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Abstract— For an Advanced Driver Assistance System rec-
ognizing the driving situation of other vehicles is a crucial pre-
requisite to anticipate their behavior and plan own maneuvers
accordingly. Current methods for situation recognition usually
rely on an expert for defining the considered driving situations
manually while solely the parameters of the corresponding
behavior models are learned from observations. Unfortunately,
the performance of this approach is highly dependent on the
skills of the expert. Furthermore, the data for training needs to
be manually labeled to define when a certain type of situation is
present, which can be very time-consuming and may introduce
unwanted bias. In order to circumvent these problems, we
propose to learn types of situations and behavior models from
data simultaneously. The goal is to identify the set of driving
situations for which the corresponding behavior models achieve
the best fit to given observations. As both the assignment of
observations to driving situations and the model parameters
are unknown, an alternating, iterative algorithm minimizing
the model error is employed. We show that the algorithm
accomplishes to identify reasonable driving situations and that
it can be successfully applied for behavior prediction when
situation labels are missing.

I. INTRODUCTION

Whenever an assistance system overrides the commands
of the driver it has to ensure that the conducted maneuver
causes no conflicts with other vehicles. In order to respect
other vehicles the system has to predict the behavior of each
nearby vehicle which is commonly realized by determining
its driving situation and employing a corresponding behavior
model. Works being concerned with the development of
such systems usually define the considered driving situations
explicitly using a human expert [1], [2], [3], [4].

In [1] the behavior of vehicles while crossing intersections
is predicted. A particle filter matches each vehicle’s current
trajectory with a set of learned trajectories to predict which
route for crossing the intersection the vehicle will choose.
The method is tailored to only one specific type of situation:
Two vehicles approaching a 4-way intersection from opposite
sides.

Also specialized to a single driving situation is the work
presented in [2], where a vehicle’s deceleration behavior
during car following is predicted. The prediction is based
on a behavior model designed as a Dirichlet process mixture
model which is trained on naturalistic driving data.

Multiple types of situations are considered in [3], which
is concerned with learning a general longitudinal behavior
model. This is accomplished by specifying a set of driving
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situations each of which employs an individual behavior
model. The selection of the currently active behavior model
is performed by a classifier according to the estimated driving
situation.

In [4] multiple types of driving situations are considered as
well, which are designed based on a set of selected behaviors.
The goal is to predict the future trajectory of vehicles in
highway scenarios, which is realized using a particle filter.

All of the approaches above have in common that the
considered driving situations are handcrafted by human ex-
perts. While using human intuition provides a good way to
incorporate relevant domain knowledge it also carries the
risk of introducing unwanted bias. The recognition of the
driving situation is in most approaches the crucial first step
that determines the choice of the behavior model used and
thereby also determines the following behavior prediction.
This dependency leads to the problem that if a single de-
signed driving situation actually subsumes two very distinct
behaviors the corresponding behavior model will be highly
inaccurate. Based on this insight we propose to learn both the
considered driving situations and their corresponding behav-
ior models simultaneously. The simultaneity is an important
aspect as it accounts for the above mentioned dependency.
Learning simultaneously enables the algorithm to identify
these driving situations for which a common behavior model
is adequate. An additional advantage of learning both is that
the training data does not require any supervision in terms of
labels regarding the ’actual’ driving situation, which reduces
the effort for learning and prevents labeling errors.

For the proposed learning method we use a set of ob-
servations, where each observation describes a vehicle’s
current state and its future behavior. The state is given by
a set of features describing the dynamics of the vehicle and
its current surrounding, e.g. nearby road users and traffic
lights. The vehicle’s behavior is represented by a discretized
velocity profile, comprising its velocity for the next three
seconds measured at 10 Hz. Representing behavior by ve-
locity profiles has the advantage that while these profiles are
good predictors for anticipating intentions [5] their simplicity
makes them well manageable.

Given the number of driving situations to identify, the
algorithm aims at finding the corresponding behavior models
that describe the observations best, i.e. minimize the devia-
tion between the velocity profiles estimated by the models
and the actual velocity profiles. The learned behavior models
can then be used to predict the future velocity profile of a
vehicle, given its current driving situation. It is important to
note that the problem at hand can not be solved by clustering,
as the assignment of observations to driving situations should
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not be based on the similarity of the observations’ velocity
profiles but based on the underlying behavior models. For
example an observation where a car slows down while
approaching a red traffic light can cause a similar velocity
profile like an observation where a car approaches a slow
driving vehicle. However, while in one case the behavior
and thus the velocity is probably a function of properties
concerning the traffic light, in the other case the determinants
of behavior will be based on the leading vehicle. Identifying
these differences is a key element of the proposed method.

The remainder of this paper is structured as follows.
In Section II the typical working principle of behavior
prediction systems is discussed and the definitions and
notations used in the following are introduced. In Section
III the learning algorithm will be explained including the
employed minimization function and the methods used for
optimization. Section IV describes the evaluation procedure
used to investigate the properties of the proposed method
and in Section V we will show that our algorithm extracts
competitive behavior models on simulated and real-world
data. In Section VI an outlook on future work is given.

II. SYSTEM OVERVIEW

Generally speaking, a driving situation is a certain situa-
tional context which determines the behavior of a vehicle.
The driving situation of a vehicle is defined by the vehicle’s
own state and the relations to its surrounding, which can be
both quantified by a set of measureable features. Vehicles in
the same driving situation are assumed to follow a common
behavior pattern. Typical driving situations are tagged Car-
Following or Free-ride, to name a few.

The novel aspect in our work is that we identify the set of
considered driving situations D via learning while in most
works D is handcrafted or artificially limited. The advantage
of learning is twofold. First, it allows for learning behavior
models without the need to label the training data with
information about the assumed driving situation. Second, the
driving situations that were identified via learning are able
to capture even properties that are inaccessible to human
intuition and might thereby fit real-world behavior better.

To direct the learning process the quality of a learned
set D needs to be quantifiable. According to the definition
of a driving situation it appears reasonable to obtain the
measure from behavior information, as vehicles in the same
driving situation behave according to the same model. One
possibility is to let the algorithm learn both D and the
corresponding behavior models simultaneously and measure
the fit between learned and actual behavior. Given a set
of training data containing state, situational context and
behavior information of vehicles, the goal of the learning
algorithm is to identify these driving situations for which
the corresponding behavior models match the behavior of the
vehicles best. Understandably, due to the fact that a behavior
model takes state and situational context of a vehicle as input
and provides an estimated behavior as output it can also be
used for behavior prediction. Hence, the contribution of this
work is to propose a learning algorithm that identifies both

driving situations and behavior models from data which can
then be utilized for behavior prediction.

In the following the typical working principle of behavior
prediction systems is presented for highlighting the chal-
lenges for a learning algorithm and to introduce the notation
used in this paper.

A prediction system performs four steps to arrive at an
estimated behavior for an individual vehicle, which are
depicted on the right side of Figure 1. The four steps are
as follows.

Fig. 1. Left: Features extracted for an individual vehicle that describe
its current driving situation, e.g. velocity, state of nearby traffic lights or
distances to other cars. Right: Standard architecture of behavior prediction
systems depicting the utilization of the extracted features.

I. Feature Extraction: By taking sensory measurements,
a set of features Fi is obtained, which is expected to
capture the driving situation and the behavior of the
vehicle adequately. (The index i simply denotes this
measurement as the i-th observation.)

II. Driving Situation Recognition: Based on the mea-
sured features the current driving situation of the ve-
hicle is determined. Formally, the second step can be
interpreted as a classifier that takes the features as
inputs and returns a situation label, i.e. h(Fi) → D =
{D1, ..., DN} with N being the number of considered
driving situations. Note that this step can be skipped
when only a single driving situation is regarded, that is
N = 1.

III. Feature Selection: According to the estimated driving
situation a subset F ′

i of the measured features Fi is se-
lected, which is found to be relevant for the subsequent
prediction step. This makes sense if some features do
not carry useful information for a certain driving situa-
tion. For example in the left image of Figure 1 it can be
assumed that features regarding vehicle C do not affect
the current behavior of vehicle A. As this step is not
mandatory it can be omitted. Alternatively, depending
on the prediction model used, feature selection can also
be implicitly carried out by the learning algorithm itself,
like in LASSO [6] regression or CART [7].

IV. Prediction: The selected behavior model takes the set
of features F ′

i as input and predicts the considered
vehicle’s behavior for a specified time span.

The challenge in developing a suitable learning algorithm
is that three aspects have to be learned at once, which are
furthermore highly interdependent. Besides D also the fea-



ture selection sn(F ) and behavior prediction models bn(F )
need to be learned. Note that learning D is equivalent to
learning h(F ) as D is fully determined by h(F ) and its
possible outputs.

For the given learning problem there exists no closed form
solution, that is why our algorithm works in an iterative and
alternating manner, which is detailed in the next section.

III. BEHAVIOR MODEL LEARNING BASED ON
VELOCITY PROFILES (BMLVP)

A. Target function

At first the target function for learning will be developed.
The overall goal of the BMLVP algorithm is to minimize the
total error e between estimated behavior and actual behavior
for observations i. A behavior is represented by a velocity
profile that is denoted as V and V̂ for actual and estimated
velocity profile, respectively:

e =
∑
i

||Vi − V̂i||2 (1)

A profile consists of thirty entries that describe the velocity
of the considered vehicle for the next three seconds, sampled
at 10 Hz. Time is denoted as t ∈ {1, ..., 30}. So Equation 1
can be rewritten as

e =
∑
i

∑
t

||Vit − V̂i(t)||2 (2)

The predicted velocity profile V̂i is obtained from con-
secutively applying sn(Fi) → F ′

i and bn(F
′
i ), where n

is chosen according to the output of the driving situation
assignment function h. One possibility to define h is to adopt
the specification given above where

h(Fi) : F → Dn ∈ {D1, ..., DN} (3)

In this case h resembles a classifier, which leads to a prob-
lem: This classifier can not be trained because ground truth
information is unavailable as D is unknown itself. Therefore
a different approach is taken where observations are directly
assigned to driving situations using an assignment matrix H .
The matrix H is of order I ×N with

Hin = p(Dn|i) with
∑
n

Hi = 1 (4)

denoting the probability of the i-th observation to belong
to driving situation Dn. The advantages of this representation
will become clear later. Equation 2 then becomes

min
H,b,s

∑
i

∑
t

||Vit −
∑
n

Hinbn(sn(Fi), t)||2 (5)

The predicted velocity profile V̂ in Equation 2 is replaced
by a sum term. The prediction for the i-th observation
assuming the n-th driving situation is obtained by applying
the prediction model bn to the subset of features obtained by
the selection function sn(Fi). This prediction is weighted by
Hin. The predicted velocity profile V̂i is thus the weighted

average of the predictions provided by the individual behav-
ior models. Note that we are interested in explaining each
observation by a single behavior model that is why we will
use an update rule that converges to a single one and n− 1
zeros in each row of H .

The definitions of b and s will be given in the following
subsection.

B. Feature Selection and Behavior model

A velocity profile consists of thirty individual values, one
for each time step in the prediction horizon. It is possible to
take a non-parametric approach for their representation and
learn regression models that predict the velocity for each time
step individually. The drawback is that this method would
hardly be able to exploit the smoothness of velocity profiles,
which comes from the fact that vehicles are physical systems
and their movement is subject to inertia. It is therefore
reasonable to model a profile by a smooth function. An
example of such a function is

vi(t) = vi0 + ai1t+ ai2t
2 (6)

which can also cope with non-linear velocity profiles. In
order to obtain invariance towards the initial velocity v0 it
can be reduced to

vi(t)− vi0 = ai1t+ ai2t
2 (7)

Despite its simplicity this representation works well as it
will be shown in Section V.

The two parameters a1 and a2 are independently learned
via multiple linear regression

aij = βj0 + βj1f1 + ...+ βj|Fi|f|Fi| (8)

for j ∈ {1, 2} with βf denoting the regression coefficients.
The behavior model for the n-th driving situation is obtained
by inserting Equation 8 into Equation 7

bn(Fi, t) = (

|Fi|∑
k=0

β1nkfik)t+ (

|Fi|∑
k=0

β2nkfik)t
2 (9)

where fi0 is defined as 1 for providing the intercept of the
regression. Note that a behavior model is uniquely defined
by the vectors ~β1 and ~β2 of its regression coefficients.

Linear regression was chosen over other regression meth-
ods mainly due to its computational efficiency but also due
to its ability to handle weights for observations. The need
for handling weighted observations arises from the property
that the assignment matrix H acts as a weight matrix, and
is treated as such in the update rules presented in subsection
C.

The functions s for selecting subsets of features F ′
i are

realized by a matrix S of size N × |Fi| with

snk =

{
1 if fik ∈ F ′

i for Dn,
0 otherwise.

(10)



The predicted velocity profile V̂i(t) is therefore obtained
by

V̂i(t) =
∑
n

Hin

(

|Fi|∑
k=0

snkβ1nkfik)t+ (

|Fi|∑
k=0

snkβ2nkfik)t
2


(11)

C. Minimization algorithm

Minimizing the total error e between estimated and actual
behavior requires the simultaneous adaptation of assignment
matrix H , feature selection matrix S and regression co-
efficients β. As for this optimization problem no analytic
solution exists an iterative, alternating algorithm is employed,
which is inspired by the EM-algorithm [8]. The overall work-
ing principle is randomly initializing H and then sequentially
updating β, S and H .

The update rule for β is a straightforward weighted linear
regression

βjn = (FT ~HnF )−1FT ~Hn~aj (12)

where ~Hn denotes the n-th column of matrix H . Note
that H is used as the weight matrix which allows to neglect
observations that are improbable to belong to the regarded
driving situation and vice versa.

Due to the property that no gradient for S can be computed
the update is accomplished based on an exhaustive search
on all pairwise swaps of entries. A swap is performed by
exchanging a 1 and a 0 for the same feature. For each
possible swap the resulting model error e′ is computed and
compared to e when using the original S matrix. If e′ of
the best possible swap is lower than e then S is updated
accordingly, otherwise S remains unchanged.

The entries of the assignment matrix H are updated
according to an observation’s model error for the individual
behavior models.

pin =
Hin

ein
(13)

win =
pin∑
n H

′
in

(14)

H ′
in = l × win + (1− l)×Hin (15)

The current probability of the i-th observation in the
assignment matrix is divided by its error using the n-th
behavior model (Equation 13) and normalized (Equation 14).
The parameter l acts as the learning rate and controls the
impact of an update (Equation 15). Note that due to the
multiplication in Equation 13 the rows of H converge to
a vector with all zeros and a single 1, which is a desired
property.

As the update rules for β and H ensure that the total
error e is decreased and the update of S at least maintains
it, each iteration is guaranteed to improve e. As the error
converges asymptotically to a certain value, the criterion
used for stopping the minimization procedure is based on
the relative improvement compared to the previous iteration.

D. Application to unseen data

In section B it was stated that learning classifiers h,
which map observations to driving situations based on the
observation’s features (see Equation 3), is not feasible. In-
stead the proposed BMLVP algorithm maps each observation
individually to a driving situation. The question is now how
new observations that were not part of the training data can
be assigned to driving situations. The natural solution that
we use is to learn the classifiers after the algorithm has
converged, where the ’correct’ driving situation di is simply
taken from each observation’s highest entry in the assignment
matrix H .

di =n| Hin = max
m

Him (16)

IV. EVALUATION
The BMLVP method proposed in this paper aims at

identifying those driving situations for which holds that
vehicles in the same situation behave according to the same
model. We pursue two goals with our algorithm: First, to be
able to identify driving situations comparably or better than
a human expert, as the latter can potentially be subject to the
bias of human introspection. The second goal is to allow for
learning behavior models from unlabeled data.

Unfortunately the first goal is difficult to evaluate, as
whenever the algorithm outperforms a human expert it is
hard to rule out the possibility that the expert simply lacks
the required skills for identifying driving situations correctly.
We therefore take a slightly different approach and use for
a comparison ground truth taken from CarD, a microscopic
traffic simulator, presented in [9]. The intuition behind this is
that in the simulator vehicles are modeled as agents which
follow at each time step one out of four behaviors based
on their current driving situation. By using the simulator the
actual driving situations are thus known and can be compared
to the ones identified by the proposed method. A good result
would be either a high match between identified and actual
driving situations or if the behavior prediction error of the
learned models excels the prediction error of models learned
based on the simulator’s ground truth.

The degree to which the second goal is achieved - learning
behavior models from unlabeled data - is in turn directly
quantifiable: By assessing the algorithms performance on
a real-world dataset where no labels for the actual driving
situation are given. A dataset recorded from inner-city driv-
ing is used that was first presented in [10]. The total error
in the behavior prediction using the BMLVP algorithm is
compared to the error resulting from a baseline algorithm
and a state of the art regression algorithm. The baseline
algorithm computes the predicted velocity profile from a
straightforward extrapolation of the current dynamics of the
vehicle. The state of the art regressor used is a Random
Forest Regressor [11] which takes all features as inputs and
returns predicted velocities. The algorithms will be referred
to as BASELINE and RFR, respectively.

For driving situation recognition and behavior prediction
a set of 10 variables is used. Note that ’target car’ refers to



the currently considered vehicle for which a recognition or
prediction is performed.

• Velocity (VEL): Velocity of target car in m/s
• Acceleration (ACC): Acceleration of target car in m/s2

• Traffic light distance (TLD): Distance to the stopping
line of the next, relevant traffic light in m

• Traffic light state (TLS) : State of next, relevant traffic
light. 1 if green, 0 otherwise

• Car ahead relative speed (CAS): Relative velocity be-
tween target car and its leading car in m/s

• Car ahead distance (CAD): Distance between target car
and its leading car in m

• Car ahead TTC (TTC): Time to contact between target
car and in ts leading car in s

• Intersection distance (ID): Distance to the entry point
of the next intersection in m

• Major Road (MJ): Whether target car is driving on a
major road (1) or minor road (0).

• Time (TIME): (RFR only) Time instance for which the
velocity is predicted in s. Values are 0.1, 0.2, 0.3...3.0

The features TTC, ID and MJ are only available for the
simulated data and are thus not used for the evaluation on
the real-world dataset.

The simulated data was obtained by running the micro-
scopic traffic simulator for about 40 minutes on an urban
intersection scenario as shown in Figure 2.

Fig. 2. Top view on the simulated intersection in the microscopic traffic
simulator CarD.

At a rate of 20 Hz for each vehicle in the simulation
all features and the retrospectively obtained velocity profile
were recorded including the driving situation as perceived
by the corresponding agent, resulting in 35506 observations.
The first 8000 observations were used for training and the
remaining ones for testing. The evaluation of the benefits
from learning driving situations from data is performed by
training two models using BMLVP. The first model, tagged
BMLVP-Sim, omits learning H but takes the ground truth
information of the actual driving situation to specify H . The
second model, tagged BMLVP-Orig is learned as described
above.

From the real-world dataset the first 15 minutes were used
for learning and the remaining 14 minutes were used for
testing. Note that though the features are taken from the ego-

vehicle only they can also be obtained from other road users
using nowadays sensor systems.

As evaluation metric for velocity profiles the Mean Sum of
Squared Errors (MSSE) as given in Equation 1 is used. The
match between learned and actual driving situations on the
simulated data is determined by the purity measure, which
was presented in [12].

For all experiments BMLVP’s learning parameter l was
set to 0.1 and the algorithm was stopped if the relative
improvement r after an iteration was less than 1%.

V. RESULTS

In Table I the minimum, mean and maximum purity are
given for 64 runs of BMLVP on the simulated dataset. The
average purity is 0.63 which means that the assignment of
observations to driving situations differs noticeable when the
driving situations are learned versus when they are taken
from the simulator’s ground truth. The BMLVP algorithm
identifies significantly different driving situations than which
are actually used by the agents in the simulator.

TABLE I
MATCH BETWEEN LEARNED DRIVING SITUATIONS AND SITUATIONS

USED BY THE SIMULATOR’S AGENTS.

Purity
Min Mean Max
0.38 0.63 0.80

However, having a high match is neither necessary nor
advantageous for the learned driving situations, as it is shown
in Figure 3.

Fig. 3. Learned driving situations outperform the simulator’s driving
situations in prediction accuracy.

Here the results of the two models with the lowest training
error are plotted. The average prediction error over time
rises significantly faster for behavior models based on the
simulator’s actual driving situations (BMLVP-Sim) than the
prediction error of behavior models based on learned driving
situations (BMLVP-Orig). This result indicates that even
when the ’correct’ driving situations are known an approach
that is based on learning can be beneficial. It can be assumed
that the learned driving situations capture specific feature



constellations that are more relevant for the future behavior
of a vehicle than the feature constellations that are used to
determine the current behavior of an agent.

The evaluation on the real-world dataset also confirms the
benefits of BMLVP. In Figure 4 the velocity prediction error
over time is given; it shows that BMLVP is significantly
more accurate than BASELINE and RFR. The unexpected
bad performance of the random forests is due to the fact that
training and test set were split by time stamp and thus have
considerably different statistics. When training and test set
are split randomly over the whole dataset then RFR performs
better, but this is an unrealistic scenario for a method used
in a driver assistance system.

Fig. 4. Prediction error using BMLVP on the real-world dataset excels
both BASELINE and Random Forests (RFR).

In the evaluation on the real-world dataset five driving
situations were learned on the training set, which took about
three hours on a single 3.2 GHz CPU. While the learning rate
l and the stopping criterion r are parameters of BMLVP that
simply trade computation time against accuracy, the single
relevant parameter is the number N of driving situations to
learn. Like in other methods the higher the number of N is
chosen, the better the algorithm can adapt to the training set.

Fig. 5. The choice of the number of learned driving situations N affects
the overall performance only slightly for N > 3.

Eventually increasing N decreases the learned models
accuracy on unseen data, so a kind of regularization will
be needed, which is subject to future research. Nevertheless,

at least on the dataset used, N is no critical parameter as
long as it is above 1. This is depicted in Figure 5 where
the number of learned driving situations is plotted against
the total model error on the test set. While learning only
a single driving situation leads to a high model error the
improvement by using more driving situations than two is
rather moderate.

VI. CONCLUSION AND FUTURE WORK

In this paper a novel approach for learning driving situa-
tions and behavior models simultaneously from data has been
proposed. It is based on the idea that the driving situations
defined by human experts might be subject to unwanted bias
or inadequate for a prediction task. Even if an expert would
be always correct, supervised learning behavior models from
data requires a time-consuming labeling of the data set.

The method we propose is inspired by the EM-algorithm
and allows to identify these driving situations for which the
corresponding behavior models anticipate the velocity pro-
files of other road users most accurately. On both simulated
and real-world data we show that our approach learns driving
situations with competitive behavior models.

The prediction model we use is based on a simple linear
regression. We plan to replace this model by more powerful
methods to improve the prediction accuracy further. At the
same time extensions for achieving regularization will be
investigated.
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