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Abstract— Intersections are among the most complex traffic
situations that motorists encounter, which is reflected by the
fact that in Europe more than 40 percent of accidents resulting
in injury occur at intersections. In order to support the driver
in crossing an intersection an advanced driver assistance system
is required to predict the behavior of other drivers, like
acceleration and braking maneuvers, as accurately as possible.
Such a prediction is a challenging task when considering
the complexity and variability of situations encountered at
urban intersections. We propose to tackle this problem using
a two-staged approach. In the first stage the situation is
decomposed into small, more manageable sets of related road
users to prevent a combinatorial explosion of possibilities. For
each set the road user’s driving situation is estimated. In
the second stage the velocity profiles of all road users are
predicted, taking advantage of the previously estimated driving
situation by employing prediction models that are specific to the
situation type. The proposed method is evaluated on a simulated
intersection situation where the two-staged approach clearly
outperforms prediction methods that work without assessing
driving situations first. We also show qualitative results on real-
world data that confirm the benefits of our approach.

I. INTRODUCTION

Crossing a busy intersection belongs to the most challeng-
ing tasks during everyday driving. In order to safely cross
an intersection a driver needs to take numerous other road
users into account, consider their interactions and predict
their future behaviors. The complexity of this task provokes
driver errors, which results in a significant amount of acci-
dents occurring at intersections. Advanced driver assistance
systems (ADAS) can help to prevent such type of accidents
by supporting the driver in the assessment of situations and
issuing warnings when upcoming conflicts are predicted.
In order to arrive at a comprehensive prediction a high
number of possibly relevant entities like vehicles, pedestrians
and traffic lights has to be taken into account. But the
more entities are considered the more complex a suitable
prediction model will become - up to a point where the
combinatorial explosion of possible future states renders
the required computations infeasible. Instead of employing
a single, all-encompassing prediction model an apparent
alternative solution is to predict the behavior of each road
user individually, taking only its relevant surrounding into
account. While this solves the problem of combinatorial
complexity it poses a new challenge: Determining what the
relevant surrounding entities are.
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In recent years an increasing amount of research has been
carried out to tackle the problem of situation assessment
and behavior prediction. Approaches have been proposed for
both sub-problems. Related works can be coarsely divided by
their primary goal, namely recognizing specific maneuvers
[1], [2], inferring driver intent of a vehicle approaching
an intersection [3], [4] or interpreting traffic situations as
a whole [5], [6]. In [1] the recognition and prediction of
turning maneuvers at an intersection is targeted and in [2]
behaviors like overtake and sheer out are predicted. Esti-
mating another driver’s intent is the goal in [3]; the authors
anticipate turning and stopping maneuvers of a preceding
vehicle. In [4] the intent estimation is additionally used to
derive a measure for the risk of the present situation. All of
the aforementioned works show good results; however, they
are tailored to a specific situation consisting of not more than
two vehicles. Opposed to that, the authors of [5] consider all
present entities and match encountered situations against a
predefined set of situation prototypes. While this approach
provides a more comprehensive situation assessment, its use
of case-based reasoning raises issues concerning stability.
The work presented in [6] employs description logic to
reason about the relations between cars approaching an
intersection. The authors report a successful inference of
possible conflicts but also a high computational complexity
for the reasoning process.

In this paper we argue that an accurate prediction of
the evolution of an intersection situation requires a two-
staged approach which combines situation assessment with
behavior prediction. In the first stage each vehicle’s driving
situation, determined by its relevant entities, are estimated.
Subsequently, in the second stage, based on the estimated
driving situation, the vehicles behavior is predicted. In order
to keep the behavior prediction for a vehicle computationally
efficient we limit the prediction to the vehicle’s future
longitudinal velocity profile, as recent works have shown
that it is an important cue for anticipating sudden stops
and detecting hazardous maneuvers [7], [3]. In quantitative
and qualitative evaluations we will show that our approach
leads to simpler, more accurate prediction models, maintains
computational feasibility and is superior to methods which
do without a previous situation assessment.

The remainder of this paper is structured as follows.
In the next sections the two-staged prediction approach is
introduced, with Section II-A describing the first stage’s
method for comprehensive situation assessment and Section
II-B detailing the velocity profile prediction. In Section III
the evaluation methods for both a quantitative analysis on
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simulated data and a qualitative analysis on real-world data
are given. The results obtained are presented in Section IV
and in Section V we give a brief outlook on future work.

II. PROPOSED APPROACH

In order to detect upcoming conflicts in time, driver
assistance systems for intersection scenarios have to predict
the evolution of the current situation with acceptable accu-
racy. As an all-encompassing prediction model incorporating
all entities at once will grow overly complex, performing
the prediction for road users individually appears to be a
more viable approach. For obtaining correct predictions the
individual road users must not be considered isolated from
their context but with respect to their role in the current
situation. Therefore, situation assessment is an essential part
of the prediction process and we propose to employ a two-
staged method.

The first stage aims at interpreting the present intersection
situation comprehensively. Such an interpretation is a chal-
lenging problem as intersection scenarios are often highly
variable and comprise a large number of relevant entities
that are also interdependent. To overcome the problem’s high
complexity a decomposition of situations into smaller parts
that are easier to handle has been suggested, e.g. in [8]
and [9]. The intuition behind the decomposition is that each
road user adapts its behavior according to a small set of
entities that are currently ’relevant’. An entity can be relevant
when for example its consideration is necessary to obey a
traffic rule - like a red traffic light - or to avoid risks by
keeping a safe distance to the car in front. A vehicle’s driving
situation can be estimated based on type and relationship of
its relevant entities, as depicted in step 1 of Figure 1.

In a second stage the velocity profile of each vehicle is pre-
dicted. This is accomplished by employing situation-specific
prediction models which are selected based on the driving
situation estimation in stage one. The prediction model thus
needs to take only these entities into account that were
identified as relevant in the previous step. This lowers the
complexity of the prediction models and allows them to focus
on the important features for the prediction. The working
principle of the second stage and the prediction results are
illustrated in Figure 1 in steps 2 and 3, respectively.

In the following both stages are described in detail.

A. Driving Situation Assessment

As described above, situation assessment is accomplished
by decomposing the situation into its constituent parts, using
a method presented in [8]. In the cited work the parts that re-
sult from situation decomposition are termed configurations.
Each configuration consists of two entities:

• Reference entity: An affected entity, in our cases a
vehicle.

• Affecting entity: An entity that is relevant for the
behavior of the reference entity.

Fig. 1. Overview of the proposed system. At first for each vehicle its
driving situation is estimated. Based on this estimation a situation-specific
prediction model is selected which predicts the longitudinal velocity profile
of the vehicle.

The presence of a configuration is thus expressing a
behavioral dependency between two entities. A vehicle is
said to “be in a configuration X“ if it is the reference entity
in configuration X. An exemplary decomposition of a traffic
situation into its configurations is given in Figure 2.

For our analysis we considered three types of configura-
tions:

• Stopped by red traffic light (TL): The reference entity
has to slow down or stop in order to obey a red traffic
light

• Stopped by leading car (LC): The reference entity has
to slow down or stop in order to keep a safe distance
to a leading car

• Stopped by intersection (IS): The reference entity has
to slow down or stop in order to yield to a car with
right of way

Note that two cars in Figure 2 are in no configuration
(NC) which means that there is currently no entity present
that impacts their behavior. This type of driving situation
resembles free driving, where the driver’s behavior is mainly
determined by his own goals.

All configurations have in common that they specify a
decelerating maneuver. Such types of maneuvers have been
chosen as they are critical for the avoidance of e.g. rear-end
crashes and their causes can generally be inferred from the



Fig. 2. An exemplary decomposition of an intersection situation into
configurations. Each configuration contains an affecting and an affected
(reference) entity.

environmental and behavioral context like present obstacles
or applicable traffic rules. Additionally, obeying traffic lights,
respecting right of way and adapting the velocity to the
leading vehicle covers a broad share of everyday driving
behaviors.

The structure of each configuration is specified by experts
while its parameters are learned from data. The structure
comprises a label and involved entities including their rela-
tions. Relations serve as features for detecting the configura-
tion and can both be (dynamic) states like Velocity and Traffic
Light State or relative measures like Distance. The structure
of a configuration consists mainly of relational data which
is one of the reasons why configurations are specified using
graphs, like the one shown in Figure 3.

Velocity Acceleration

Distance
Relative

Velocity

StoppedByLeadingCar

Reference Car Leading Car

Fig. 3. A schematic representation of the configuration “Stopped by leading
vehicle”. It contains both unary relations (Velocity, Acceleration) as well as
binary relations (Relative Velocity, Distance).

Another reason for choosing graphs is that they can be
conveniently mapped to Bayesian Networks [10], which
serve as classifiers for recognizing configurations. Bayesian
Networks have many desirable properties like the ability
to model sensor noise and to cope with missing features.
Furthermore their probabilistic nature can be exploited to
significantly decrease the complexity of situation assessment
[11]. The parameters of the Bayesian Network, its Condi-
tional Probability Tables, are learned from training data.

B. Velocity profile prediction

The second stage in the targeted situation prediction
system is concerned with predicting the velocity profiles of
vehicles with the aid of their previously estimated configu-
ration.

In this paper a velocity profile comprises a prediction hori-
zon of 3 seconds that is discretely sampled at 10 Hz, yielding
30 individual values. For each of the considered configura-
tions plus the case of no configuration a separate prediction
model is learned, denoted as PTL, PLC , PIS , PNC . The
prediction models take the current dynamics of the vehicle
and, with the exception of PNC , additional configuration
specific features as input, and return the predicted velocities
for the next 3 seconds. In the following the implementation
of the prediction models will be detailed.

All models employ Random Forest Regressors [12] as
prediction method. Random Forest Regression is a state-
of-the-art regressor that is known for its robustness against
overfitting. In a first step, in order to verify the method’s
suitability for velocity profile prediction its performance
was compared to models using Multiple Linear Regression
(MLR). As Random Forest models excelled even complex
MLR models significantly they were selected as prediction
method.

Altogether, 7 features are used as independent variables for
the prediction process which are described in the following.
Note that ’target car’ refers to the vehicle for which the
velocity profile is predicted.

• Velocity (VEL): Velocity of target car in m/s
• Acceleration (ACC): Acceleration of target car in m/s2

• Traffic light distance (TLD): Distance to the stopping
line of the next, relevant traffic light in m

• Car ahead relative speed (CAS): Relative velocity be-
tween target car and its leading car in m/s

• Car ahead distance (CAD): Distance between target car
and its leading car in m

• Intersection distance (ID): Distance to the entry point
of the next intersection in m

• Time (TIME): Time instance for which the velocity is
predicted in s. Values are 0.1, 0.2, 0.3...3.0

Each of the four prediction models uses a proper subset
of these features. The reasons are twofold: Firstly, some of
the features might not be present at all, for example if there
is no traffic light ahead. Secondly, and more importantly, a
major benefit of using configuration-specific models is that
these models can be limited to the currently relevant features.
This does not only lower the complexity of the prediction
models but also aids the corresponding learning algorithm
in focusing on the important attributes. Table I lists the four
prediction models along with their incorporated features.

A close examination of the training data revealed that some
features exhibit strong interactions, for example the relative
speed of the car ahead (CAS) varies in its impact on the
velocity profile depending on the distance to it (CAD). Other
features again show for certain prediction models nonlinear,
mainly quadratic relationships with the velocity profile. In



order to aid the Random Forest Regressors in capturing these
characteristics the prediction models PTL and PLC use non-
linearly transformed and multiplicatively combined features
as input. For the other models transformations offered no
significant gain in accuracy and so they use their features
directly.

The most important parameters for adapting the Random
Forest algorithm to a given problem are the number of trees
learned and their maximal allowed depth. Based on the
results of a grid search the number of trees is set to 400
and the maximal depth to 8.

III. EVALUATION

In the evaluation the gain from combining situation as-
sessment and prediction is investigated. The investigation ad-
dresses two questions: Firstly, does the two-staged prediction
process improve prediction accuracy significantly? Secondly,
what is the gain of a preceding situation assessment by itself?
The second question aims at determining whether driving
situations with the same estimated configuration share a
common quality that can be exploited. If this is the case
then the performance of situation-specific prediction models
will be superior to a general prediction model, even if they
are limited to the same set of features.

Both questions were addressed in a quantitative evaluation
where data was obtained from a microscopic traffic simulator.
Afterwards we present a qualitative analysis that gives an
outlook on the applicability of the methods to real-world
situations.

In each of the evaluations the goal is to predict the velocity
profiles of all vehicles currently present in a scene. A velocity
profile consists of 30 velocity values representing a vehicle’s
velocity for the next 30 time steps, where each time step lasts
0.1 seconds. As error measure the sum of squared distances
is used, so that the prediction error e between a predicted
profile V̂ and the actual profile V is:

e =
30∑
i=1

(V̂i − Vi)
2 (1)

A. QUANTITATIVE ANALYSIS ON SIMULATED DATA

Data for training and testing is generated using a micro-
scopic traffic simulator presented in [8]. In this simulator
each vehicle is controlled by an autonomous agent which
actively perceives its environment to select behaviors ac-
cording to its goals, i.e. arriving at a target position. The
implementation gives access to the agent’s decision level

TABLE I
FEATURES USED BY THE FOUR PREDICTION MODELS.

Prediction model VEL ACC TLD CAS CAD ID TIME
PTrafficLight x x x x
PLeadingCar x x x x x
PInterSection x x x x
PNoConfiguration x x x

by which the information “Which entity lead to the agent’s
behavior?” can be obtained. This information serves as
ground truth for the vehicle’s current configuration.

The simulated scenario comprises a 4-way intersection
consisting of a major road with two lanes in each direction
that is crossed by a minor road with a single lane in
each direction. The intersection is signalized. The simulation
creates for each present vehicle at each time instance an
individual data sample containing the vehicle’s state, its
configuration and all the features needed for configuration
recognition and velocity profile prediction. As the simulation
runs at 10 Hz and simulates on average about 20 vehicles
at a time a large number of samples is generated in short
time. A run of the simulation was recorded and split into
training and testing set, yielding 15361 samples for training
and 7084 samples for testing.

Fig. 4. The simulated intersection as visualized by the CarD microscopic
traffic simulator. Traffic lights are not in scale.

In order to answer the first question and evaluate the
gain of a two-staged approach its prediction accuracy is
compared to two other methods which we term KINEMATIC
and PREDONLY. This part of the evaluation estimates the
benefit of the proposed model. KINEMATIC serves as a
baseline model for judging the difficulty of the prediction
task. It predicts the future velocity profile by a straightfor-
ward physical extrapolation from the current velocity and
acceleration. The predicted velocity V̂i for time step i given
the current velocity v0 and acceleration a0 is thus:

V̂i = max(0, v0 + i ∗ a0) (2)

Note that the max operator prevents the generation of
negative velocities.

The PREDONLY model uses also velocity and acceleration
as inputs, but in contrast to the KINEMATIC model it is
learned from the data using a Random Forest, as described
in section II-B. This enables the model to capture various
characteristics present in the training data, like typical ac-
celeration and deceleration behaviors or maximally allowed
speed.

The two-staged prediction model proposed in this paper
will be referred to as TWO-STAGED. For its configuration-
specific prediction models the recorded ground truth of a



vehicle’s configuration is only used for training. During
testing the configuration is estimated based on recorded
features and using the same Bayesian Network as in [8].
Based on the recognized configuration the corresponding
prediction model is selected for predicting the velocity
profile. The configuration estimation is thus prone to two
sources of error for which the overall performance of the
two-staged approach has to compensate. A wrong estimation
leads to the selection of an inappropriate prediction model
which will provide a different profile than the correct model.
Additionally, vehicles might change their true configuration
during the prediction horizon, for example if a formerly red
traffic light turns green. This error, however, affects the other
prediction methods as well.

If the TWO-STAGED method performs better than the
other models it could be attributed to the fact that it uses more
features. Though this possibility does not lower the methods
usefulness it would be interesting to quantify the benefit of
a preceding situation assessment itself. This is accomplished
in the second part of the evaluation, where two methods with
the same number of features are compared.

For this comparison the PREDONLY model is com-
pared with a variant of the TWO-STAGED method, where
all configuration-specific features are left aside. Thus the
method uses solely the two features VEL and ACC as
PREDONLY does. We refer to this stripped-down method
as TWO-STAGED BASIC.

B. QUALITATIVE ANALYSIS ON REAL-WORLD DATA

In this analysis the approach is evaluated on exemplary
situations taken from a real-world data set. The data set con-
tains 29 minutes of recordings from a test vehicle equipped
with video cameras and two laser scanners driving in an
urban environment.

In the selected situations the ego vehicle is approaching
a signalized intersection. There are four variations of this
situation: The relevant traffic light can be red or green and
there can be another vehicle driving ahead or not. Based on
the data obtained from lidars, cameras and CAN bus the ego
vehicle’s velocity and acceleration and, if present, distance
and relative speed of a leading vehicle are obtained. The
traffic light distance is obtained by integrating the velocity
backwards from the manually labeled point in time when the
vehicle reaches the stop line. A more detailed description of
the data and the feature extraction algorithms used can be
found in [13].

For this part of the evaluation the prediction performance
of KINEMATIC, PREDONLY and TWO-STAGED for three
exemplary situations from the data set is compared. The
configuration estimation for both training and testing data
is obtained from the Bayesian Network that was learned on
simulated data for the quantitative analysis. We are aware that
in general simulated traffic data can not be used for learning
real-world models but we expect that for this restricted
approaching scenario it will be sufficient. Because the IS
configuration can not be detected due to the limited viewing
angle of the sensors used, only NC, LC and TL are modeled.

For a meaningful quantitative evaluation the configuration
estimation would have to be learned from the real-word data
sets. As this is subject to future work we here assess the
performance of the proposed method qualitatively.

The Random Forests for Velocity Profile prediction were
learned on 14 minutes of the data set and tested on the
remaining 15 minutes. For the qualitative analysis three
situations, one for each configuration, were selected. The
selection was based on the goal to present both advantages
and challenges of the proposed method. For the selected
situations the velocity profiles predicted by the three methods
are compared.

IV. RESULTS

The results of the quantitative evaluation are shown in
Table II. In order to facilitate the comparison between the
evaluated methods the relative overall velocity prediction
error is given, which was obtained by dividing through the
overall error of PREDONLY.

TABLE II
RELATIVE VELOCITY PREDICTION ERROR

Method Relative error
TWO-STAGED 0.79
TWO-STAGED (BASIC) 0.93
PREDONLY 1
KINEMATIC 1.8

The relative prediction error of the baseline method KINE-
MATIC is nearly a factor 2 higher than for the learned PRE-
DONLY method, which shows that the trivial extrapolation
of vehicle dynamics as performed by KINEMATIC is not
sufficient for an accurately predicted velocity profile. The
proposed approach, which considers configuration informa-
tion, is in turn 21% better than the PREDONLY method,
which neglects this information. To provide an impression of
the performance the mean prediction error over time, relative
to the actual velocity, is given in Figure 5(a).
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Fig. 5. The relative prediction error over time is lowest when employing the
proposed two-staged method (a), even if no configuration-specific features
are used (b).

The plot shows that the KINEMATIC method looses track
of the actual velocity already after one second, while the
other two methods remain accurate for the first two seconds
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Fig. 6. Camera images of three exemplary driving situations and the
corresponding predicted and actual velocity profiles.

of the prediction horizon. While PREDONLY and TWO-
STAGED are hardly discernible for the first 1.3 seconds the
proposed method exhibits a significantly less steep rise in
prediction error for longer horizons. While on the first look
the relative prediction errors of the three methods seem to be
too low to actually make a difference a closer look reveals
that they actually do: Firstly, about 20% of the training cases
contain a stopped car for which the velocity prediction is
trivial and so the mean relative error is greatly reduced. Sec-
ondly, and more importantly, the proposed method performs
far less severe mispredictions than the other methods: When
integrating the predicted velocity profiles to obtain a future
position it shows that KINEMATIC is out by more than an
average car length (4 meters) in about 19% of cases and
PREDONLY is out in 10% of cases while this happens for
the TWO-STAGED method only in 5%.

In the second part of the quantitative evaluation the pure
benefit of combining situation assessment and prediction was
examined. The second row in Table II shows that using
configuration specific prediction models (TWO-STAGED BA-
SIC offers a 7% increase in prediction accuracy even if the
specific prediction models are limited to the same features
that PREDONLY uses. The relative error plot given in Figure
5(b) confirms that a two-staged method provides an increased
benefit for longer prediction horizons.

An important finding of the quantitative evaluation is
that the significant gain in performance from TWO-STAGED
BASIC to TWO-STAGED was accomplished by using only
one to two additional features. This means that the situation
assessment in the first stage accomplished to identify the
relevant determinants for future behavior which could then
be used to improve prediction performance.

For the qualitative analysis three exemplary velocity pro-
files, one for each considered configuration, are given in
Figure 6. Additionally the camera image at the time the
prediction was made is given.

The predicted velocity profiles for the No Configuration
situation match the actual velocity profile closely for all but
the KINEMATIC method. This demonstrates that a straight-
forward extrapolation becomes very inaccurate for longer
time horizons, which is also confirmed in the other two
examples.

The Stopped by leading car situation is also quite ac-
curately predicted, though the error is noticeably higher.
Nevertheless the TWO-STAGED method is able to predict the
course of the profile better than the PREDONLY method.

The predicted velocity profiles for the third example, a
Stopped by red traffic light driving situation, show an impor-
tant challenge of velocity profile prediction: After 1 second
the traffic light turns green and all the prediction methods
naturally fail to anticipate this state change. While traffic
lights are an evident case of sudden, significant changes to
the driving situation there are many possible scenarios where
such a change can be triggered. A challenge for driving
situation specific prediction models will be to capture also
the possibility of a change in the driving situation during the
prediction horizon.

V. CONCLUSIONS AND FUTURE WORK

In this paper an approach for predicting the evolution of
complex traffic situations has been presented. The proposed
method first assesses for each individual vehicle its driving
situation and uses this information to select the correspond-
ing, specific model for predicting its future velocity profile.
Both an extensive quantitative evaluation on simulated data
as well as a qualitative evaluation on real-world data confirms
the benefits of the proposed method.

The working principle of the proposed two-staged system
can be interpreted as the consecutive application of two
models: one classifier for the configuration recognition and
one regressor for the velocity profile prediction. It could be
argued that this can be replaced by a single regressor that
uses all of the features of both models as inputs. While
such a single regressor is advantageous in case sufficient
training data is available to cover the now larger state space
adequately there are multiple objections to this approach.
Besides increasing the complexity of the learning task sub-
stantially it also hinders the use of selective perception
methods. Such methods, where in each time step only the
currently most informative features are measured, are able



to save valuable computational resources of online systems
[11].

In future work the applicability to a real-world system will
be further investigated. In order to cope with configurations
changing during the prediction horizon an additional predic-
tion model on configuration level will be examined. Further
research directions are the inclusion of more configuration
types and obtaining the ability to learn the configuration
estimation models from real-world data.
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