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Abstract

The rising need for security in the last years has led to
an increased use of surveillance cameras in both public and
private areas. The increasing amount of footage makes it
necessary to assist human operators with automated sys-
tems to monitor and analyze the video data in reasonable
time. In this paper we summarize our work of the past three
years in the field of intelligent and automated surveillance.
Our proposed system extends the common active monitor-
ing of camera footage into an intelligent automated inves-
tigative person-search and walk path reconstruction of a
selected person within hours of image data. Our system is
evaluated and tested under life-like conditions in real-world
surveillance scenarios. Our experiments show that with our
system an operator can reconstruct a case in a fraction of
time, compared to manually searching the recorded data.

1. Introduction
The gaining interest for security in system relevant in-

frastructures is commonly met with an increased amount
of surveillance cameras. Especially in middle-sized infras-
tructures, like regional airports, train stations, subways, and
shopping malls, this form of security leads only to an illu-
sion of safety, since the larger number of cameras are not
met with an equal number of security personnel. The high
amount of surveillance footage can often not be managed,
which inhibits an efficient crime prevention by active mon-
itoring and slows down the investigation by passive moni-
toring. A devastating example is the temporary shutdown
of a Munich airport terminal in 2010. The terminal was

∗This work has received funding from the German Federal Ministry of
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closed for several hours after a passenger hurried through
the security gate, and the security staff was not able to track
the person in the surveillance footage. Such and similar
cases like lost children, abandoned baggage, thefts, and in-
vestigating suspicious persons, require an advanced surveil-
lance. To assist security personnel in such cases, we study
how a complex intelligent system needs to be designed, so
that it can track and reidentify persons in multiple non-
overlapping cameras. Using our prototype, an operator can
monitor and investigate multiple persons and search through
hours of multi-camera footage in a reasonable time-frame.

The remainder of this paper is organized as follows: We
summarize related work in Sect. 2. In Sect. 3, we describe
our system architecture and the involved submodules. In
Sect. 4, we evaluate the video-analysis capabilities of our
system and present results from live experiments on a local
airport. We end with a conclusion.

2. Related Work
Recently, lots of progress was made in the field of au-

tomated video surveillance (AVS). As described in [3], the
main goal of AVS is to analyze a large amount of data from
several surveillance cameras in real-time and direct the at-
tention of a human supervisor to only the relevant cameras.
This task, known as monitoring, is addressed in most cur-
rent AVS systems, e.g. Knight [17], the VSAM project [1],
OBSERVER [4], or NEST [12]. An overview of commer-
cially available systems, mainly focusing on monitoring, is
presented in [16]. For a more extensive overview of AVS
systems we refer to [18].

A remaining issue of most AVS systems is the inability to
investigate the course of events after the detection, termed
surveillance video mining [3]. This task includes a cross
camera search through all stored footage to detect every oc-
currence of a person or object of interest. None of the above
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mentioned systems is able to master this challenge, since
video analysis in hyper-real-time (multiple times faster than
real-time) is a complex task.

The system presented in this paper fills the gap by mark-
ing every occurrence of a person of interest in several hours
of recorded video within a few minutes (or even within sec-
onds for the last hour) and shows her or his path in a global
map. This brings AVS systems to a new level by applying
an ”after-the-event analysis”, an issue that was declared as
unsolved in [3].

3. Automated Video Surveillance and After-
the-Event Analysis

In this chapter, we describe our system for assisting an
operator in the outlined security scenarios. Problem spe-
cific vocabulary will be introduced in section ”3.1 Example
and Definitions”. The involved system components are de-
scribed in section ”3.2 Subcomponents”. In section 3.3, it
is shown, how the results are presented to the operator.
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Figure 1. Illustration of the involved subcomponents.

Our human operator assistance system involves a two
stage approach (see Fig. 1). In the first phase as much in-
formation as possible is extracted in real-time from the live
camera footage. This includes people detection and track-
ing, as well as merging person hypotheses from different
methods and cameras into one position hypothesis in global
world coordinates. Additionally, features for the recogni-
tion modules are pre-computed. All these components run
in real-time and store their results in a database for later
processing. The second phase is manually triggered by se-
lecting a person. In this phase, different components recon-
struct the path of the selected person from first appearance
to the point of its current whereabouts. The involved com-
ponents process the data of the live phase and reconstruct
the path of the person through hours of camera footage
within a few minutes. The results are then descriptively pre-
sented to the operator. Knowing where the selected person
was, is and has been in the meantime, helps a human op-
erator to assess the situation much faster than by searching
through the video data manually. Additionally, the use of
such a system increases the attention of the operator since it
actively involves him in the observation in contrast to pas-
sively watching hours of data and lots of video streams.
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Figure 2. Types of Tracks.

3.1. Example and Definitions

In this section, we describe our system from the human
operator’s point of view. A common case for security per-
sonnel is a lost-child-scenario: In this scenario, a child is
accidentally separated from her or his parents. The parents
inform the security staff which then tries to find the child in
the camera footage. During the incident, all components of
the live phase have processed the video data until the current
point in time. In the live phase, detectors as e.g. full body,
upper body, and face detectors mark the positions of people
in the camera. The positions of the people are associated
between frames to tracklets by a visual tracking method.

• A Tracklet is as a definite path of one person in a single
camera, generated out of person detections of a single
detection method and associated by a visual tracking
method. To be explicit, tracklets are not associated and
continued in critical situations like occlusion.

Persons close enough to the cameras are detected and
tracked by a face detector; these tracklets are combined, if
possible, by face reidentification into tracks.

• A Track is defined as univocal path of one person in
a single camera, combined of multiple tracklets, as-
sisted by a person reidentification method, like face or
appearance-based reidentification.

All used cameras are calibrated into a global map. There-
fore, we transform all tracklets and tracks into global coor-
dinates and combine them to meta-tracks.

• A Meta-Track is a definite path of one person in global
map coordinates, generated using multiple tracklets
and tracks, associated by proximity, track, and tracklet
IDs. In the case of overlapping cameras, those track-
lets and tracks are also associated.
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Back to the example, after the parents approach the se-
curity personnel, the operator triggers a search back in time
on one of the parents. This starts the next phase. The back-
ward search helps to find the point in time, where the child
was separated from her or his parents. In this phase, the
person recognition modules combine the meta-tracks into a
person-track.

• A Person-Track is a definite path of one person
through multiple cameras, associated by multiple
meta-tracks by reidentification algorithms or a human
operator.

After the child is found back in time in the video data,
the operator triggers a new search forward in time to find
the current location of the child. The different track types
are also illustrated in Fig. 2.

3.2. Subcomponents

Although most subtasks of an automated surveillance
system, as for example person detection, tracking, and face
recognition are well studied, much adaption and develop-
ment was required to realize a complete and working sys-
tem. In this subsection, we outline the components of the
live and the investigation phase of our system (Fig. 1). Ad-
ditionally, we depict the system design concerning data ex-
change and communication.

3.2.1 Live Phase

Person Detection

Person detection is a well studied field in computer vi-
sion. State-of-the-art approaches achieve good results but
usually are not real-time capable without the use of special-
ized hardware.
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Figure 3. Foreground segmentation and calibrated cameras are
used to increase performance and speed of a detection window-
based person detector

To increase computational speed and performance of a
people detector, we use the setup of Fig. 3, which can be

applied for every detection window-based person detector,
as for example the HOG person detector [2] or person de-
tection with contour cues [19].

A fast multi gauss foreground segmentation is used to
extract regions of interest. The person detector runs only
on the foreground regions. The binary mask of foreground
pixel is also used to remove false positive detections. Addi-
tionally, we use calibrated cameras for further speedup and
false detection reduction. With the assumption of a planar
floor and known extrinsic parameters of the camera, persons
with average height (1m − 2.2m) can only appear within
certain areas of an image. Only the corresponding areas are
used for detection on each layer of the resolution pyramid.

With this setup, the person detection is sped up by an av-
erage factor of 112 (factor 8 for segmentation × factor 14
for the ground plane assumption). We achieve very good
results for full and upper body person detection and an av-
erage runtime of less then 100 ms per HD-image frame
(1600px × 1200px), using contour cues [19], on an Intel
Core i7 system. A parallelized implementation for GPU
would increase the runtime further.

People Tracking
For ID association within image space, we incorporate a

visual tracking algorithm. The common method of track
generation using geometrical associations of person de-
tections between consecutive images is not applicable in
surveillance scenarios, due to the high risk of ID switches
during occlusions. Therefore, we use a template based vi-
sual tracker [11]. It generates long continuous high quality
tracks in hyper-real-time (> 100fps without the use of par-
allelized hardware) with occlusion handling and low risk
of ID switches. The tracker uses a small set of features,
sampled from suitable homogeneous regions to generate a
discriminative template. This enables the use of logarith-
mic search as fast local search strategy. The use of already
associated tracks instead of single detections is essential for
meta-track creation and person recognition later on.

Face Detection
The key challenge in detecting and tracking multiple

small faces in high resolution video data is the real-time
constraint. The detector uses a sliding-window approach
and compares the content under the window with trained
models of faces in a classification step. The models cover a
wide range of variations spanned in the direction of illumi-
nation, pose and covers biological variations of people from
different countries. Due to the large search space (multiple
small faces in large images with varying head poses), the
detector is the slowest component running with about 2-3
Hz on a consumer PC. To achieve real-time capabilities, we
coupled the detector with a fast tracking algorithm. The
tracker uses spatio-temporal information for assigning de-
tections into a tracklet. After initiating all tracking threads
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(one for each detection), a further full frame detection is
started. Using face recognition, the face tracklets are asso-
ciated into tracks (see Face Recognition component).

Merging Image-based Hypotheses into a Global Meta-
Track Representation

Since we use multiple detectors (face, upper body, full
body) for each camera, we need to fuse the different
hypotheses into a single person hypothesis. Addition-
ally, many surveillance scenarios have overlapping camera
views, which makes it necessary to associate person hy-
potheses between cameras. For this, we transform each per-
son hypothesis into coordinates of a global map. The global
map is generated by calibrating each camera using their in-
trinsic parameters and multiple laser range finders [15].

The global position hypothesis of a person is updated
using a Kalman-Filter. To minimize the risk of ID switches
in this phase, we use a very conservative approach for data
association. Tracklets already associated by image-based
tracking obviously do not need further treatment. Hypothe-
ses of different tracklets (e.g by different detectors and cam-
eras) are fused using very strict geometrical restrictions.
Whether a hypothesis of a new tracklet is fused to an ex-
isting global hypothesis is based on the Mahalanobis dis-
tance of both positions using the covariance matrix of the
Kalman-Filter and the uncertainty of the hypothesis. The
uncertainties of all detectors in a camera are evaluated sta-
tistically beforehand and are represented by a covariance
matrix. Once a tracklet or track is associated to a global hy-
pothesis, the Kalman-Filter can be updated without further
associations.

In spite of the conservative ID association, certain events
are likely to cause ID switches or wrong tracks. These
events include persons entering or leaving a camera, peo-
ple walking close to each other, people not being observed
due to occlusion, and so on (see Fig. 2). These events need
to be handled with great care, since they cannot be resolved
later on. ID switches are most likely to occur when two
global hypotheses are very close. In this case the meta-
track needs to be interrupted for both global hypotheses
to assure explicitness. This event is tagged for later pro-
cessing by reidentification and both hypotheses are fused
to a new global non-explicit hypothesis. If two previously
joined persons separate, the non-explicit meta-track is in-
terrupted, the event is tagged for reidentification and two
new global hypotheses are inserted. In the case of such a
split event, explicitness can be restored by reidentification.
New and unobserved global hypotheses are also tagged for
cross camera recognition. Using reidentification on tagged
events ensures that no ID switches occur during critical sit-
uations. Merging tracklets with this proposed method into
meta-tracks reduces the number of computationally expen-
sive reidentification tasks to only the critical events.

3.2.2 Investigation Phase

Reasoning

To accelerate and improve searches of a person across a
camera network, we compute a binary spatio-temporal map
that shows all locations - and thus cameras - that a person
can reach within a certain time interval starting from a given
initial position with an assumed maximum velocity. The
computation is based on a wavefront model [10] and uses
a map representing the geometrical scene together with the
current position as well as a kinematical model of a per-
son. The person and face recognition methods make use of
this spatio-temporal knowledge (when a person can appear
at which camera device) leading not only to a reduction of
the search space but reducing possible false positives at the
same time.

Prediction
Since it is necessary to search through all the recordings

to find sequences containing the person of interest, it saves
time to prioritize the processing sequence of the person hy-
potheses based on statistics for camera transition and abid-
ance times. Therefore, we utilize a data driven prediction.

The data basis for prediction is encoded into a spatial
graph. It is generated in an offline phase by clustering tra-
jectories, obtained by camera [11] and laser-range-finder
based people tracking [14, 15]. The mean transition time
and variance between neighboring nodes is stored in their
connecting edge. The transition probabilities are stored in
all nodes for each pair of their connected edges. In the a-
nalysis phase, starting with the meta-track of the person of
interest, a Monte-Carlo simulation is applied on the graph.
The temporal statistics are stored in each node. Afterwards,
the stored times are clustered for all nodes in a camera’s
viewport in order to obtain multimodal temporal intervals
of a probable occurrence of the person of interest.

In our system, prediction for one person on an Intel Core
i7 took less than 100ms. This simulation reduced the search
space for the recognition modules significantly and addi-
tionally provided valuable score values.

Appearance-based Reidentification
To track people across multiple non-overlapping cam-

eras, reidentification is needed to connect meta-tracks to
person-tracks. Since the point of view can change between
cameras, and the visibility of the face cannot be guaranteed,
an appearance-based person recognition is needed. The ap-
pearance of people’s clothes can vary significantly. There-
fore, it is important to use a large feature set for reiden-
tification (e.g. texture features [9, 13], color features and
histograms [6]), and select discriminative features for a spe-
cific person on the fly in the enrollment phase [5]. Using a
small subset of well suited features as a template ensures
fast matching (12 000 per second). Thus, in the matching
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phase this method can easily catch up the spent time for
enrollment (about two seconds). For each comparison, a
matching score is offered, based on the complement of the
probability for a false acceptance, known as inverse loga-
rithmic false acceptance rate score (or − log(FAR) score).
For further details, it is referred to [5].

Face Recognition
The face recognition component is essential for tracking

and recognizing a person across a camera network. As a
face is a relatively small structure in a video, face recogni-
tion imposes some quality requirements on an image, espe-
cially with respect to facial resolution. Appropriate camera
positions that support the capture of high quality facial im-
ages are e.g. near check-in counters, pathways or stairways.
To achieve acceptable recognition accuracy, a facial resolu-
tion of at least 25 pixels inter eye distance is recommended.

The facial features that are computed during the detec-
tion process are used to fit a model to the corresponding im-
age region [7, 8]. At certain points of the facial model, the
system computes further features based on Gabor-Wavelet
filters which in turn form jets. In order to allow very fast
vector comparison statistical signal post-processing is per-
formed on the feature vector. The post-processed feature
vector finally gets encoded in a template structure. The
computation of such facial features and templates is called
template creation. It is executed together with the propri-
etary detection/tracking component. The recognition pro-
cess itself operates only on the templates and easily allows
for one million comparisons per second.

Score Fusion
To increase the recognition rate, we incorporate the re-

sults of multiple modules. For our system architecture, a
fusion at score level is preferable. Therefore, the scheme of
[5] is applied. We fuse the scores of the prediction module,
face- and appearance-based recognition. The score of each
module is normalized as inverse logarithmic FAR score.
This is done in three steps:

1. Compute a statistic on a benchmark dataset. Select all
scores for comparisons of not corresponding persons
(FAR statistic)

2. Build a lookup table that holds the accumulated per-
centage of selected scores s up to the respective lookup
entry.

3. For each entry calculate s∗ = − log(s). This avoids
floating point imprecision in later calculations.

Due to the normalization of each module’s score to the
same logarithmic base, the fusion becomes a simple sum-
mation of all normalized scores. A remaining issue is the
choice of an adequate threshold for the decision if two

hypotheses match. This choice should be made problem-
specific. We choose a tolerably low threshold, since in our
scenario showing a human operator some false positives can
be acceptable but missing a true match is not.

3.2.3 Data Exchange and Communication

In the proposed system, a huge amount of data is pro-
duced and exchanged between subcomponents. Therefore,
a database in combination with a centralized message server
is used. The database stores the main amount of data (e.g.
tracklets, meta-tracks, features for recognition, etc.). Via
short messages the submodules notify each other about new
information. Therefore, all submodules can run decentral-
ized. This facilitates an easy expansion of the system and
thus guaranties scalability and reliability due to possible re-
dundancy, while data is guaranteed to be saved on a secure
centralized system. To further improve reliability, all sub-
modules are designed to cope with lost or unavailable data.

3.3. Visualization

The initial screen for live monitoring is similar to most
state-of-the-art systems. The images of the cameras are dis-
played on multiple screens. The human operator can view
the live streams or fast-rewind/forward through the recorded
images. For a more detailed view, the operator can enlarge
a specific camera to full screen or zoom in on an image. If
desired by the operator, various additional information from
the live analysis is displayed.

Additionally to this common form of monitoring, the op-
erator can select any person in a camera for further investi-
gation. After a person is selected, a new window opens (see
Figure 4). Within this window, all person relevant informa-
tion is summarized. The current mugshot of the person is
displayed in the upper left tile. The upper center tile shows
the images of the currently selected camera and time point
and is controlled by the time-slider at the bottom. In the
upper right tile, the global map of the scenario is displayed
with all person positions corresponding to the selected time
in the time-slider.

The interactive time-slider is the key element in the
person-information window. It is not only used to fast-
rewind/forward through the video footage but also displays
valuable information of the people-search modules. Frames
in which no persons were present or reasoning calculated
that the selected person could not have reached that cam-
era in that time, are marked red and can be skipped auto-
matically. Most likely frames for the person to be in are
marked with yellow Gaussians by the prediction module.
Most important, frames containing the selected person are
marked green by the reidentification modules. Additionally,
the complete path of the person is displayed in the global
map tile (top right). The operator can use this information
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Figure 4. Person specific investigation window. For explanation, see Sec. 3.3.

to jump to the relevant cameras and points in time directly,
without manually searching the whole data. Additionally,
the upper center tile will jump to the camera with the best
view of the selected person and focus on it, while fast play-
ing through the recorded data.

4. Experiments
We evaluate the whole system in two categories: The

first deals with the performance of the sub components
(Sec. 4.1) and the second additionally incorporates the op-
erator (Sec. 4.2). For the performance of the submodules
we refer to the evaluations done in [5, 11, 19].

4.1. Live Evaluation

To test our system, we stage several situations at a local
airport1. The situations were similar to a lost child scenario
and the search for the owner of an abandoned baggage. The
system setup consisted of four high definition video cam-
eras (1600×1200pixels), 15 consumer PCs for running the
necessary modules and one for the operator to perform the
search. The modules needed to cope with changes in light-
ing, a high passenger volume, non overlapping cameras, oc-
clusions and all other conditions of a real-life scenario.

After the operator started the search, the system was able
to provide him with the processed data of all modules within
two seconds on average. In one case it took three seconds to
analyze the video data but it should be mentioned that this
scenario had a length of about 40 minutes whereas all the
other had an average duration of ten to fifteen minutes. The
enrollment phase of the recognition modules (see Sec. 3.2)
took the most time. For live analysis, we did not encounter
computational problems even in crowded scenes (more than
50 persons per camera). Nevertheless, we observed that the
contour cues detector was only able to process every sec-
ond frame during high traffic. This had no negative effect
since the tracking module still processes the missed frames.

1Erfurt-Weimar Airport, 99092 Erfurt, Germany

By extrapolating the computational needs of all modules,
we anticipate the real-time capabilities of our system to be
thwarted at about 300 persons per camera. The main issue
would be the disentanglement of split and join events with
the recognition modules. We also encountered some prob-
lems in scenes with less traffic, like people standing close
together (e.g. at the check-in), or walking in a close group.
Due to occlusions, the tracker is not able to follow each per-
son and the appearance-based reidentification is not able to
resolve the ID-conflicts as long as no one leaves the group.
Even the face recognition is not able to identify the people if
the inter-eye distance is below 25 pixels. Fortunately, secu-
rity relevant scenarios often arise from individual persons,
but we intend to address the problem of groups in further
work.

Due to data protection regulations we were not allowed
to store the video data, which prohibits us from conduct-
ing controlled experiments. Nevertheless, the operator was
always able to find the person of interest and its complete
trajectory in every situation with our system in less than five
minutes.

4.2. Saving of Time

In order to evaluate the saving of time provided by the
system, we reenacted a theft scenario (scenario 1) on an air-
field2: Person A removed a radio receiver from a small air-
craft standing in a hangar (Fig. 5 A) and put it into a brief-
case. He left the hangar, met with person B and handed over
the loot (Fig. 5 B). Afterwards they split up and person B
tried to leave the airfield with the radio receiver through the
main entrance (Fig. 5 C). The operator suspects person B of
a theft and wants to reconstruct the course of actions, based
only on the 40 minutes of video recordings, comprising al-
most 30 persons.

The system consisted of four high definition cameras:

2Schoenhagen Airport, 14959 Schoenhagen, Germany, European Avi-
ation Security Center (EASC) e.V.
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one in the hangar and three outdoors, two with an overlap-
ping view (see Fig. 5).

Furthermore, we reenacted a lost child scenario (sce-
nario 2) on an airport. A family (two parents, three chil-
dren) entered the airport and turned in their baggage at the
check-in. Afterwards, they went to a restaurant, while one
child left the group unnoticed in order to go to the toilet.
The family noticed the disappearance and informed the se-
curity personnel, while the child left the toilet and roamed
around in search for his or her parents.

The system also consisted of four high definition cam-
eras: one on the upper floor and three on the lower floor
with partial overlap, comprising 80 minutes of video data
with more than 30 persons participating.

All video data and the results from live analysis were
recorded on harddrives and replayed during the trials. We
asked a group of trained operators to reconstruct the course
of actions with the aid of our system on one scenario and
without the aid on the other one (split 50/50 on both scenar-
ios). They are not only instructed to find the person of inter-
est, but to be able to tell us their walking paths. First, half of
the operators were asked to search the data with our system
from the point at which person B arrives at the main en-
trance, or at which he was informed of the lost child respec-
tively. They needed 122 seconds on average to reconstruct
the course of actions in scenario 1. In the lost child scenario,
evaluated by the other half of the operators, they needed 157
seconds on average. Afterwards both teams used our soft-
ware to search through the video data of the yet unknown
scenario by themselves without the aid of our system. It
took them 533 seconds on average to search through the
data of scenario 1 and 632 seconds on scenario 2. So the
reconstruction of the case was speed up by 4.3 in the theft
scenario and by 3.4 in the lost child scenario. This depicts
an obvious benefit for operators to use our system for pars-
ing video data for specific persons. Furthermore we suspect
that in scenarios with more cameras (20-40 are common)
and more people the speed gain would be even greater due
to the increased complexity and video footage.

5. Conclusion
Our proposed intelligent surveillance system helps an

operator to deal with the increasing amount of camera
footage in surveillance. The system extends active surveil-
lance from monitoring to a powerful investigative tool
which helps a human operator to evaluate a critical event
fast enough to also respond to it immediately. As far as we
know, such a surveillance system has never been developed
and evaluated under life-like conditions. Our experiments
show that using our prototype, a case in a four camera sce-
nario can be solved faster by a factor of 4.3. We expect that
in scenarios with more cameras the speedup will be signifi-
cantly greater.

A 

B 

C A 

B 

C 

Figure 5. The theft scenario on an airfield. The path of person
A is marked green, the path of person B is marked yellow (both
walking from left to right) and the viewports of all four cameras
are shown as red trapezoids. The key scenes are shown in three
images: the removal of the radio receiver (A), the handover (B)
and person B at the main entrance (C). The operator had to pick
these scenes out of a lot of video footage with several other people
walking around (e.g. rightmost images)

References
[1] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tol-

liver, N. Enomoto, O. Hasegawa, P. Burt, and L. Wixson. A system for video
surveillance and monitoring. Technical report, Carnegie Mellon University,
CMU-RI-TR-00-12, 2000. 1

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection.
In CVPR, pages 886–893, 2005. 3

[3] A. Dick and M. Brooks. Issues in automated visual surveillance. In DICTA,
pages 195–204, 2003. 1, 2

[4] D. Duque, H. Santos, and P. Cortez. The observer: An intelligent and automated
video surveillance system. In ICIAR, pages 898–909, 2006. 1

[5] M. Eisenbach, A. Kolarow, K. Schenk, K. Debes, and H. Gross. View invariant
appearance-based person reidentification using fast online feature selection and
score level fusion. In AVSS, pages 184–190, 2012. 4, 5, 6

[6] M. Farenzena, L. Bazzani, A. Perina, V. Murino, and M. Cristani. Person re-
identification by symmetry-driven accumulation of local features. In CVPR,
pages 2360–2367, 2010. 4

[7] S. Gehlen, M. Rinne, and M. Werner. Hierarchical graph-matching. European
Patent 01118536.0, 2001. 5

[8] S. Gehlen, M. Rinne, and M. Werner. Hierarchical image model adaptation. US
Patent 7,596,276, 2001. 5

[9] R. Haralick, K. Shanmugam, and I. Dinstein. Textural features for image clas-
sification. TSMC, 3:610–621, 1973. 4

[10] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determi-
nation of minimum cost paths. TSSC, 4:100–107, 1968. 4

[11] A. Kolarow, M. Brauckmann, M. Eisenbach, K. Schenk, E. Einhorn, K. Debes,
and H. Gross. Vision-based hyper-real-time object tracker for robotic applica-
tions. In IROS, pages 2108–2115, 2012. 3, 4, 6

[12] J. Mossgraber, F. Reinert, and H. Vagts. An architecture for a task-oriented
surveillance system: A service- and event-based approach. In ICONS, pages
146–151, 2010. 1

[13] P. Salembier and T. Sikora. Introduction to MPEG-7: Multimedia Content
Description Interface. John Wiley & Sons, Inc. New York, 2002. 4

[14] K. Schenk, M. Eisenbach, A. Kolarow, and H. Gross. Comparison of laser-
based person tracking at feet and upper-body height. In KI, pages 277–288,
2011. 4

[15] K. Schenk, A. Kolarow, M. Eisenbach, K. Debes, and H. Gross. Automatic
calibration of a stationary network of laser range finders by matching movement
trajectories. In IROS, 2012. 4

[16] M. Sedky, M. Moniri, and C. Chibelushi. Classification of smart video surveil-
lance syst. for commercial applications. In AVSS, pages 638–643, 2005. 1

[17] M. Shah, O. Javed, and K. Shafique. Automated visual surveillance in realistic
scenarios. MM, 14:30–39, 2007. 1

[18] M. Valera and S. Velastin. Intelligent distributed surveillance systems: A re-
view. PVISP, 152:192–204, 2005. 1

[19] J. Wu, C. Geyer, and J. Rehe. Real-time human detection using contour cues.
In ICRA, pages 860–867, 2011. 3, 6

in: Proc. 10th IEEE Int. Conf. on Advanced Video and Signal-Based Surveillance (AVSS 2013), Krakow, Poland




