in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 1

I’'m Still Watching You: Update on Observing a Person in a Home
Environment

Jens Kessler* Matthias Schmidt*

Sandra Helsper*

Horst-Michael Gross™*

*Neuroinformatics and Cognitive Robotics Lab,
Ilmenau University of Technology,
Ilmenau, Germany

Abstract— Recently, a mobile robot was enabled to observe
persons within their home in an unobtrusive way. This behavior
is necessary during the long idle periods of the robot, where
the robot has to stay somewhere near the user to be able to rec-
ognize new commands and tasks. Particle swarm optimization
is used to find an optimal position. In this work, the ongoing
progress of our approach is presented with focus on long term,
real world capable improvements. Therefore, the online update
of a person distribution and an elevation map are introduced.
Finally, experiments show the robustness of the found optimal
observation position.

Index Terms— Social navigation, observing a person, particle
swarm optimization, hard and soft criteria

I. INTRODUCTION

The idea of using a mobile robot assistant in home and
public environments has gained more and more attention
during the last years. Recently, there are several prototypical
systems available, that aim to help elderly people [1], [2],
to assist care givers in hospitals [3], to guide people in
supermarkets and home improvement stores [4], [5], or to
provide an intelligent video-conferencing system [6]. The
work presented here is focused on home environments and
contributes to the ALIAS project (ALIAS = Adaptable Am-
bient LIving ASsistant). ALIAS has the goal of developing a
mobile robot system to “interact with elderly users, monitor
and provide cognitive assistance in daily life, and promote
social inclusion by creating connections to people and events
in the wider world” [7]. Here, especially the aspect of
monitoring the user is the main focus of the presented work.
To be precise: an unobtrusive observation behavior is the
goal of the monitoring task. This behavior of a mobile robot
is required whenever the robot is idle and has to stay in
the vicinity of the user to recognize uttered or gestured
commands of the user, without disturbing the user in its
current activity like leisure, reading, or cooking. Within this
context, the presented work contributes to the domain of so-
cial robotics and social compliant robot navigation. However,
it is not concerned about interaction with a person, but only
to enable the robot to signal readiness for interaction. To do
so, we rely on the theory of proxemics, presented by Hall [8].
This paper is structured as follows: in section II current work
within the domain of robotic person observation is shown,
followed by a short summary of our recent work (see III).

This work was financed by the project AAL-2009-2-049 *Adaptable
Ambient Living Assistant” (ALIAS) co-funded by the European Commis-
sion, the Federal Ministry of Education and Research (BMBF), and the
Thuringian Ministry of Science.

In the sections IV, V, and VI the main improvements of our
current approach are presented, while section VII covers the
experiments with a real-world capable observation system.

II. RELATED WORK

Psychologists investigated the human-to-human interac-
tion in public areas very carefully since the 70s of the last
century. One of the foundations is the work of Hall [8], who
first introduced the concept of proxemics around a human
being to support different modes of interaction. There is a
space for non-interaction, public interaction, interaction with
friend, and also an intimate space for interaction with very
close relatives (see table I).

zZone interval example situation

close intimate | 0.0m - 0.15m lover or close friend touching
intimate zone | 0.15m - 0.45m | lover or close friend talking
personal zone | 0.45m - 1.2m conversation between friends
social zone 1.2m - 3.6m conversation to non-friend
public zone from 3.6m no private interaction

TABLE I
PSYCHOLOGICAL DEFINITION OF THE PERSONAL SPACE AS SPECIFIED IN
[8]. THIS SPACE CONSISTS OF FIVE ZONES, EACH SUPPORTING
DIFFERENT ACTIVITIES AND DIFFERENT COMMUNICATION INTENTIONS.

Proof, that the personal space also exists between humans
and robots, is given by exhaustive wizard of Oz experiments
done within the COGNIRON project [9], [10], [11]. How-
ever, non of these works tried to solve an autonomous task
with a robot.In our work, the distance of conversation space
between the robot and a non-friend interaction partners is
used to signal readiness, and the robot places itself at 2.4
meters distance towards the person at a feasible position
autonomously. There are only a few works, dealing with
finding an observation position using a mobile robot. Some
publications focus on the task to observe a person to shoot
pictures on social events [12], [13]. Here, the social distance
is not in the focus of the observation pose, but the rotation
of the robot in a way, that the image composition is good
(faces are centered). Additionally to that, in [6] an approach
is shown, where the robotic cameraman also creates an
illumination model of the room and includes that into the
optimization function to find the best position. This approach
uses also the proposed Particle Swarm Optimization (PSO),
but a different set of optimization criteria. A different ap-
proach is shown by [14], where test persons have to point out
good waiting positions for a shopping assistant robot. From
these positions a set of features is calculated, received from

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 2

manually labeled maps and person trajectory densities, and a
support vector machine is trained to classify appropriate and
inappropriate waiting positions. However, the goal was to
place the shopping robot at a position, which does not disturb
other customers during their shopping. But, the approach
does not ensure the visibility of the assisted customer during
the waiting time. So, the customer has to come back to the
robot to continue assistance. Lately, the idea of [6] was used
to present an approach to observe a person in a socially
acceptable manner by using a set of hard and soft criteria
and also the PSO to find the optimal position [15]. Since this
paper improves this approach to provide a real world capable
system, it is described in more detail in section III. Here, we
use and maintain an elevation map to improve the visibility
checks of our optimization approach. Elevation maps are
pseudo 2D maps, where each cell represents the estimated
height of obstacles over an assumed ground plane. In real
world applications the elevation map of the robots environ-
ment is not known at the beginning and has to be estimated
over time to reflect also the changes of the environment.
There are different techniques known to estimate an elevation
map. First, in [16] the measured height values are taken as
they are without considering any measurement errors. A large
group of publications exist, where the Kalman update is used
to update the elevation value of each cell [17], [18]. Each
approach uses different solutions to cover the characteristics
of the mapped environment. In the work of [19] a maximum
estimator is used to reduce sensor noise and in [20] a forget
factor is introduced to include new observations into the
map. An interesting work is presented in [21], where the
localization errors and the sensor noise are used to update
the elevation map with a full error propagation.

III. THE OPTIMIZATION APPROACH: A SHORT SUMMARY

With the presented optimization approach in [15], the

robot finds a position x with direct sight to the person at
a distance of 2.4 meters, and looks towards that person with
angle ¢. This is the preferred spatial configuration of the
robot and the user to signal readiness.
To compute a feasible position, the robot has to use (i)
an occupancy map, (ii) the current person position, (iii)
the current robot position, and (iv) a distribution of person
occupancy, which reflects the most likely places the person
usually rests at. The persons are tracked via the camera
system and the laser scanner of the robot. The view direction
is not estimated. The occupancy density is computed with
all detected persons, not regarding their identities. These
are the boundary conditions of the optimization process.
Additionally, an elevation map is now used to predict the
visibility v(x,¢), to adapt the driveability d(x) and to
improve the soft criteria cpoqy (x, ¢), which are all described
later in this paper.

The optimization system consist of three main parts: (i)
the elevation update process, (ii) the adaptation of the person
occupancy density function, and the core of the optimization
process (iii) the particle swarm optimization. The data flow
is briefly sketched in Fig. 1. At this point a short introduction
should be given to the presented approach from [15].

person to observe

point (IR clevation B

map builder

localization

observation
pose

Fig. 1. Overview of the observation system (blue modules): there are
two processes for adaptation towards the real world. First, the process to
adapt the elevation map with incoming depth data, and second the process
of updating the person density. From all information the hard criteria are
extracted as a mask and the soft criteria are than used to distinguish the
optimal position within that mask.

A. The optimization function

The optimization function f, defined in 1, reflects the
different criteria to be considered, and fuses these criteria
into a single function. There are two hard criteria to reflect
physical properties to constrain the search space and mask
out impossible search positions. These are the driveability
d(x), and the visibility of the person v(x, ¢). Both functions
d and v are binary functions defined within the map space.
Additionally, a set of soft criteria has to ensure: (i) an
appropriate distance to the user (cg;s:), (i) the ability of the
robot’s sensors to detect a person from an observation pose
(Cdet), (iii) to perceive the person from the front (cfront),
and (iv) how much of the person’s occupancy distribution
can be observed from that observation pose (cpoqf). Since
these criteria are no hard criteria, an optimal compromise
between the linear superimposed criteria has to be found.
So, the resulting optimization function is defined as follows,

1

where all o; values are set to :

f(x,¢0) = d(x)-v(x,0) - [a1 - cger(X) + a2 - Caist(X)

“+as - Cfront (X) + oy - Cpodf (Xa ¢)] (1)

Note, that two new soft criteria are introduced here: (v) to
stay near walls and (vi) to not stay within usual walking
paths of the observed person. Both criteria are described
later in section VI. Also, the soft criterion of cy,.ops is nOt
used any more, since it leads to unstable results when the
person rotates or when small measurement errors on the view
direction occurred.

B. Particle swarm optimization

The optimization problem is simply, to find the best values
of (x,¢) that maximizes the output of f(x,¢), which is
the optimal observation position. Our solution to the defined
optimization problem uses the particle swarm optimization
(PSO) approach. It is a well known technique (see [22],
[23]) to find a global optimum by sampling from a defined
optimization function, and uses a mixture of directed and
random search within the search space to iterate towards
the optimum. Each particle consists of a state (z,y,®),

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 3

where only (x,y) are part of the current optimization space,
and a speed vector (v, v,) also residing within that space.
Note that ¢ is chosen to view directly towards the current
person position. Particles are randomly initialized and the
optimization function f(x, ¢) is calculated for each particle.
For each particle two distinctive particle positions have to
be remembered: one is the local best position that particle ¢
could encounter, called pﬁ]oc best] and one is the global best
value of all particles ever measured in all iterations, called
plotob best] The update of the particle speed and position is
calculated iteratively:

XEZ_L = xy] + At - vy]

Vﬂl = K [Vy] +c-re (PETC el _ xﬂﬂ

+eg Ty - (p[glob best] zm&))

The variables r; and 75 are random numbers from an
interval [0..1]. The parameters ¢; and cg are chosen to prefer
either the local best particle or the global best parameter.
We balance both parameters to ¢; = 2.5 and C5 = 2.5. The
update of the position and speed component is simple, but
needs the constriction factor K to guarantee convergence.

2
K:
2—-0- V02 —40]’

with 6 =c1 +c2,0 >4 (3)

C. Implementation of the single criteria

1) Driveability: Here, we discuss the first criterion of
equation 1: d(x). This function selects all cells which could
be reached by the robot. This function is either zero, when
the cell is not reachable, or one, when this cell is reachable.
This is simply done by dilating the occupancy map by the
robot radius to assume a point like robot. Then flood-filling
at the current robot position is applied to efficiently extract
all reachable cells. The resulting mask defines d(x) and a
set X4 of reachable cells.

2) Visibility: The next function is the visibility criterion
v(x, ¢). The task is to check every cell of Xy, if the person
could be seen from that cell. In the previous approach this
was done by assuming obstacles with infinite height. Now,
with the help of the elevation map, the robot could estimate
the visibility of the person with much more information. How
the elevation map is build, will be described later. Here, the
core idea how the visibility is checked efficiently is briefly
described on a simple example (see Fig. 2).

To check visibility, a line of cells is processed from the
center of a circle towards each cell of the circle perimeter.
This covers an 2D area. On each line an elevation profile,
coming from the elevation map, is checked for visibility,
which is now an one dimensional problem. Each line to
check visibility is processed in an ordered way from the
center, where the observer is placed, to the perimeter. In
each step, the slope Ay/Ax of the line of sight from the
center towards the current cell of the height profile has to
raise compared to the previous cell. If that is not the case, the
elevation value of that cell is not visible. In Fig. 2 this appears
for cells 4 and 6. If the height of a cell is not visible, the

current maximum slope maz(Ay/Ax) is used to calculate
a virtual point at this cell and replace the height value with a
virtual height (see Fig. 2, red circles). The new virtual height
is guaranteed to be visible. The test for visibility is simple
now: each cell could be tested, if the object to observe is
above the virtual elevation profile, and therefore visible, or
not.

3) Sensor distance: The sensor distance criterion cget(X)
has to consider the ability to detect a person with a certain
sensor. Due to our sensors the recognition distance Sy,qq
of a person is limited to 3 meters. So, the sensor distance
ds = |x; — o¢], which is the Euclidean distance from the
observed cell x; towards the person position o;, and the
maximal sensor distance S,,,, 1S used to calculate cges:

Caet(X) = { ! 1

1+exp(ds —Smaz—0.5)

aZf ds < Smaz — 1
,else

4)
4) Social distance: The social criterion cg;s; should keep
the robot away from the observed person. As Hall [8]
explains, the social distance, where persons do not consider
to interact with each other, is around 2.4 meters and above.
This value is our social distance to ensure that an observed
person feels comfortable. To consider this fact, a circular
function is defined around the person, using the parameter
o4 to define the thickness of the circle:

_(ds—2.4)?
o2
cdist(x) =€ %4 (5)

5) Person occupancy distribution: The function cpeqr de-
scribes, which part of the person occupancy density function
p(0) can be seen from the given cell with a given view
direction. A typical distribution of a corridor is shown in Fig.
3 (right). This criterion should prefer observation positions,
where most parts of the distribution could be observed at the
same time to keep the robot at its place, even if the person
walks within the room. Like the calculation of the person

robot position

height/m

new virtual
height values

virtual
profile

elevation
profile

0.5
cell 0t | celi*l cell N
0 0.5 1 1.5 2 2.5 3 distance/m
dy/dx 3 32 -1/3 -3/4 0 -3/6
max(dy/dx)| -3 -3/2 -1/3 -1/3 0 0

Fig. 2. Checking the visibility of a cell. The check is done from cell 0
(on the left) to cell N (right): if the slope Ay/Az from one cell to the
next raises or is equal (shown by a dashed blue line), the point is visible.
If the slope decreases (dashed red lines), the point on the elevation profile
is invisible and is replaced by a virtual point (red circles). At the bottom
the real slope and the virtual slope, that is used for interpolation, is shown.

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 4

visibility, the visibility of the distribution function has to be
calculated. This is again done by casting multiple rays from
the hypothetical camera view into the viewing cone and to
check each cell, if a hypothetical person could be seen. Those
cells are added to the visible mask X¢,. Now, all density
values within the mask are summed up from p(o).

Cpodf = ZP(O = Xi) 7Zf Xi € va (6)

IV. UPDATING THE PERSON OCCUPANCY DISTRIBUTION

One background process which is needed for the
optimization, is the creation and maintenance of the person
occupancy density function. In [15], the person occupancy
function was recorded by a static Kinect camera and the
point cloud was filtered by using the OpenNI library [24], so
that only person points remain. These points were then used
to build a voxel space histogram to estimate the probability
distribution.

In the current version, the function representation is re-
duced to a 2D cell grid histogram. The histogram has exactly
the same size as the global map. Since the person tracker
of the robot is continuously running, all detected person
hypotheses are now summed up in the cell bins, if the person
is within the global map area. So, each cell counts how
often a person was detected in the cell o(x,y). Besides the
cell count, the overall number of observations 0;.¢q; is also
counted. From these two values the probability of observing
a person in that cell is simply estimated by:

o(z,y)

Ototal * x%@s

plo=(z,y)) = (7

where x,.s is the bin size in meters of all cells. The
distribution is updated every N valid person observations,
where N is chosen to be 10 in our system. With a tracker
update rate of 200 ms, every 2 seconds a new distribution
is created. In this way, the system is able to very efficiently
keep the person occupancy density function up to date for
the whole life time of the system.

V. UPDATING THE ELEVATION MAP

The second background process is the estimation of the el-
evation map. Here, the height of objects on the ground should
be estimated. There are also some interesting challenges,
which need to be addressed to get a usable elevation map.
The principle idea is very simple: with the help of a Kinect
camera, a dense point cloud is recorded and transformed
into the global coordinate system. Now, the points could be
assigned to grid cells and one cell covers a set of points.
Each cell stores a height value, which estimates the height
above a defined ground plane. The height values have to be
updated with the help of the corresponding points from the
point cloud.

A. Challenges on updating the elevation map

There are a number of challenges regarding the map
update. First, there are a number of points for each cell,
but only one representative height value could be used to
update the elevation map. Second, not everything from a
large structure like a door or a wall could be seen. This is
due to the fact, that the camera has a certain viewing volume
and all points outside this volume could not be observed
(see Fig. 3, left). Here, especially the selection process from
the first problem can issue some false representative values.
Lastly, common measurement errors could lead to false
measurements, introduced by (i) the sensor itself or (ii) by the
transformation towards global coordinates, since localization
errors of the robot could lead to false associations of points
from the recorded point cloud to cells. Nevertheless, for
the sensor noise problem there are a number of solutions
known, and these solution are presented in section V-D and
experimental results are shown in VII-A.

B. Initializing the map

The map is initialized with the occupancy map of our
environment. Here, obstacles are used to set the height above
ground to Ay,q,, Which is typically 1.8 meters, and all other
cells are set to hy,;,, which is typically O meters. At this
point, all obstacles are assumed to have the same height.
The real height is estimated during the update process, so
the elevation map could capture some of the properties of a
3D model.

C. Filtering wall structures

The aim of the elevation map is to model the object height
from objects, which are placed on the ground and could
potentially block the view towards other objects. Therefore,
the point cloud has to be filtered to avoid unwanted results.
First, and most simple, all points above the height h,,,, are
erased from the point cloud, since no measurements from
the ceiling should be included into the map. Otherwise, the
elevation map has the ultimate height of the ceiling. Next, the
remaining points are assigned to their corresponding cells.
From each point set, a good representation value for the
height of that cell should be found. For horizontal oriented
surfaces, like a table, this could be done by simply calculat-
ing the mean height or choosing the maximum height hl[gm] as
elevation, since all values of a cell have a low variance in the
height dimension. This is different with vertical structures,
like walls, since the mean height is a bad estimate of the
elevation due to the high variance in the height dimension.
Also, the maximum height is not stable, since the viewing
volume of the camera is restricted and the vertical size of
the structure could not be observed completely. This leads to
different heights of a cell, depending on the camera position
in the room. So, often the highest point currently observed
does not represent the correct height of this cell since the
true height is not observable. This is shown in Fig. 3 on the
left side. To sum up, partially observable vertical structures
have to be updated differently than full observable non-
vertical structures. But how to separate vertical structures,

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 5

Fig. 3.

On the left: possible error sources of the elevation map update: (i) the restricted viewing volume, where the yellow lines denote the border of the

viewing volume. In vertical structures, like the walls seen in the image, parts could not be observed, which are important to estimate the correct height.
(ii) Multiple points per cell lead to the problem of choosing a correct representative value. In all cases in this paper it is the maximum height of the
points assigned to one grid cell. (iii) localization errors: if the robot is not correctly localized, the assignment of the points from the point cloud is done
wrong. On the right: a typical person occupancy distribution of the corridor of our lab. Here, the normalized histogram is shown, which is updated every
2 seconds. High (yellow) values mean a high likelihood, that a person could be observed at that position. Low (blue) values denote a low likelihood.

like tables or chairs, from horizontal ones, like walls or
lockers? In [18] the variance in height is used per cell
to apply a simple threshold to classify both cases. This
approach led in our experiments to a correct classification
rate of 93.33 %. In contrast to that, a classification was
implemented, where the difference of the maximum height
and the minimum height of the points of one cell was used to
classify vertical structures. This is twice as fast and leads to
a correct classification rate of 91.40 %, which is sufficient
in our case. Note, that this classifiaction approach is only
evaluated in home environments and works well there. For
in-between surfaces wrong classifications could occur, which
could lead to slightly wrong elevation estimates.

D. Updating the map

1) Update of vertical structures: Structures from the
current depth image, which are classified as “vertical”, are
assumed to be not completely observed. That is why the
height value is simply the maximum of the old height value
hi—1(x,y) and the currently measured height value hgm] (x),
which is the maximum of all points in a cell:

he = max(hy_1, h,[sm]) 8)

2) Update of non-vertical structures: If the structure is
classified as non-vertical it is assumed to be completely
observed and so, a sufficient representative could be found.
The update could be done by (i) using the Kalman filter
update from [18], or (ii) a running mean approach could be
used (hy = ahy_1 + (1 — a)hgm]), or (iii) the mean value of
the last n measurements is used. The Kalman update uses
the estimation of the current height h,[fm], the variance o2 of
the height measurement, the previous estimated height h;_1,
and the variance of the own state estimation o7_; of the last
estimation step:

oy (h™ — hy_y)

he = he_1+
! et ot — 1% 4+ o2
(0.2_ 2
o} = ol — Qtil) 9)

oj 1 +0?

All described methods are compared in section VII-A
and because of the experimental validation version (iii) is
preferred.

Fig. 4. Examples of the function from the wall criteria c,,4;; (top) and the
path function ¢4t (bottom). Here, the environment of the wide corridor
scenario is shown.

VI. STAY NEAR WALLS & AVOID WALKING PATHS

In section III it was mentioned, that during our experi-
ments, the soft criterion of the frontal view c .., Was erased
from the set of soft criteria due to stability problems. Also,
two additional criteria are introduced, which are presented
in the next sections. For both criteria the resulting functions
are shown in Fig. 4.

A. Staying near walls

This criterion should enable the robot to stay near walls.
It is calculated on a binary mask of the global map, where
walls are selected. Then, the distance transform, described
in [25], is used to calculate for every free cell the distance
d to the nearest wall. With the optimal distance d, the value
for each vote is calculated as follows:

(d(z) - do)2>

2
2Uwall

cwall(m) = exp (_ (10)

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 6

B. Avoiding walking paths of the user

This criterion uses the aforementioned person distribution
to select those cells, where the number of person observations
is above a defined threshold. All cells above this threshold are
marked as possible walking paths and the distance transform
is also calculated to get the nearest distance to a path. The
robot should not be placed near path cells. The result of the
distance transform is used to prefer large distances with the
parameters -y for the steepness and d,,;, to set the minimal
distance to the path :

Cpatn (1) = 1/ (1 + exp(—y(d(z) — dmin))) (1)

VII. EXPERIMENTS

There were two scenarios chosen for our experiments.
First, a wide corridor (about 5 meters width) of our institute
with two possible sitting locations, and our home lab with
three sitting locations. We were interested in two points: first,
which elevation map update method is robust against sensor
noise and changes within the environment? And second, what
parameters are best for the particle swarm optimization to get
stable results with minimal computational effort?

A. Comparison of different update methods for elevation
maps

The first experiment investigates the different update meth-
ods: here, the elevation map was initialized with height zero
and than a sequence of measurements with an empty floor
was done. Afterwards, a chair was placed on the floor and the
adaptation was recorded until it converged. Then, the chair
was removed and again convergence was observed. For all
experiments, the classification into vertical and non-vertical
structures with the minimum-maximum difference was used
with a threshold of 0.25 meters for the difference value. All
parts of the chair were correctly recognized as horizontal
structures.

elevation / m

chair chair removed

ground truth height 1
profiles

. k-mean
running mean
Kalman filter

iteration count

Fig. 5. Comparison of all three elevation map update methods at one
cell with an occurring and afterwards vanishing chair. The dashed lines are
the ground truth elevation values. The thick lines are the measured adapted
height values. The corresponding colors to the used methods are shown on
the right.

In Fig. 5 it could be seen, that the k-mean value is the
most robust and fastest adaptation method. While the running
mean tends to be slower and introduces minor errors in

the estimated values, the Kalman filter approach from [18]

is insufficient, since it contains high estimation errors and
slow adaptation rates. The main reason for that effect is
the constantly decreasing variance, since this system was
designed to estimate static elevation maps. In our system
we used the k-mean adaptation method for all remaining
experiments. However, we also tried to compensate the error
of elevation values due to wrong localization, but none of
the tested methods was able to correct such errors, if most
observations come from a wrong localized robot.

B. Stability of the particle swarm

two concurrent
observation
points to

person positions
for home scenario

observe

corresponding
observation poses

)

Fig. 6. a) shows the full optimization function for the home scenario. Note,
that this particular person position leads to two very equal local maxima,
which in turn leads to a random choice of the PSO of one of these maxima.
In b) all tested person positions for the home scenario are shown. Also,
the corresponding best observation positions are shown. The colors of the
positions correspond to the colors in the statistical results from Fig. 7.

In the two tested scenarios, a person is placed on each of
the five possible resting positions (see Fig. 6b for the three
positions of the home scenario). The person occupancy dis-
tribution was learned before the experiments and re-used and
further updated during the experiments. It consists mainly fife
peaks, each on a resting position. For each position a brute
force calculation of all cells was performed to get the ground
truth, where the best observation cell is. Then, the parameters
of the PSO (number of particles, number of iterations) are
set and after the defined number of iterations, the resulting
position is compared with the ground truth position. This
procedure was repeated 20 times for each possible resting
position. So, for all positions in each scenario the mean error
and the error variance is calculated. The results are shown in
Fig. 7. From that figure it could be seen that 30 particles are
enough to compute a stable result, and using more particles
does not decrease the error significantly.

error / m error / m

2 4
L5t 3

[. 2

- ii ----------- 1]

.
particles { P =

10 20 30 50 ‘ 10 20 30 50
home scenario wide corridor
scenario

Fig. 7. The mean error with variance for all positions in the two investigated
scenarios with respect to particle count. In all cases, 30 iterations are used
for the particle swarm.

in: Proc. 6th European Conference on Mobile Robots (ECMR 2013), Barcelona, Spain 7

Note, that in the third position of the home scenario the
error after using 50 particles is still high (around 80 cm).
This is caused by the fact, that the optimization function is
multi-modal here. The equal good positions are shown in
figure 6 a). This multi-modality leads the PSO to randomly
choose one of both positions. This leads to a high error in the
statistical investigations. It could also be seen, that the wide
corridor scenario is more stable than the narrow and jagged
home scenario. This is simply caused by the ability of the
particles to move more freely in wide areas as shown in Fig.
4. Still, the results for the narrow scenario are within 20 cm
of error, which is sufficient for our purpose. But, problems
with the PSO should be expected on very narrow, corridor-
like structures, where a simple brute-force approach may
be more reliable. Since 30 particles seems to be somehow
sufficient, the number of iterations are investigated further.
The results are shown in table II

iterations | avg. error o
5 1.35m 1.23m
10 0.88m 1.05m
20 0.37m 0.27m
30 0.03m 0.08m
50 0.02m 0.05m
100 0.03m 0.06m
TABLE I

INVESTIGATION ON CONVERGENCE DEPENDING ON THE ITERATION
COUNT. THE NUMBER OF PARTICLES IS FIXED TO 30.

From Fig. 7 and II it could be seen, that 30 particles and 30
iterations are enough to get a good convergence. Since one
calculation costs on average 18,3 ms, the overall calculation
time is 16 seconds. Also, gradient ascention was tried to
further reduce the number of sampling steps and decrease
the calculation time. But the results were worse in terms of
average error than all trials from Fig. 7 and are not further
discussed. The bad performance of gradient search is due
to the form of the optimization function with many local
maxima and wide planes without significant slope (see Fig.
6a)).

VIII. CONCLUSIONS

In this paper an update of our observation approach is
shown. Now, an elevation map is used to predict the visibility
of a person and the person density is constantly updated.
The investigation of the elevation map updates revealed,
that the simple k-mean value is best suited to update the
map. Anyhow, it is not possible to suppress errors from
a wrong robot localization. To overcome this issue, a full
SLAM approach has to be developed in future. Also, the
optimization function could sometimes lead to multiple equal
good observation positions, as it was shown in position three
of the home scenario. The question, how to reliably chose
one of these points remains to future investigations. Anyhow,
all of these points are good places to observe a person, So
bad positions could be suppressed in general.

a) Comparison to the previous version:: In the updated
version it appeared that the particle swarm is neither more
stable nor faster. In fact, by using the elevation map the
processing time has increased from 10 to 16 seconds, but now

the system could simply include more possible observation
points due to the improved visibility check. Additionally, we
rejected the use of the person’s view direction since this value
leads to large oscillations with only small amounts of sensor
noise. We further added two new criteria to keep the robot
near walls and away from walking paths.

REFERENCES

[1] H.-M. Gross et al., “Progress in developing a socially assistive
mobile home robot companion for the elderly with mild cognitive
impairment,” in Proc. IEEE/RSJ-IROS, San Francisco, USA, 2011,
pp. 2430-2437.

[2] H.-M. Gross et al., “Further progress towards a home robot companion
for people with mild cognitive impairment,” in Proc. on IEEE-SMC,
Seoul, South Korea, 2012, pp. 637-644.

[3] F. Weisshardt et al, “Making high-tech service robot platforms
available,” in Joint Int. Conf. ISRZROBOTIK2010, 2010, pp. 1115-
1120.

[4] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita, “A
communication robot in a shopping mall,” IEEE Transactions on
Robotics, vol. 26, no. 5, pp. 897-913, 2010.

[5] H.-M. Gross, H.-J. Boehme, Ch. Schroeter, St. Mueller, A. Koenig,
E. Einhorn, Ch. Martin, M. Merten, and A. Bley, “Toomas: Interactive
shopping guide robots in everyday use - final implementation and
experiences from long-term field trials,” in Proc. IROS, St. Louis,
2009, pp. 2005-2012.

[6] Ch. Schroeter, M. Hoechemer, St. Mueller, and H.-M. Gross, “Au-
tonomous robot cameraman - observation pose optimization for a
mobile service robot in indoor living space,” in Proc. ICRA, Kobe,
Japan, 2009, pp. 424-429.

[71 F. Walhoff and E. Bourginion, “Alias project description,” ALIAS
home page, http://www.aal-alias.eu/content/project-overview.

[8] E.T. Hall, The hidden dimension, Doubleday, NY, 1966.

[9] K. Dautenhahn et al, “How may i serve you? a robot companion
approaching a seated person in a helping context,” in Proc. HRI,
2006, pp. 172-179.

[10] K. Koay et al, “Exploratory study of a robot approaching a person
in the context of handing over an object,” in AAAI Spring Symposia,
2007.

[11] L Takayama and C. Pantofaru, “Influences on proxemic behaviours in
human-robot interaction,” in Proc. IROS, 2009, pp. 5495-5502.

[12] M.J. Kim, T.H. Song, S.H. Jin, S.M. Jung, G.H. Go, K.H. Kwon, and
J.W. Jeon, “Automatically available photographer robot for controlling
composition and taking pictures,” in Proc. IEEE/RSJ IROS, 2010, pp.
6010-6015.

[13] Z. Byers, M. Dixon, K. Goodier, C. Grimm, and W. Smart, “An
autonomous robot photographer,” in Proc. IEEE/RSJ IROS, 2003, pp.
2636-2641.

[14] T. Kitade, S. Satake, T. Kanda, and M. Imai, “Understanding suitable
locations for waiting,” in Proc. ACM/IEEE HRI, 2013, pp. 57-64.

[15] J. Kessler, D. Iser, and H.-M. Gross, “I’ll keep you in sight: Finding
a good position to observe a person,” in Proc. IEEE/RSJ IROS, 2012,
pp. 4392-4398.

[16] 1. Kweon, Modeling Rugged Terrain by Mobile Robots with Multiple
Sensors, PHD Thesis, Carnegie Mellon University, Pittsburgh, 1991.

[17] A. Kleiner and C. Dornhege, ‘“Real-time localization and elevation
mapping within urban search and rescue scenarios,” Journal of Field
Robotics, vol. 24, no. 8-9, pp. 723-745, 2007.

[18] P. Pfaff, R. Triebel, and W. Burgard, “An efficient extension of
elevation maps for outdoor terrain mapping,” in In Proc. of the
International Conference on Field and Service Robotics, 2005, pp.
165-176.

[19] C. Ye and J. Borenstein, “A new terrain mapping method for mobile
robots obstacle negotiation,” in In Proc. of the UGV Technology
Conference at the 2002 SPIE AeroSense Symposium, 2003, pp. 21-25.

[20] S. Kagami, K. Nishiwaki, J.J. Kuffner, K. Okada, M. Inaba, and H. In-
oue, “Vision-based 2.5d terrain modeling for humanoid locomotion,”
in In Proc. of the IEEE International Conference on Robotics and
Automation, 2003, vol. 2, pp. 2141-2146.

[21] I. Miller and M. Campbell, “A mixture-model based algorithm for
real-time terrain estimation,” Journal of Field Robotics, vol. 23, no.
9, pp. 755-775, 2006.

[22] R. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Proc. of Congress on Evolutionary
Computation, 2001, vol. 1, pp. 81-86.

[23] R. Eberhart and Y. Shi, “Comparing inertia weights and constriction
factors in particle swarm optimization,” in Proc. of the Congress on
Evolutionary Computation, 2000, vol. 1.

[24] WillowGarage, “Openni,” http://www.openni.org.

[25] G. Borgefors, “Distance transformations in digital images,” in
Computer Vision, Graphics, and Image Processing, 1986, vol. 3.

