the signal. The authors show that the emerging basis func-
tions can be compared to auditory receptors in animals and thus are naturally
interpretable.

The main problem of such approaches is that the gradient-based techniques,
used for optimization of the activations and the basis functions, lead to multi-
ple adjacent activations with high values (activation traces; see Fig. 4 left), as
opposed to sharply localized spikes desired for a sparse encoding. As a conse-
quence, instead of optimizing the activations directly, heuristics like Matching
Pursuit are used, where the subset of the activations is selected one after an-
other by correlation with the basis functions and thresholding. We show in this
paper, however, that temporally isolated activities can also be achieved without
selection heuristics, but instead by directly formulating a penalty for adjacent
activities and including this penalty as an additional energy-term for the basis
vector decomposition model. During optimization, the penalty term naturally
leads to a competition between rivaling activities, eliminating adjacent activa-
tions (see Fig. 4 right).

More recently, NMF has been applied to find patterns in data like neural
spike trains [10] or walking cycles of human legs with constant frequency [5]. The
length of the basis vectors must be specified manually and is typically chosen to
be of the length of the expected patterns, e.g. a single spike pattern or a single
walking cycle. However, for human movement data like handwriting, where a
pattern in this sense is a whole character, NMF in this form can not be applied
due to temporal variations of the underlying patters, like different speed profiles.
Our approach is to interpret a pattern to be a combination of even smaller sub-
parts (see Fig. 3), where the parts themselves have a lower temporal variability
and the variability of the whole pattern is captured by shifting the parts in a
small local region.

The above mentioned models address only the learning of basis functions and
their activations. Our model additionally learns typical activation patterns for
different classes of trajectories. In [12] an approach is presented, which is similar
to our approach, but where the primitives in the lower layer are modeled by a
factorial HMM (fHMM). To the contrary, we use a sparse coding framework,
specifically the Non-negative Matrix Factorization (NMF), for learning the mo-
tion primitives, together with their activation times from unpartitioned training
trajectories in an unsupervised manner. Further, in contrast to [12], where the
layers are learned jointly, we separate the learning for the benefit of decreased
computational complexity.

3 Method

In the following, the steps for learning the parameters of the layers in our model
and for the generation of the trajectories will be described. The learning pro-
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cedure consists of three stages. In the first stage motion primitives are learned
from training trajectories in an unsupervised manner. In the second stage the
activations of those motion primitives for all training trajectories in one class
are temporally aligned. In the third stage, the aligned activities of all training
trajectories in one class are used to learn class-specific intensity matrices (the
activation density) of the I&F neurons that control the sequence of primitives.

3.1 Motion Primitive Learning

We formulate the motion primitive learning in the NMF framework. In general,
with NMF one can decompose a set of N input samples into a small number
K � N of basis vectors and coefficients, called activations, to superimpose
these to reconstruct the inputs. By imposing a non-negativity constraint and
specific sparsity constraints on the activations, the resulting basis vectors are
interpretable as parts that are shared amongst the inputs and constitute an
alphabet (or dictionary) underlying the data [7].

We use a combination of two variants of NMF called semi-NMF and shift-
NMF for learning the motion primitives from the handwritten character velocity
profiles. Semi-NMF [3] relaxes the non-negativity constraint, such that only the
activations are required to be non-negative. This allows the motion primitives
to have positive and negative values, which we require for the velocity-based
trajectory representation. Shift-NMF [4] introduces translation-invariant basis
vectors. Thus, a basis vector can occur anywhere in the input, which is necessary
for temporal signals with reoccurring patterns. See Fig. 3 for an example of the
resulting representation.
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Fig. 3: Reconstruction of one character ’a’ from the training data set after de-
composition with NMF, according to eqs. 1 to 6. Left: reconstruction of the
velocity profile of one input character (black line) by the learned parts (colored
thick lines), scaled by their corresponding learned activations (vertical colored
lines). The activations represent a sparse code of the trajectory. Right: veloc-
ity reconstruction (left) integrated over time, resulting in the position of the
pen. The parts have also been colored. Note that shown here are the temporally
integrated versions of the actual parts.
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6 Modeling Human Motion Trajectories

For ease of notation, we separate the spatial dimensions (ẋ and ẏ) of the
trajectories into distinct matrices, denoted by the upper index d. Let Vd ∈ RN×T

denote the matrix of N training trajectories of length T (shorter trajectories are
padded with zeros), with elements V d

n,t. The single trajectories are denoted as

vectors Vd
n. Let Wd ∈ RK×L be the matrix of K basis vectors of length L, with

elements W d
k,l. We denote the single basis vectors by Wd

k. Let H ∈ RN×K×T be
the tensor of activations Hn,k,t of the k-th basis vector in the n-th reconstruction
at time t. In semi-NMF the activations are constrained to be non-negative, and
thus ∀n, t, k : Hn,k,t ≥ 0.

We learn Wd and H with NMF by minimizing the following energy function

F =
1

2

∑
d

∥∥Vd −Rd
∥∥2
2

+ λg
∑
n,k,t

Hn,k,t + λhh(H) . (1)

The matrices Rd ∈ RN×T are the reconstructions of the trajectories by activation
of the basis vectors Wd through activations H, which can be formulated as a
temporal convolution

Rd
n,t =

∑
k

∑
t′

Hn,k,t′Ŵ
d
k,t−t′ . (2)

Here, we introduced normalized basis vectors Ŵd
k, where the normalization is

done jointly over all dimensions d. This normalization is necessary during learn-
ing to avoid scaling problems as described in [4].

The first two terms of the energy function 1 formalize the standard approxi-
mation scheme commonly used for sparse non-negative matrix factorization (see
e.g. [2]), where the first term is the distance measure and the second term is a
penalization of the overall sum of activations. Additionally, we introduced the
function h, which is crucial to get an encoding interpretable as spike-like activa-
tions and will be described later.

This optimization problem can be solved by alternatingly updating one of
the factors H or Wd, while holding the other fixed. For semi-NMF usually a
combination of least-squares regression of the basis vectors and multiplicative
update of the activations is used [3]. The former, however has very high compu-
tational demands in the case of shift-NMF and is not applicable for our problem.
Thus, we have to resort to gradient descent techniques. The following steps are
repeated iteratively until convergence after initializing H and Wd with Gaussian
noise.

1. Build reconstruction according to Eq. 2
2. Update the activities by gradient descent and make them non-negative

Hn,k,t ← max
(
Hn,k,t − ηH∇Hn,k,t

F, 0
)

(3)

∇Hn,k,t
F = −

∑
d,t′

(
V d
n,t′ −Rd

n,t′
)
Ŵ d

k,t′−t + λg + λh∇Hn,k,t
h (4)

3. Build reconstruction according to Eq. 2
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4. Update the basis vectors by gradient descent

W d
k,l ←W d

k,l − ηW∇Wd
k,l
F (5)

∇Wd
k,l
F = −

∑
n,d′

∑
t′

(
V d′

n,t′ −Rd′

n,t′

)
Hn,k,t′−l∇Wd

k,l
Ŵ d′

k,l (6)

The factors ηH and ηW are the learning rates. Note that the temporal correla-
tions (all the sums over t′) can be computed very efficiently in Fourier space.
Note further, that expansion of the gradient in eq. 6 introduces dependencies
between the dimensions. The derivation of the update equations by gradient
descent from eq. 1 is straight forward and, thus, ommitted here.

Since two slightly shifted versions of the same basis vector are highly corre-
lated with each other, typically, there are multiple non-zero activities at adjacent
locations, which contradicts our idea of spike-like activations that are temporally
isolated (see Fig. 4 (left)). Although non-isolated activities might give smoother
trajectories, for the interpretation of the activities as temporal events that mark
the beginning of motion parts, it is important to have clearly segregated activa-
tion peaks. In most approaches this is implemented by a heuristic like Matching
Pursuit, which selects a subset of few activations beforehand. Instead, we enforce
sharply localized activations directly by formulating a penalty for adjacent acti-
vations into the energy function by adding a term h that introduces a competition
between adjacent activities. The competition is implemented by convolution of
the activations with a triangular kernel function zH(k, k′, t − t′) that penalizes
neighboring activities.

h(H) =
∑
n,k,t

Hn,k,t

∑
k′,t′

zH(k, k′, t− t′)Hn,k′,t′ (7)

zH(k, k′, t− t′) =

{
0 if k = k′, t− t′ = 0(

1−
∣∣∣ t−t′w

∣∣∣) · I (∣∣∣ t−t′w

∣∣∣ < 1
)

otherwise
, (8)

where w is the kernel width, which we set to twice the length of the basis vectors.
In the case of k = k′, activities of the same basis vector and adjacent to t are
penalized, such that isolated spike-like activities emerge. In the case of k 6= k′,
the activities of all other basis vectors that try to reconstruct the same part
of the input are penalized. Thus, we enforce that approximately only one basis
vector can be active during a time interval of L (the length of a basis vector)
steps and that it can be active only once during that interval. See Fig. 4 for an
illustration of the effect of the local activity competition.

After applying NMF to the data, we have a representation of the input in
terms of learned basis vectors and activities. We interpret the basis vectors as
motion primitives and their corresponding activities as temporal activations of
the motion primitives. See Fig. 3 for an illustration of the resulting representa-
tion.

We observed that the activations are similar for trajectories of the same class.
Thus, we can characterize a class by the average activations of a class. This will
be used to build a model for the generation of activities for a given class.
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Fig. 4: Effect of the local activity competition. Without local activity compe-
tition (left), the activities (vertical colored lines) are distributed over adjacent
locations. With the local sparsity extension (right), only one activity in a local
cluster wins and all other activities are forced to zero.

3.2 Alignment of Activity Patterns

On top of the motion primitive layer we build a model for the generation of
activations of motion primitives, given a character class. This model will be
parametrized by an intensity matrix I ∈ RK×T which is the relative frequency
of an activation greater than zero of primitive Wk at time t and a scaling matrix
S ∈ RK×T , which is the average amplitude of an activation of the k-th primitive
at time t

Ik,t =
1

N

∑
n

H̄n,k,t , Sk,t =

∑
nHn,k,t

NIk,t
, (9)

where H̄n,k,t = Θ(Hn,k,t) is the binarized activity and Θ is the Heavyside func-
tion.

The training trajectories in the data set, however, exhibit some variation in
start time and average speed, which is also reflected in the activation patterns
after the NMF step. This negatively affects the computation of I (see blue line
in Fig. 5 (left)) and S, because instead of having localized peaks, the intensities
are spread over time. We align the activity patterns by associating with each
training trajectory an offset an and stretching factor bn and optimizing an and bn
iteratively by gradient ascent on the correlation between the individual activity
pattern H̄n,k,t and a linear interpolation of Ik,t. After this optimization, we apply
eq. 9 again, but with the aligned activities, i.e. corrected by an and bn to get
the aligned intensity matrix Î and the aligned scaling matrix Ŝ.

3.3 Activity Generation

To model the generation of activities in the upper layer, we use a stochastic
Integrate-and-Fire (I&F) model. For each motion primitive, there is one I&F
neuron that activates the motion primitive by generating a spike. As input to
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Fig. 5: Left: unaligned (I) and aligned (̂I) intensity matrices for the character ’a’
for the first ten basis vectors with highest maximum intensity. The intensities
have been normalized to the maximum intensity of 0.235. Right: scaling matrix
obtained from the aligned activity patterns for the same set of basis vectors. The
scaling values have been normalized to the maximum value of 5.83.

the neurons, we use the average activations we computed earlier as the aligned
intensity matrix Îk,t (see Sec. 3.2).

The k-th neuron generates spikes vk,t ∈ {0, 1}, which are interpreted as
activation times of basis primitives, and thus are the generated counterpart of
H̄n,k,t. The internal state uk,t of the k-th neuron is modeled by a leaky integrator

uk,t =


uk,t−1 − νuk,t−1 + Îk,t : t− t′ ≥ δtref
Îk,t − νuk,t−1 : t− t′ = 1

0 : 1 < t− t′ < δtref ,

(10)

where t′ is the time of the last spike before t, δtref is the absolute refractory
time during which the load remains zero, and ν ∈ (0, 1) controls the amount of
leakage. The neuron fires, i.e. vk,t = 1, when uk,t exceeds a noisy threshold θt,
which is sampled from a Gaussian during each simulation step.

After simulation of the I&F neurons, vk,t indicates the activation times for the
motion primitives. For reconstruction of the actual trajectory, we also need the
average amplitudes of the activations, which we computed earlier as the scaling
matrix Ŝ (see Sec. 3.2), since the generated spikes are only binary and they
have to be scaled to actually use them as activations of the basis primitives.
The generated trajectory, which we call R̃d ∈ RT , is then computed by the
convolution of the basis vectors with the scaled spikes

R̃d
t =

∑
k

∑
t′

vk,t′ Ŝk,t′Ŵ
d
k,t−t′ . (11)

4 Results

We demonstrate our model on the Character Trajectories Data Set [12] available
from the UJI Machine Learning Repository. We use the subset of all characters
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10 Modeling Human Motion Trajectories

consisting of only one stroke, since there is no principled approach to deal with
trajectories consisting of multiple strokes and, thus, having a large discontinuity,
yet. This will be investigated in future research.

Figure 6 shows the results of the sampling of one character trajectory. It can
be seen from the lowest plot on the left side, that exactly one spike is generated
in regions of high intensity (as indicated by the upper plot on the left).
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Fig. 6: Generation of trajectories through spiking neurons. Left: Process of spike
generation, where the upper plot shows the aligned intensity matrix Î, the mid-
dle plot shows the resulting load uk,t from the integration by the I&F model
according to eq. 10, and the lowest plot shows the spikes vk,t that are generated

and scaled by Ŝk,t. Right: the trajectory that results from the convolution of the
basis vectors with the scaled spikes in pen space, according to eq. 11.

The most crucial parameter of our model is the number of motion primitives,
which must be chosen manually, because it has great influence on the quality
of the reconstructions in the NMF step (see Sec. 3.1). Figure 7 (left) shows the
reconstruction error, which is a measure of the quality of the approximation
of the input, dependent on the number of character classes |C| ( i.e. ’a’, ’b’,
etc.) in the training data set and the number of basis components used. For a
fixed number of classes, e.g. |C| = 20, the reconstruction error decreases with
increasing number of motion primitives. From K = 15 to K = 20 there is only a
minor decrease in reconstruction error. This indicates that K = 20 is sufficient
for this data set. Note, however, that this is highly dependent on the data set.
The necessity to manually choose the number of basis components is a restriction
of our approach. However, one can automatize the selection process by running
the optimization multiple times with increasing number of basis components
and stop when the relative decrease in error through addition of a basis vector
is small.

We tested the behavior of the reconstruction error, when the variability of
the training data is reduced, by reducing the number of character classes |C|.
As expected, for a smaller number of character classes, the reconstruction error
saturates at smaller K. Thus, the less variability in the data set the fewer motion
primitives are needed. Except for Fig. 7 (left), in all the simulations of this paper,
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Fig. 7: Left: relation between cost F (normalized on the number of inputs N),
number of basis vectors K and number of classes |C|. Choosing more than
K = 15 basis vectors does not result in significant decrease of reconstruction er-
ror. Right: 20 learned basis primitives in pen space (i.e. temporally integrated).
Overlapping basis vectors that appear very similar here, differ in the speed of
execution.

we consistently used K = 20 motion primitives. Figure 7 (right) shows the 20
learned basis vectors in pen space. Note, that motion primitives that seem similar
here differ in their speed of execution.

Figure 8 shows a number of representatives of successfully generated char-
acters for all classes. The quality of the generated characters is sensible on the
mean of the Gaussian firing threshold (see Sec. 3.3). If it is is chosen too high,
some parts are not activated and thus missing in the trajectory, which results
in defects in some characters. Further the scaling of the basis vectors sometimes
results in overlong strokes like in the characters ’l’ and ’m’.

Fig. 8: The top row shows one example training character for each class from the
training data set. The other rows show successfully generated samples for all 20
character classes. For some classes of the generated characters, like ’d’ and ’z’,
small defects like missing parts can be observed.
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12 Modeling Human Motion Trajectories

5 Conclusion

We presented a model for learning the generation of handwritten characters
based on a locally sparsified and translationally invariant NMF decomposition
followed by an event-based activation through spiking neurons. The decomposi-
tion of the input patterns into smaller parts and their corresponding composition
by learning their timing regime allows for an efficient handling of the temporal
variations inherent in human movement data. We have shown that with the
proposed model the handwritten characters can be successfully synthesized as a
sequence of successive stroke parts.

The Integrate-and-Fire model for activation of primitives, however, some-
times results in defects in the resulting trajectories. Here we see room for im-
provement. The fact that our model delivers single, isolated spikes in regions
with high intensity, invites for direct statistical models e.g. of Hidden Markov
type. This will be investigated in future research.
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