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Estimation of Human Upper Body Orientation for Mobile Robotics
using an SVM Decision Tree on Monocular Images

Christoph Weinrich, Christian Vollmer, Horst-Michael Gross

Abstract—In this paper, we present a monocular, texture-
based method for person detection and upper-body orientation
classification. We build on a commonly used approach for
person recognition that uses a Support Vector Machine (SVM)
on Histograms of Oriented Gradients (HOG) [1] but replace the
SVM by a decision tree with SVMs as binary decision makers.
Thereby, in addition to the pure detection of persons, the
distinction of eight upper-body orientation classes is enabled.
The detection of humans and the estimation of their upper-
body orientation from larger distances is essential for socially
acceptable navigation of mobile robots. It permits to estimate
the human’s notice of the robot or even the human’s interest
in an interaction. Thus, it is the basis for the decision whether
to approach or to avoid a human. By using an SVM decision
tree for upper-body orientation estimation in discrete steps of
45°, we were able to classify about 64% of the test samples
with an absolute error of less than 22.5°. This performance
is much better than the results we obtained with comparable
methods. Furthermore, our approach proved to be faster than
the other state-of-the-art methods. This is of high relevance for
implementation on mobile robots with limited computational
resources.

I. INTRODUCTION

The recognition of human upper-body orientations is an
important requirement to improve human-robot interaction
(HRI), for example in the field of socially acceptable naviga-
tion. Especially in public and sometimes busy environments,
like supermarkets or home improvement stores [2], the
navigation is part of nonverbal communication and has socio-
emotional importance. To optimize the HRI, it is necessary
that the robot’s navigation behavior is socially acceptable
for the users of the robot and for uninvolved bystanders.
Particularly, assistant or guiding robots need to be articulate,
kind, and non-intrusive. A socially acceptable navigation
behavior of such robots is substantially influenced by the
spatial relation between the robot and its surrounding persons
[3]. Thus, it is the basis for the decision whether to approach
or to avoid a human. Furthermore, these approach-or-avoid
behaviors themselves should respect the human’s personal
space [4] and therefore be adapted to the human’s position
and upper body orientation [5]. Thereby, a special challenge
is to detect persons and estimate their upper-body orientation,
using the limited on board computing power.

In this paper, we investigate the application of a decision
tree, where at each node a binary decision is made by a
linear SVM and the final classification is determined by the

This work has received funding from the Ph.D. Graduate School on Image
Processing and Image Interpretation at Ilmenau University of Technology.

C. Weinrich, C. Vollmer, and H.-M. Gross are with Neuroinformatics and
Cognitive Robotics Lab, Ilmenau University of Technology, 98694 Ilmenau,
Germany christoph.weinrich at tu-ilmenau.de

V)
:
@D @9 ) @1
@9 @D

(a) (®)

Fig. 1. (a) Logical illustration of Support Vector Machines (SVMs) with
tree architecture for exemplary classification of three classes (cross, square,
circle) and (b) the geometric depiction of the separation in 2D feature space
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Fig. 2. Training samples with their class labels and the according upper-
body orientation domain

leaves of the tree. The schematic depiction in Fig. 1 shows
the separation of three classes. Actually, one background-
only class and 8 upper-body classes are separated (Fig. 2).
We call those goal classes. A texture-based approach, the
Histograms of Oriented Gradients (HOG), is used as feature
descriptor. However, other feature descriptors, like Linear
Binary Patterns (LBP) proved suitable as well and will be
investigated further in future research.

After this introduction, Sec. II reviews related work. After-
wards, the used data and the acquisition thereof is described
in Sec. III. In Sec. IV our approach for constructing and
training an SVM decision tree is described in detail. Sec.
V shows that our approach has superior performance w.r.t.
related approaches.

II. RELATED WORK

Many approaches for estimating the human upper-body
orientation depend on multiple cameras [6], [7], [8] or laser
range finders [9], [10] to perceive different views of the per-
sons. Thus, such approaches are not applicable on a mobile
robot. Approaches that are based on active depth sensors
[11], [12], like Kinect™, are less applicable as well, as they
are limited due to the required data bandwidth, computational
and power resources, interferences through external IR light
sources, that are common in our scenario, and the maximum
distance between 5 and 10m. Approaches that perform on
monocular camera images, like the detectors in [1], [13],
[14], [15], would be advantageous, because they could be
used with wide-angle cameras or even omni-directional cam-
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eras. These cameras are relatively inexpensive, have high
information content and are nowadays standard equipment on
many mobile robots. Furthermore, all people in the robot’s
environment can be perceived and potentially recognized up
to great distance, so that the robot has enough time to react
during its tour.

The feature representations obtained by Histograms of Ori-
ented Gradients (HOG) [1] and Local Binary Patterns (LBP)
[13] are very robust to changes of color or illumination,
making them well suited for our approach, as well.

In [1] and [13] linear SVMs are used for classification.
SVMs generalize very well for linear separable problems,
and their application is computationally relatively inexpen-
sive, since the classification effort is reducible to one scalar
product of the D-dimensional feature vector x and the trained
weight vector w, plus a comparison with a threshold b:

D
1 if . b
Flo) = i L waxa > (1)

—1 else

Another advantage of linear SVMs is that the basic training
parameters consist of only a cost factor, which defines a
trade-off between generalization and accuracy, and a toler-
ance of a termination criterion. Optionally, the cost factor of
particular classes or even individual data samples might be
multiplied by some weight.

In this work, we distinguish nine goal classes (a
background-only class and eight orientation classes). For
classification with SVMs, this problem has to be mapped to
multiple binary-class problems, for which several methods
exist that will be explained in the following.

A one-versus-rest (1-v-r) multi-class SVM [16] employs
C binary SVMs to separate each of the C classes from the
remaining classes. The resulting classification is done by
a winner-takes-all strategy, whereas the classifier with the
highest output value determines the class.

The one-versus-one (1-v-1) method [17] applies % bi-
nary SVMs to separate C classes from each of the remaining
classes. A max-wins voting strategy is used, where the vote
for a class is increased whenever this class wins the binary
classification. For robust classification, each class should be
separable by a binary SVM from each of the remaining
classes. This is less constricting compared to 1-v-r SVMs,
because the separation of one class against all others is
generally harder.

Directed Acyclic Graph SVMs (DAGSVMs) [18] employ
LZ_C binary SVMs to separate C classes, as well. But in
contrast to the 1-v-1 method, these binary SVMs are hierar-
chically arranged. Thereby only C — 1 binary classifications
have to be accomplished to classify one sample.

If the above mentioned multi-class methods are applied
to linear SVMs, each separation between a pair of classes
(1-v-1) or between one class and all other classer (1-v-r) is
done by one hyperplane. This decreases the robustness of the
classifier on data that is not perfectly linearly separable. In
the experiments, we will show that linear multi-class SVMs
like 1-v-1 and in particular 1-v-r are not able to separate

the orientation classes properly. One obvious solution would
be the use of nonlinear SVMs. However, these are computa-
tionally more expensive, because all k£ support vectors have
to be processed, and for each of them the kernel function
K (x(i),x) needs to be computed:

k
: K ()
) = 1 if EO oK (x\V x) > b )

—1 else

Another disadvantage compared to linear SVMs is that the
kernel parameters have to be defined. For example, the
widely used Gaussian kernel needs to be parameterized by
its covariance matrix. Since the kernel parameters strongly
affect the performance, this is not a trivial choice.

Moreover, non-linear SVMs require a great amount of
memory during training. Therefore, in [19] non-linear SVMs
are combined within a decision tree. This approach is called
DTSVM. The decision tree is primarily used to decompose
the feature space until it gets more efficiently manageable
by the non-linear SVMs, which are located in the decision
tree’s leaves. So, in contrast to pure decision trees, this
decomposition does not need to be performed until the
subspace contains only samples of a single class, which often
causes over-fitting.

But since linear SVMs already show relatively good results
for person detection on HOG data [1], the computational
effort of non-linear SVMs during application phase seems
disproportional.

Obviously, there is a vast amount of multi-class classifiers
with different degree of separability and computational effort,
but we concentrate on a multi-class extension to SVMs that
increases computational cost only minimally. Thereto, we in-
vestigated different approaches of SVM decision trees, where
at the nodes SVMs are used as binary decision makers. An
important distinguishing feature of these trees is the way the
multiple classes are mapped on two classes for each binary
decision. In [20], e.g., the classes with the closest centers
are merged iteratively until only two classes are left. Like
the typical decision tree algorithms, the training data is used
to train a node, then the training data is separated according
to the decision in that node, and the subsets are used to
recursively train the child-nodes. Compared to pure decision
trees like in [21], the separation of the feature space is not
limited to be par-axial and therefore, potentially, generalizes
better. As Fig. 1 shows, decision trees can separate concave
distributions of data samples and solve multi-class problems.
Moreover, the path length from the root node to the leaves
reflects the separation complexity of the associated subspaces
of the feature space. This means, less complex classification
problems need less computing time.

Our approach can be used as a detector, and its output
can be utilized in later processing stages, e.g. in a person
tracker, and merged with outputs of other detectors that
use other cues to detect persons, in 3D space. For ex-
ample, we use this approach to support a silhouette-based
approach for continuous estimation of orientation, which
suffers from silhouette ambiguities. To support this merging,
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it is beneficial to have a probabilistic notion of the outputs.
Instead of providing just the most likely orientation class,
our approach determines the probability of each orientation
class. Since the classifier is applied on a multi-resolution
pyramid like in [1], the classification results are stored within
a multi-resolution pyramid as well, where each level stores
the probability of all eight orientation classes. Knowing the
camera parameters, a given pose hypothesis in 3D space can
be mapped onto a position in the multi-resolution pyramid,
yielding the corresponding probabilities or vice versa.

The next section describes the data acquisition of the
training and test images of humans standing or moving
in different orientations in front of a mobile robot and
their ground truth labeling. In Sec. IV the specification of
the training of an SVM decision tree, which is especially
designed for our application, is shown.

III. DATA ACQUISITION

The training data set consists of about 1.5 million image
sections. Each of them is labeled with -1 if it shows ex-
clusively background. The other images that show humans,
are labeled from O to 7, whereas the label describes the
upper body orientation from -180° to 180° in 45° intervals
(Fig. 2). The vertical position of the hip is located at the
images’ lower border and the head is located with a distance
that is 10% of the image height, to the upper edge. The
human’s spine is always located around the center of the
image and all images have the same aspect ratio. Certain
variations of the image positions are included, because when
the sliding window technique is applied to get the detection
windows during application phase, the detection windows
do not hit each human exactly, either. However, by this
relatively strict positioning of the image sections, we make
sure that particular body parts are located at almost the
same positions, to simplify the classification problem. Fur-
thermore, the detection of humans becomes spatially more
precise. The background of each image showing a human is
also contained in one of the images that show exclusively
background. This prevents the classifier from modeling the
goal classes based on the background regions of images that
show humans. To increase the variance of the background
and reduce the correlation between persons and background,
each image that shows a human has another background.

To automatically obtain orientation labels for the training
data, which consists of 16 differently dressed people, we used
the skeleton tracking facility of the OpenNI™ together with
the Kinect™ depth camera. The training data was captured
of humans which had less than 5Sm distance to the camera.
However, due to the use of a multi-resolution pyramid this
does not limit the maximum distance during application
of this approach. The skeletons’ shoulder positions were
used to compute the orientation and to automatically label
the images. Furthermore, background subtraction in HSI
color space was used to roughly segment the person in
the image. Afterwards GrabCut [22] was applied for pixel
accurate segmentation of the human. Thereby, the actual
background could be replaced by the image segments from

the background images (Fig. 2) of the INRIA person data set
[1] ("blue boxing”). The resulting data set, which consist of
23,876 images showing humans in different upper-body ori-
entations and about 1.5 million background image segments,
was split into a training and a validation data set, at a ratio
of 10 to 1.

A test data set of 1,490 images was created with an
additional person. In contrast to the training data set, in this
case the background of the test images was not replaced.
Furthermore, the orientation labels of the test data set were
manually checked and if necessary corrected as the orienta-
tion estimations delivered by the OpenNI as ground truth data
sometimes were incorrect. Additionally, 96,146 background
images for the test set were generated from the Caltech
background data base [23].

IV. TRAINING OF THE SVM DECISION TREE

For classification, the root node of the decision tree
employs a linear SVM to decide which of its child nodes
is capable to classify a given data sample. The child nodes
recursively do the same until a leave node is reached. As
will be explained later, each leave holds a multinomial
distribution of labels for those samples that are placed in
the subspace that the respective leaf is responsible for. The
output of our classification procedure is the most likely class
label (Fig. 1) or optionally the whole distribution over the
nine class labels.

The decision tree is constructed recursively starting at the
root node. To train the SVM of the current node, all training
samples in the set S have to be assigned to one of the binary
classes —1 and 1, which we call grouping. Thereafter, the
training data set is separated according to the SVM decision,
and for each subset S~! and S!, which are the subsets of all
samples with binary label —1 and 1, respectively, this algo-
rithm is applied recursively to the child nodes. The recursion
is terminated when a certain proportion p € (0, 1] of a node’s
training samples S belong to one class, or further separation
does not improve the classification on the validation data
set, which indicates over-fitting. Increasing p generally leads
to a reduction of the resulting tree’s depth. The distribution
of a node’s training samples over the orientation labels is
estimated by the relative frequency of the training samples
that ’fell’ in the responsibility of this node.

To estimate the quality of an SVM node w.r.t. to the
accuracy of the whole tree, the information gain G(SVM) is
used on the validation data set. It defines the reduction of the
entropy within the child nodes H(S~!) and H(S') compared
to the entropy of the parent node H(S). The information gain
is also applied to grow decision trees by the ID3 algorithm
[21]:

S sty 8
G(SVM)=H(S)— 5 H(S™)— 5] H(S) 3
C
G s
SR YR @

where S, is the set of samples of goal class ¢ € {0,...,C}. To
tune the SVM'’s training parameters of each node, w.r.t. the
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gain G(SVM), we propose the application of five steps (Fig.
3), whereas some are optional. Each step will be described
in the following.

Grouping Classes
Weighting of Goal Classes

Recursive Feature Elimination

\ Bootstrapping \

C-1

Optimize Binary
Class Weight Ratio

SVM Training and
Evaluation by G(SVM)

Fig. 3. Steps for tuning of the SVM parameters. The steps are applied
recursively, e.g., for each of the C — 1 groupings the weighting is applied

A. Binary Grouping of Classes

To train a node’s SVM each of the training samples
has to be assigned to a binary class. For simplification,
all samples of one goal class ¢ are mapped to the same
binary class b(c) € {—1,1}. The resulting task is to find
a good mapping m of goal classes to binary classes m =
{b(1),b(2),...,b(C)} € {—1,1}€. Initially the goal class with
most of the samples ¢ = argmax|S.| is mapped to the
binary class 1 and all the other classes are mapped to —1.
Then iteratively m is modified by changing the mapping

of that goal class ¢’ = argmax ‘ST? fll, which has a binary
Veb(c)=—1 ¢
label b(c) = —1 and was classified worst according to the

old mapping. Thus C — 1 mappings are tested by actually
training an SVM. The best grouping is dependent on the
data samples. So, besides two 1-versus-rest separations, C —3
separations of two groups of goal classes are checked.

B. Optional Weighting of Goal Classes

Ideally, all training samples are perfectly separable w.r.t.
the binary labels. If this is not the case, the SVM attempts to
separate all training samples as good as possible without any
notion of the training samples’ goal classes. However, regard-
ing the SVM decision tree, it is more important to separate
individual goal classes as good as possible, even if the overall
classification gets worse. Accordingly, it shall be avoided
that the training samples of certain goal classes negatively
affect the separation of other goal classes. Therefore, the goal
classes of each binary group, that have a greater classification
error than the best classified class, are temporarily deleted
(or down-weighted) from the training data set and a second
SVM is trained on this data. Thereafter, it is checked whether
this SVM reaches a better information gain G(SVM) on the
validation data than the initially trained SVM.

C. Optional Recursive Feature Elimination (RFE)

To prevent the trained SVMs from over-specialization, the
irrelevant features should be eliminated from the training
data set. An easy way is greedy backward feature selection
for linear SVMs with RFE [24]. Thereby, all features are

:

(a)
SV ++i+ 020"
@ w0
©©O @
(b)

Fig. 4. The effect of weight reduction of that class, which is illustrated by
+, is shown in (b). Compared to (a) the margin of SVM; between [ ] and o
increases and generalization improves. However, in return one more SVM
is needed to separate + from o

ranked by their reduction of the SVM’s margin. Then, some
features with low rank are eliminated, and the SVM is
trained again. More features might be eliminated iteratively.
For a linear SVM, the rank of feature d is given directly
by the trained weight vector w: rank; = |wy|. Since the
information gain G(SVM) is calculated using the validation
data set and the SVM is trained on the training data set,
finally these features are selected where the SVM shows best
generalization abilities. This way for different nodes different
features might become relevant.

D. Bootstrapping

The training time of SVMs is dependent on the number
of training samples. Some of the training samples have very
little influence on the trained SVM. In order to prevent
that these samples increase the training effort unnecessarily,
bootstrapping is applied iteratively. Initially a suboptimal
SVM is trained on a random subset of the training samples.
This SVM is used to classify further random samples and
falsely classified samples are added to the training set. This
is repeated until each sample of the training set is classified
correctly, or it is already included in the training set.

E. Optimization of Class Weight Ratio

When an SVM is trained, its operating point on the ROC
curve is dependent on the weight ratio for the two classes.
By default this ratio is 1.0. In this step, the ratio is adapted
by exponential binary search as long the FPR = 1.0 or the
FNR = 1.0. This is relevant, when the training data is not
linearly separable and, e.g., an enclosed class is represented
by relatively few samples (Fig. 5).
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Fig. 5. SVM trained on two not linearly separable classes, which are
equally weighted 5(a). In 5(b) the class, which is pictured as red crosses is
weighted up. Therewith, the separation 1 is achieved



in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 2147-2152, IEEE 2012

V. EXPERIMENTS

Before presenting the results of the SVM decision tree
for upper-body orientation estimation, the classification qual-
ity and computational effort will be compared to some
approaches that have been mentioned in Sec. II. To that
purpose, the benchmark data sets that have also been used in
[19] are employed. These data sets of different application
areas can be downloaded from the UCI Machine Learning
Repository [25]. Additionally, the HOG Upper-Body (HOG-
UB) data set is created from the acquired images (Sec. III),
whereas an HOG descriptor with 72x72 pixel window size,
16x16 pixel block size, and nine gradient orientation bins per
cell is applied. This results in a 2,304-dimensional feature
vector for each training image. A characterization of all data
sets is shown in table I. For each data set the number of
classes, the feature dimension and the number of training,
validation and test samples are listed.

TABLE I
EVALUATION DATA SETS FROM [19] AND OUR HOG-UB

[ [ #class | #dim [ #training [ #validation [ #testing | #sample |

PHW 10 16 7,227 1,872 1,893 10,992
Letter 26 16 13,294 3,336 3,370 20,000
Shuttle 7 9 38,664 9,573 9,763 58,000
Poker 10 10 16,674 4,165 4,171 25,010
CI 2 14 30,148 7,537 7,537 45,222
Forest 7 54 | 387,343 96,835 96,834 | 581,012
PPI 2 14 | 836,544 | 206,635 |206,635| 1,249,814
KDD 5 41 |3,265,623 | 816,405 |816,403|4,898,431
HOG-UB| 9 |2304|1411,880| 141,185 | 70,636 | 1,623,701

For the smaller data sets, the accuracy (ACC) is shown in
table II (where SVM Tree refers to our approach), and the
number of CPU cycles that are required to classify all test
samples are listed in table III. It is shown that the accuracy
of our SVM tree is higher than the one of the pure decision
tree and the pure linear multi-class SVM. Furthermore, the
computational effort is similar to these approaches. The
classification rate of our approach is lower than the one of
DTSVM, but it needs only a fraction of the computation
time.

TABLE II
ACCURACY[%] ON SMALLER TEST DATA SETS

[ [ PHW [ Letter [ Shuttle [ Poker | CI |

DTSVM[19] 99.52 | 97.66 99.89 56.75 | 84.81

SVM Tree 98.42 | 89.14 99.98 5397 | 84.22

ID3 Tree[21] 95.51 | 87.18 99.95 49.72 | 80.97

1-vs-rest SVM | 91.86 | 70.77 91.23 49.94 | 83.29
TABLE III

CPU CYCLES FOR CLASSIFICATION OF SMALLER TEST DATA SETS
[ [ PHW [ Letter [ Shuttle [ Poker | CI ]
DTSVMI[19] [1.4-108[7.6-10°1.8-107 [ 1.0-10° [ 7.0- 10®
SVM Tree |[2.7-10°(5.6-10%]5.4-10%(7.3-10°[1.3-107
ID3 Tree[21] |2.4-10%]5.1-10%(5.5-10°[9.5-10° | 1.8-107
1-vs-rest SVM [ 3.6-10° [ 8.8-10° [ 1.7-107 [ 7.7-107 | 1.3-107

Table IV and V show the accuracy, or the balanced
accuracy (BAC) respectively, and computational effort of the
larger data sets. The HOG-UB data set is strongly unbalanced

in favor to the background class (-1). Therefore, the BAC is
used for evaluation instead of the accuracy.

TABLE IV
CLASSIFICATION QUALITY ON LARGE TEST DATA SETS
Forest PP1 KDD HOG-UB
ACC[%] | ACC[%] | ACC[%] | BAC[%]
DTSVM[19] 94.59 92.29 99.99 51.61%
SVM Tree 94.41 90.99 99.99 64.82
ID3 Tree[21] 93.31 88.11 99.99 33.07
1-vs-rest SVM 71.50 87.42 99.81 55.23
TABLE V
CPU CYCLES FOR CLASSIFICATION OF LARGE TEST DATA SETS
[ [ Forest | PPI | KDD | HOG-UB ]
DTSVM[19] [ 4.2-10° | 3.0-100 [ 2.3-10° | 1.3-10'T
SVM Tree 6.8-105 | 1.9-10° | 1.5-10° | 2.6-10°
ID3 Tree[21] | 6.5-105 | 1.9-10° | 1.9-10° | 1.0-10™
I-vs-rest SVM | 2.6-105 [ 3.1-10% | 2.5-10° | 8.8-10°

Especially on the high dimensional HOG-UB data set the
application of linear SVMs, like in 1-vs-rest SVM and SVM
Tree, perform very well. Both approaches have relatively
low computational cost and good classification accuracy. For
classification of the nine goal classes, the SVM Tree outper-
forms all tested classifiers w.r.t. accuracy and computational
effort. Unfortunately, the DTSVM implementation could not
process the complete HOG-UB data set on our 3.5 GHz
training PC with 128 GB RAM, because of the storage needs.
Thats why the DTSVM was trained on 10% of the HOG-UB
data set. This took 45 hours, whereas our approach took 1.4
hours for training on the complete data set.

The error between estimated orientation and actual con-
tinuous ground truth orientation is presented as histogram in
Fig. 6. It shows that about 64% of the test samples were
classified with an absolute error below 22.5° which is half
the orientation range of one class.

~
90

= N W H U1 O
<

percentage of samples [%]

e

<22.5 45 67.5 90 112.5135157.5180
absolute estimation error [°]

Fig. 6. Histogram of the samples’ proportion over the absolute classification
error between estimated, discrete orientation and ground truth orientation

The true positive rate (TPR) for pure person detection
regardless of the upper-body orientation is 97.7% and the
false positive rate (FPR) is 0.87%. An actual classification
result of the detector is visualized in Fig. 7. Note, that we
did not group the bounding boxes resulting from the different
levels of the scale space like commonly done by e.g. the
mean shift algorithm.

The topology of the resulting decision tree is shown in Fig.
8. Due to the binary grouping of the goal classes (see section
IV-A), the class samples, that are very close in feature space,
are separated by nodes further down the decision tree. The



in: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS 2012), Vilamoura, Portugal, pp. 2147-2152, IEEE 2012

Fig. 7. Example image of person detection with upper-body orientation:
Yellow stands for for the 45°, red for the 0° and magenta for the -45° class.
Only bounding boxes (BB) with an output probability of over 0.65 are shown
for visualization purposes. Since we did not apply the usual grouping of the
BBs, the BBs of all levels of the scaling pyramid are shown

deepest non-leaf nodes show that neighboring orientation
classes, as well as class 4 (averted) and O (frontal) with
similar silhouette are most difficult to separate. The depth
of the decision tree is only five, and the background class,
which is presented to the classifier most often, is ideally
separated already after two decisions. This is the reason why
our decision tree is three times faster than the 1-versus-rest
multi-class SVM, which always applies 9 binary SVMs.

-1,0,1,2,3,4,5,6,7

-1,2,3) <0,1,2,3,4,5,6,7

2,3) -1 0,1,4) <0,23,4,56,7
N\ L N

/ '

2 3 0,4 1 0,6,7 (23,45

Fig. 8. The SVM decision tree which was trained on our HOG-UB data
set. The numbers within the blue nodes show all goal classes where the
node was trained on. The numbers within the red leaves show the most
likely class of the leave

Thus, the computational cost for HOG feature extraction
and upper-body orientation classification on images of size
640 x 480 increases on average by only 21% from 682ms to
824ms on a 2.8 GHz PC compared to the use of one binary,
linear SVM for pure detection.

VI. SUMMARY AND CONCLUSIONS

We have shown that an SVM decision tree for classifica-
tion of HOG descriptors can be used to successfully detect
humans and to classify their upper-body orientation. It is
important to note that the computation time for the feature
extraction and classification only increased by 21% com-
pared to the use of a single linear SVM for pure detection.
Thus the proposed approach is still applicable on mobile
robots. We plan to fuse the output of our method together
with other cues within a probabilistic tracking framework
[26] and will use the orientations to improve several socially
acceptable navigation behaviors on our socially assistive
robot [2].
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