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Abstract— In this paper, we present a new, generic approach
for Simultaneous Localization and Mapping (SLAM). First
of all, we propose an abstraction of the underlying sensor
data using Normal Distribution Transform (NDT) maps that
are suitable for making our approach independent from the
used sensor and the dimension of the generated maps. We
present some modifications for the original NDT mapping to
handle free-space measurements explicitly and to enable its
usage in dynamic environments with moving obstacles and
persons. In the second part of this paper we describe our
graph-based SLAM approach that is designed for lifelong usage.
Therefore, the memory and computational complexity is limited
by pruning the pose graph in an appropriate way.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one of
the fundamental challenges in mobile robotics. It constitutes
a difficult problem as consistent mapping depends on the
knowledge of the current robot’s position, while robust self-
localization on the other hand requires an accurate map of
the environment. Therefore, the localization and the map-
ping process are inherently coupled [22]. Consequently, the
SLAM problem has been thoroughly analyzed for decades
and researchers came up with many different solutions.
However, when it comes to the practical application of
SLAM, it often is used for map acquisition only during an
offline map learning phase as part of the initial setup of
the robot in its novel environment [7]. During the robot’s
operation phase, this map then is used for robot localization,
i.e. pose tracking, for instance by using particle filter based
Monte Carlo localization [6].

In our previous real-world applications where we imple-
mented tour guide robots and interactive shopping assistants
[10], we also followed the philosophy of a map learning
phase and a separate operation phase. However, today’s
complex applications such as robot companions that assist
elderly people in their home environments [11] require
a paradigm shift. Typically, these environments are semi-
static or dynamic, i.e. the location of obstacles like chairs
or tables change over time. Therefore, a separated map
learning phase is no longer acceptable. Instead, the mapping
phase must continue during the whole operation time of the
robot to adapt the map permanently to the changes in the
environment. This results in the so called lifelong SLAM
problem.

A lifelong SLAM algorithm that is suitable for such
scenarios must be able to constantly update the map of
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the environment without increasing the complexity for map
updates with new measurements. Moreover, it must operate
in realtime to continuously provide estimates of the robot’s
location to other navigation modules, like path planners.

Modern assistance robots typically have a variety of
sensors that provide different kinds of information about
the robots environment. Laser Range Finders provide two
dimensional range data that can be used to create 2D maps.
Depth cameras on the other hand provide depth images that
are suitable to create 3D maps. Also a single camera mounted
in front of the robot can provide such 3D information when
it is used for monocular scene reconstruction [4]. Therefore,
we are interested in applying a generic SLAM approach that
is able to process such 2D and 3D information equally well.

Our contribution in this paper is twofold: We first intro-
duce a novel, generic mapping technique that can operate
with various range sensors of different dimensionality to
generate compact 2D and 3D maps. Based on this mapping
technique, we present a lifelong SLAM approach that sat-
isfies all of the aforementioned requirements and hence is
suited for real-world applications. In summary, our proposed
approach:

1) is implemented in a generic way for 2D and 3D mapping
2) operates in realtime and allows online robot localization
3) allows lifelong mapping with constant complexity
4) operates in semi-static or dynamic environments and

adapts the map to the changing environment
This paper is organized as follows. The next section

outlines the state of the art in SLAM and robot mapping.
In section IV, we describe our approach in detail. In section
V, we show several results that we have obtained using the
presented approach for different kinds of sensors. Finally, we
conclude with an outlook for future work.

II. RELATED WORK

As stated before, a large variety of different SLAM ap-
proaches are available. Some techniques interpret the SLAM
problem as a filtering problem and apply Extended Kalman
filters [2] or Rao-Blackwellized Particle Filters [9], [22] to
solve it. Others apply smoothing techniques [13], [12] to
solve the full SLAM problem, i.e. beside the estimation
of the most consistent map they keep the complete robot
trajectory as part of the estimation problem. While these
approaches provide direct solvers for the SLAM problem,
others, e.g. g2o [16] exploit the sparsity of the SLAM
problem by formulating it as a pose graph optimization
problem. The problem of such optimizers is that they are
not robust against outliers in data association. Hence, wrong
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loop-closures have a catastrophic impact on the resulting map
and the robot’s pose estimates. This problem is addressed in
[26] by also including the topology of the pose graph into
the optimization procedure. It allows the algorithm to switch
off erroneous constraints. As a result, the optimization of
the pose graph becomes extremely robust against false loop-
closure constraints.

Another disadvantage of most graph-based techniques is
the increasing complexity that grows with the length of the
trajectory since more and more vertices are added to the
graph over time. Consequently, this would prohibit the usage
of such graph-based techniques for lifelong SLAM. In [15]
this problem is tackled by merging vertices of the pose
graph so that it only grows when the robot acquires relevant
new information about the environment in terms of expected
information gain.

Most implementations of the aforementioned SLAM ap-
proaches use laser range finders as sensors and occupancy
grid maps as representation of the environment. With new
devices like 3D laser range finders, stereo cameras, time-
of-flight cameras, or other depth sensing cameras using
structured light, that have become available in recent years,
3D information of the local surroundings can be acquired.
However, these sensors produce a huge amount of data and
an appropriate representation is needed for processing this
data efficiently.

A very popular 3D environment representation are voxel
maps [18]. Similar to 2D occupancy grid maps, the robot’s
surroundings are partitioned into regular cubic volumes (vox-
els). Each voxel stores a probability whether the volume is
occupied by an obstacle or is free. These maps, therefore,
allow to model free space and unknown areas explicitly using
the stored occupancy value. Voxel maps usually are stored
using octree representations [19], [5], [28], [3] that allow to
store large regions of free space more efficiently.

A different map representation is the Normal Distribution
Transform (NDT). It was originally proposed in [1] for
efficient laser scan matching and was later extended to
three dimensions [17]. Similar to octree-based maps, the
mapped volume is subdivided into voxels. However, instead
of estimating an occupancy probability for the whole voxel,
the observed range measurements within each voxel are
represented by a normal distribution. As shown in [23], such
NDT maps achieve a significantly higher accuracy than voxel
or octree-based maps when the same cell resolution is used.
Moreover, NDT maps are continuously differentiable and
hence enable efficient map registration algorithms. Despite
of its advantages, the Normal Distribution Transform has not
yet been widely accepted by the SLAM community.

The original formulation of NDT maps as they are used
in [1], [17], [23] has a major drawback: It models the
distribution of obstacles only, while free space is not taken
into account at all. This disallows their usage for lifelong
SLAM in dynamic environments, since objects and obstacles
that were removed in the environment cannot be removed
from the map and hence lead to inconsistencies. In [21] an
extension is proposed that models an occupancy probability

for each cell, and hence allows to represent empty cells.
However, in their approach the stored Normal Distributions
are not taken into account, when the occupancy values of the
cells are updated.

III. NORMAL DISITRIBUTION TRANSFORM MAPPING

In this section, we are describing our new version of NDT
mapping which adds the capability to integrate information
about free space in the maps. In contrast to [21] we explicitly
consider the stored Normal Distribution in each cell, when
updating the occupancy values in a probabilistic sound way.
Moreover, we present a fully generic implementation that
allows to generate 2D as well as 3D maps without any
changes in the algorithms.

Similar to occupancy grid maps and occupancy voxel
maps, the mapped volume is partitioned into uniform cells.
These cells are managed in a tree structure. For 2D maps we
use a quadtree and for 3D maps we use an octree. However,
in the following we do no longer distinguish between 2D
and 3D maps and quadtrees and octrees. Instead, we use a
generalized tree similar to the Nd-tree that was presented in
[3]. Depending on the dimensionality d of the map, our data
structure splits the cells in each dimension. Consequently,
each cell is subdivided into 2d child cells, which results in
a standard quadtree for 2D maps and in an octree for 3D
maps.

As in [17], each cell c of such a 2d tree stores the mean
µc ∈ Rd and the covariance Σc ∈ Rd × Rd of a normal
distribution N (µc,Σc). It approximates the surface points
of the object that is covered by the cell as a probability
distribution and therefore achieves a higher precision than a
sole voxel map. The totality of all such normal distributions
of all cells of the map M can be considered as a Gaussian
mixture model that models the probability

P (x ∈ S) =
∑
c∈M

wcN (x|µc,Σc)

whether a point x ∈ Rd belongs to the set of surfaces S of
objects and obstacles in the environment.

To be able to represent free space explicitly, we combine
the ideas of occupancy maps and NDT maps and additionally
store an occupancy value oc in each cell which acts as a
prior for the stored normal distribution in the cell. The final
probability distribution of surface points is then expressed
as ocN (µc,Σc). In other words, oc models the probability
oc = P (c = occ) whether the volume that is represented by
the stored Gaussian is occupied by an object or free.

A. Updating the Map with Range Measurements
A priori, the state of all cells is unknown. Therefore, the

covariance in each cell is set to ”infinity” which results in
the probability mass to take up the whole cell uniformly.
Moreover, the occupancy value is set to oc = 0.5 to indicate
that the state of the whole cell is unknown.

With each measurement of the used range sensor, the
map is updated. Each range measurement is defined by the
sensor’s position p within the map, the direction d of the
range measurement and the measured range z. Using this
information the endpoint x ∈ Rd of the measurement is
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defined by x = p + zd. This endpoint is usually located
on the surface of an object in the environment. To integrate
the measurement into the map, the mapping algorithm first
determines the cell c that is ”hit” by the measurement, i.e.
the cell where the endpoint of the measurement is located in.
This is done using an efficient lookup as described in [8].
Afterwards, the normal distribution in this cell is updated
using the following incremental update rule:

µ′c = αµc + (1− α)x
Σ′c = αΣc + α(1− α)(µc − x)(µc − x)> (1)
k′c = kc + 1

where α = kc/(kc + 1) and kc expresses the number of
updates of the cell. In a static environment this update rule
gives the maximum a posteriori estimate of the mean and
covariance of all measurements that fall into the same cell.
However, since we use our approach in dynamic environ-
ments with moving objects and persons, we limit the value
of kc for each cell. As a result, the above update rule then
computes an exponentially weighted moving average and co-
variance where new measurements have a stronger influence
than older ones. This allows the normal distributions of each
cell to adapt easily to a changing object position.

Beside updating the normal distribution of the hit cell, the
mapping algorithm also updates its occupancy value and the
occupancy values of all cells along the sensor beam between
the sensor’s position and the endpoint of the measurement
according to: l′c = lc + ls(r, z) (2)
with lc = log(oc) − log(1 − oc) being the log-odds of the
occupancy value oc of each such cell. This is the standard
update rule of occupancy maps as described in [27]. The
function ls(r, z) is known as inverse sensor model and yields
the probability for a cell at distance r being occupied when
a range measurement of z was obtained. Typically, such a
sensor model gives values > 0 for the cell that is hit by
the measurement, since it is most likely to be occupied and
values < 0 for cells that are located between the sensor
and the endpoint of the measurement, since those cells were
traversed by the sensor beam and hence are most likely to be
free. Consequently, the occupancy probability of the cell that
is hit by the measurement is increased, while it is decreased
for the cells along the respective sensor beam.
B. Maintaining a Multi-Scale Representation

With each new range measurement, the update algorithm
performs the above update steps for all affected cells that
are associated with the leaf nodes on the deepest level of the
underlying 2d tree. After all cells are updated, the changes
are recursively propagated to the parent nodes of those cells
and thus to higher levels within the tree. To do so, the
mean, covariance and occupancy value of a parent node p is
computed from its child nodes i as follows:

µp =
∑

i wiµi, Σp =
∑

i wiΣi + βi(µp − µi)
>

kp =
∑

i ki, lp =
∑

i li (3)

where wi = ki/kp. This allows us to generate a multi-scale
map where each level in the tree represents a different level
of detail similar to an image pyramid.

The described tree structure and the above map update
algorithm is independent from the dimension of the map
and the used range sensor. Therefore, we encapsulate these
operations in a mapping backend. Beside this mapping
backend, we have different sensor frontends for each type
of range sensor as shown in the left part of Fig. 1. The
advantage of this architecture now is, that the task of each
sensor frontend simplifies to processing the range data of the
respective sensor and to call the backend to specify the cells
that need to be updated as occupied or free depending on
the sensor’s measurements.

C. Depth-Image Mapping Frontend
In the following, we exemplarily describe our frontend

for 3D mapping with depth images that are obtained using
a range sensor such as the Microsoft Kinect.

Updating occupied cells is trivial. Knowing the intrinsic
camera parameters of the depth sensor, for each pixel of
the depth image the corresponding 3D position x in the
scene, i.e. the endpoint of the measurement can be computed.
Finally, the cell, where this point is located in, is updated
as occupied as described above and its occupancy value is
increased.

Updating cells as free is a little more complex. Other
mapping approaches like [28] traverse the cells along the
measurement ray explicitly via ray casting. However, this
can be very time consuming for dense range data, where
many rays pass through the same cells. For this reason we
use a contrary approach. Instead of spreading out rays from
the image plane, we project the cells of the map onto the
image plane of the depth camera.

For each cell, we sample random points according to the
stored normal distribution and project each sample point to
the depth image. If the measured depth z at the projected
position is larger than the distance r between the sample
point and the sensor, the sample point was traversed by the
ray of the measurement. In this case the occupancy value
of the cell is decreased according to (2) using the following
linear sensor model: lfree(r, z) = cfree(z − r)/z, i.e. the
occupancy value of cells near to the sensor are adapted more
than cells close to the measured distance z.

IV. LIFELONG SLAM

Similar to [15], we use a graph-based formulation of
the SLAM problem, which models the poses x1:n of the
robot’s trajectory as vertices v1:n of a pose graph. Constraints
between two poses of the trajectory that typically arise from
odometry, sensor measurements, and loop-closures are stored
within edges between the the corresponding vertices. Each
constraint between two vertices vi and vj is represented by
a transformation δji that describes the pose xj as seen from
xi and a corresponding covariance matrix Ωji.

The SLAM problem can then be described by the follow-
ing optimization problem:

X∗ = argmin
X

∑
i,j

e(xi,xj , δji)
>Ωjie(xi,xj , δji) (4)

with X = (x>1 , . . . ,x
>
n )
> being the vector of the pose

estimates of all vertices in the pose graph. The error function
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e(xi,xj , δji) measures how well the pose estimates xi and
xj satisfy the constraint δji [16].

For solving the above optimization problem, we use g2o
[16], an open source framework for graph optimization. This
optimization step of a graph-based SLAM algorithm is also
known as SLAM-backend. The result of the optimization
process is the most consistent set of pose estimates x∗1:n that
represent the robot’s trajectory.

Lifelong-SLAM

Loop-CloseLoop-Close
Detection

Vertex InsertionMonocularVisionMonocularVision
Frontend

Depth-ImageDepth-Image
Frontend

Laser Frontend

NDT
Mapping
Backend

Image

Depth-Image

Range-Scan

NDT-Map
Fragment loop-close

candidates

Map Registration /Map Registration /
Matching

Pose-Graph

loop-close
constraints

OptimizationOptimization
(SLAM Backend)

Vertex Fusion

Map Merging /Map Merging /
Map-Update

Mapping

Fig. 1. The flow diagram of our complete mapping pipeline with the
mapping component consisting of the mapping backend and different sensor
frontends as well as the components of the actual SLAM approach.

In this paper we focus on the SLAM-frontend, which is
responsible for generating the pose graph with its vertices
and constraints. In the following we give an overview of our
approach shown in Fig. 1, before we discuss its components
in more detail.

In our approach, each vertex additionally stores an NDT
map fragment which is a small piece of the overall map.
During the robots locomotion the previously described map-
ping algorithm incrementally integrates the range sensor
measurements into the current map fragment, i.e. we com-
bine multiple sensor readings in a single vertex of the pose
graph. This is necessary since the single measurements of
range sensors with a low measurement range or small field
of view, like depth cameras, do not allow to perform loop
closures robustly. The position estimates that are necessary
for the mapping are obtained from the robot’s odometry.
Since the odometry is erroneous, this will of course induce
a small error in the created map fragment. This error grows
continuously with the covered distance. For this reason
we cut the map fragment and start a new one whenever
the uncertainty in the robot’s movement exceeds a certain
threshold to limit the effects of the odometry errors in the
built map fragment. The uncertainty of the robot’s movement
is computed using a probabilistic motion model similar to
the one described in [27] but approximated using normal
distributions.

With each new map fragment, a new vertex vn is added
to the pose graph. The new vertex is connected with the
previously added one vn−1 by an edge that stores the robot’s
relative movement from that vertex. The corresponding co-
variance is taken from the probabilistic motion model.

Afterwards, our approach checks for potential loop closure
candidates (see Fig. 1, top right). Therefore, it propagates the
uncertainties of the pose estimates through the pose graph
starting at the newly added vertex. This is done similar
to the belief propagation in a Bayesian network along the
minimum spanning tree with vn as root node. As the result

of this process, the marginalized covariance of each pose
estimate is known relatively to the newly added vertex. This
covariance is used in a χ2 test to determine if the map of
another vertex is most likely to overlap with the map of
the newly inserted vertex. In this case, a loop-closure edge
is created between the new vertex vn and the loop-closure
candidate vm by aligning the two overlapping maps Mn and
Mm using different map registration algorithms to obtain the
relative pose of the two vertices.

According to [26], we increase the robustness the error
function of a loop-closure constraint is weighted with a
switch variable ωji that controls the influence of that con-
straint. Beside the pose vertices, the switch variables are also
adapted within the graph optimization procedure and hence
allow to disable erroneous constraints. Consequently, there is
no need to perform any kind of outlier rejection in order to
remove wrong map registration results. Instead, the invalid
loop-closure constraints will be switched off automatically
during the pose graph optimization.

After all loop closure candidates were processed and the
pose graph was updated respectively, the SLAM backend
is run to optimize the pose graph while taking the newly
added poses and constraints into account in order to update
the estimated poses of the robot’s trajectory. The totality
of all map fragments at the estimated poses constitutes the
complete map. Thus, unlike other SLAM algorithms, our
approach does not need to perform an additional mapping
pass to integrate all sensor readings into a map using the
corrected pose estimates. If a single map instead of the
map fragments was required, all map fragments could be
merged easily. Consequently, no sensor readings need to be
stored - the approach is completely online. Furthermore, at
this point a fresh estimate of the robot’s current location
within the environment is generated and can be used directly
by navigation algorithms such as path planners. Afterwards,
the whole process starts again by adding the next vertex
containing the next map fragment that was created in the
meantime.
A. NDT Map Registration of Loop Closure Candidates

For the alignment of the two NDT maps, we use two
different registration algorithms. The general idea of the
map registration is closely related to [24] and therefore only
briefly described here. For details please refer to that work.

We try to minimize a distance metric between the two
NDT maps Mn and Mm which is defined as:

d(Mn,Mm, δnm) =
∑

i∈Mn

d>ij(R
>
nmΣiR

>
nm + Σj)

−1dij

(5)
with j = argminj∈Mm

‖µi − µj‖ and dij = (Rnmµi +
tnm−µj). This metric sums the pairwise distances between
each normal distribution Ni of map Mn and its closest
neighbor distribution Nj of map Mm. This is closely related
to the Iterative Closest Point (ICP) algorithm. We will come
back to this point later. In the above equation, δnm denotes a
transformation consisting of a rotation Rnm and a translation
tnm that transforms all normal distributions (µi,Σi) of map
Mn and therefore the whole map into the reference frame of
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map Mm. Consequently, δnm is the desired transformation
that relates the two vertices vn, vm of a loop closure.

In the registration process the transformation δnm is varied
to minimize the distance metric iteratively. The initial esti-
mate of this transformation is taken from the current pose
estimates xn and xm of the two loop close vertices in the
pose graph.

If the initial estimate has a small uncertainty, i.e. if the
propagated covariance of the loop-closure candidate is below
a threshold, we use the Levenberg-Marquard (LM) method
for solving the non-linear minimization problem. Since NDT
maps are piecewise differentiable, the necessary derivatives
can be computed as described in [24]. The LM method works
fine if the initial estimate of the transformation is near the
correct value. Otherwise, it tends to converge to local minima
that do not reflect the correct transformation.

In these cases, where the uncertainty in the initial estimate
is large, e.g. since the robot has covered a large distance
without performing a single loop-closure, we use Particle
Swarm Optimization (PSO) [14] to solve the above min-
imization problem. As score function of the particles, the
distance metric is used directly.

To speed up the map registration we take advantage of our
multi-scale NDT maps. Instead of using the finest level of
detail, the above optimization algorithms operate on a coarser
level of the maps with typical cell sizes of 0.4 m. This
considerably reduces the overall computational complexity.
After the registration on the coarse level has converged, we
perform a final second fine-grained registration step using
the LM method on the finest map level with cell sizes of
0.05− 0.1 m to achieve the highest possible precision.
B. Normal Space Sampling

As stated before, the map registration and the computation
of the distance metric in (5) is closely related to the Iterated
Closest Points (ICP) algorithm, that is used for the registra-
tion of two point clouds. ICP associates the points of two
point clouds also using a nearest neighbor criteria.

To improve the robustness of our map registration, we
adapt a variant of the ICP algorithm that is known as normal
space sampling [20]. Therefore, we slightly modify Eq.(5).
Instead of computing the sum of the pairwise distances for
all normal distribution Ni of map Mn, we sample a subset
Sn ⊆Mn of these normal distributions. This, further reduces
the computational complexity as the number of pairings
decreases. More importantly, it allows to choose a subset
that leads to a better convergence of the map registration.

To find the correct alignment of the map, small features
such as small bulges in a flat hallway (see Fig. 2) can be
vital. However, if a uniform sampling scheme is used or all
available distributions are taken into account, the influence
of these small features in the overall costs of Eq.(4) are
marginal (Fig. 2a). A stronger influence of these features
would be desirable as their NDT representations have a
different orientation than the normal distributions in the
other cells. This gives an important direction information
during the iterative registration process that leads to a better
convergence if it is exploited.

a)

b)
c)

Fig. 2. If the normal distributions for the pairing during the map
registration are chosen uniformly, small features are suppressed (a). If
normal space sampling is used, the normal distributions around the feature
have a significant influence (b). The normal distributions are partitioned in
a histogram according to the direction of their normal vector. Afterwards,
they are sampled uniformly from the bins that correspond to the indicated
regions on a half-sphere (c).

For this reason, we compute the orientation of each
normal distribution Ni of map Mn in terms of it’s ”normal
vector” ni. As normal vector we use the eigen vector of
the covariance matrix Σi that corresponds to the smallest
eigen value. Hence, the vector points into the direction of the
smallest extend of the normal distribution which corresponds
to the normal of the represented surface. We represent each
normal vector in the angular space of a spherical coordinate
system by using two angles (altitude and azimuth) in the
case of 3D maps or a single angle in the case of 2D maps.
This allows us to put each normal distribution Ni of map
Mn into a histogram according to the angles of its normal
vector. This procedure is shown in Fig 2c where it also
becomes apparent that the bins of the histogram correspond
to the indicated cells on the surface of a half-sphere. Finally,
we form the subset Sn of normal distributions by sampling
uniformly across the histogram bins. This set is then used
to compute the sum in Eq.(5) to ensure, that all orientations
are represented equally well (Fig. 2b).

C. Fusion of Vertices for Lifelong Operation
By adding more and more map fragments and vertices the

size of the pose graph increases over time, and consequently,
the memory and computational complexity rises. To be able
to use the proposed SLAM approach over a long time period
within a robotic application we therefore need to prone the
pose graph to reduce the number of vertices.

This is done after each graph optimization step. Vertices
whose map fragments cover a similar region of the en-
vironment are fused. However, merging vertices and their
corresponding map fragments poses the risk of consolidating
inconsistencies and inaccuracies. Therefore, only those ver-
tices are merged whose relative position between each other
is known with a very high certainty, e.g. if many successful
loop closures were performed between the vertices or their
neighbors. To measure this uncertainty, we again use the
propagated covariance that was already computed to identify
possible loop closure candidates. Two vertices vi and vj
are merged, if the propagated covariance from one vertex
to another is below a threshold. Without loss of generality
we assume that the vertex vj was added after vi. The fusion
of the two vertices is done by merging the information of
vj into vi and removing the vertex vj from the pose graph.
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To preserve the global behavior of the SLAM error function
(4) while removing vertex vj , we would need to add edges
for each pair of neighbors of vj [15]. This would result
in an increasing complexity of the pose graph. Therefore,
we use the same approximation that was proposed in [15]
and connect all neighbors of vj to vi while adapting the
information stored in these edges as described in [15]. With
this approximation, removing vj and all of its edges will then
reduce the number of vertices and edges at least by 1. During
the fusion of both vertices, the map fragment of vj is also
merged into the map of vertex vi. This is done according to
(3). Since vj was added to the pose graph after vi, its map
contains the more recent information on the environment.
Merging the map fragments in the proposed order therefore
ensures, that all map fragments are up-to-date and that our
approach is able to adapt to changes in the environment.

V. RESULTS

We have tested our approach in different environments
using different sensors.

Fig.3 shows a 3D map that was build using using the
Microsoft Kinect depth camera mounted on our home as-
sistance robot while driving three loops through a narrow
home environment with tables, armchairs in the lower left
corner and a couch in the right corner. In the NDT map, the
normal distributions of cells with an occupancy probability
larger than 0.8 are shown as shaded ellipsoids. The colors
correspond to the height of the cells. The mapped area has
a size of 5× 8 m2.

Fig. 3. 3D NDT map created using a Microsoft Kinect while driving three
loops through a home environment. Each normal distribution of a NDT cell
is shown as ellipsoid and colored according to its height. The pose graph
with its vertices and edges is indicated in blue.

In Fig.4 a 2D map is shown that was created using a laser
range finder while driving our tour guide robot manually
through an office building. The mapped area has a size of
80× 35 m2. The normal distributions of the cells are shown
as black small ellipses that are merely larger than dots on
this scale. Each cell of the map has a resolution of 0.1 m.

However, due to the benefits of the employed NDT maps, the
effective resolution is much higher and allows to represent
single chair legs and twig of plants that were standing around
in the mid-right area of the map. While creating this map
the robot covered a distance of 700 m. The corresponding
trajectory and the generated pose graph is depicted in blue
color. Due to the generic implementation no changes in the
algorithms were necessary for creating the 2D map and the
above 3D map.

A. Performance

We tested the presented approach on a machine running
on an Intel Core i7, 2.70 GHz CPU which is identical to the
hardware we use on our robots.

The insertion of the 2D or 3D range data into the NDT
map takes 10-20 ms only. The map registration during a
loop-closure is the computationally most expensive part of
the presented approach. As described above this step needs
to be performed for each inserted vertex and map fragment.
Including all loop-closures, the average computation time
when inserting a new map fragment with a cell resolution of
0.1 m is 300 ms for 2D maps and 500 ms for 3D maps when
running on a single CPU core. Depending on the driving
speed of the robot, a new map fragment is available every
500-1000 ms. Consequently, our approach is able to process
the incoming data in real-time for both 2D and 3D maps. It
is therefore suitable for online localization and mapping.

B. Lifelong Operation

To test the ability of our approach for long term operations
in a bounded environment, we ran it for two days on one
of our guide robots [25] that operate in our office building
on a daily basis to autonomously guide and to tour visitors
within the building. On a regular office day, when the robots
typically operate for about 6 hours, each robot travels up to
4000 m.

During the two day test period, the total length of the
driven trajectory was 7000 m which corresponds to 3 hours
of continuous driving. The tests were restricted to a single
floor of the building that is shown in Fig.4. Since the guide
robots are equipped with a laser range finder only, this long
term test was used to test the 2D variant of our approach.

In the left diagram of Fig.5 the number vertices of the
pose graph are plotted against the driven distance during
the overall test run. The solid blue line corresponds to
the number of vertices in the pose graph for our proposed
lifelong approach. During the first 1000 m the number
increases up to 400 vertices while the robot explores most
of its environment. Afterwards, it remains constant for the
rest of the test. After 3000-4000 m the vertex count slightly
increases as the robot visits areas of the building it has not
seen before. Consequently, more vertices are necessary to
cover the environment which now became larger.

For comparison, we turned off the fusion of vertices in
another run. The corresponding graph is colored in red. Here,
the number of vertices increases indefinitely with the covered
distance.
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Fig. 4. 2D NDT map created using a laser range finder while driving through an office building. The pose graph with its vertices and edges is indicated
in blue.
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Fig. 5. left: Number of vertices in the pose graph during a 2 day long
term test for the proposed lifelong SLAM approach (blue) and without
fusing vertices (red). right: Time for inserting a new map fragment and a
new vertex into the pose graph during the test.
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Fig. 6. left: Number of vertices in the pose graph while creating a 3D
map in a small home environment with pruning (blue) and without fusing
vertices (red). right: Time for inserting a new map fragment and a new
vertex into the pose graph during the test.

In the above test, we also measured the computational
complexity of the SLAM approach. Since the loop closure
computations during the insertion of a new map fragment
are the most expensive processes, the insertion time for a
new map fragment is shown in the right diagram of Fig. 5.
Again, the blue line shows the graph for our proposed
approach, where the time for inserting a new map fragment
remains constant between 200 and 400 ms. If the fusion of
vertices is disabled (the red graph), the insertion time grows
significantly with the increasing number of vertices, since
much more loop-closure candidates need to be processed if
there is a high density of vertices.

A second long run was performed using a smaller robot
platform within a typical home environment shown in Fig. 3.
In this test, a 3D map was created using a Microsoft Kinect
sensor. Although the driven distance of 250 m was much
smaller in this test, it is by far sufficient to cover the
whole home environment exhaustively. The total number of
loops was 12. The vertex count and the time for computing
the loop-closures are shown in Fig. 6. Again, the vertex
count and the performance stays constant over time for our
proposed approach.

These tests reveal both, the temporal and spacial scalability
of the approach. The number of vertices within the pose
graph depends on the size of the operational area only
and stays constant in bounded environments. Moreover, the
complexity of the loop-closure computation is similar in
small and large environments, as it depends on the density
of the pose graph vertices only. Therefore, it will not
increase significantly even if the approach operates in larger
environments or for a longer period of time.

C. Dynamic Environments

We also tested our approach in dynamic and semi-static
environments. Fig.7 shows, how a moving person is handled
by the proposed NDT mapping approach. The explicit free
space mapping allows to update cells as free, immediately
after the person has left the corresponding volume. This is
essential for building consistent maps in dynamic environ-
ments.

Fig. 7. While a person moves through the scene, previously occupied cells
are correctly updated as free.
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Beside highly dynamic objects like persons, the SLAM
approach is also robust against changes in the environment.
This was tested in the home environment as shown in Fig.8.
During the mapping we moved two armchairs and a table to
the opposite corner of the room. Nevertheless, the approach
is able to keep the correct location within the environment
using other parts of the room that remained unchanged. In
those parts of the room, enough map fragments can still
be matched successfully to establish correct loop closures.
After vertices of the pose graph that contain old and new
map fragments are merged, the changes in the environment
become apparent in the map as shown in the right image of
Fig.8. Thus, the approach is able to adapt to the changed
environment.

Fig. 8. While the robot was mapping its environment, the table and the
armchairs visible in the left image, were moved to the opposite side of the
room as shown in the right image.

Several videos of the proposed approach are available one:
http://www.youtube.com/neurobTV

VI. CONCLUSION

In this paper we have presented a novel mapping technique
for NDT maps that combines NDT mapping and occupancy
mapping in a probabilistic sound way. It is able to handle
dynamic objects like moving persons. The proposed mapping
approach is modular and independent from the dimension-
ality of the created maps. It allows to implement different
mapping frontends for different sensors. Exemplarily, we
have presented our mapping frontend for Microsoft Kinect
depth images. The generated NDT maps are an abstraction
of the underlying sensor data and allow to develop a sensor-
independent SLAM approach that was presented as a second
contribution of this paper. In the results we have shown
that the presented algorithms are able to generate 3D and
2D maps of different complex environments in real-time.
Furthermore, we have shown that this performance remains
constant over the whole operation time and therefore allows
to apply the approach as lifelong SLAM and localization
technique in real-world applications.
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