
Finding People in Home Environments with a Mobile Robot

Michael Volkhardt and Horst-Michael Gross1

Abstract— Mobile robots assisting people in their apartment
are subject to recent research efforts. To provide useful services
a robot must be aware of the position of the user. Since
the sensors of a robot have a limited field-of-view, the user
is easily lost once he or she leaves the robot’s vicinity. This
paper proposes a method to search and locate a person that
is distant – probably in another room – by driving through
the apartment and checking for people. We apply restrictive
as well as computationally expensive detection methods on-
demand to verify the hypotheses of a real-time person tracker.
Additionally, the search-tour of the robot is guided by an
occurrence probability histogram of previous positions of the
user. The system has been tested by evaluating accuracy and
time the robot needs to find a user in a 3-room scenario.

I. INTRODUCTION

The development of mobile companion robots assisting
users in domestic environments is a long-term goal of recent
research efforts [1]. These robots can support, entertain,
or help elderly people to live independently for as long
as possible in their homes. Supporting users in their daily
routine and increasing their quality of life with intelligent
tools could become a major challenge in modern society.
Mobile robots can add an additional benefit to the solution
of this challenge by providing services that cannot be done
by human care-givers – either due to time or cost restric-
tions [2]. Since almost all services are built around human-
machine-interaction, the robot needs to be aware of the user’s
presence and position in the apartment. Commonly person
tracking systems are applied to detect and track people in
the proximity of the robot. However, in a daily scenario, the
user can easily leave the field-of-view of the robot, e.g. by
going to another room. When user interaction is required, e.g.
if a video-call comes in or a reminder has to be delivered,
the robot needs to drive through the apartment and look for
the user.

On its search tour, the robot should locate the user quickly
and accurately. A system that needs several minutes to
deliver an incoming video call or tries to interact with
false positive hypothesis is not acceptable. Therefore, we
improved the robustness of our person tracking system by
verifying hypotheses on demand with modules that cannot be
run in parallel all the time. These include a motion module,
that can only be applied when the robot is standing still, and
a computationally expensive partHOG detection module [3],
which needs several seconds to process one image. Second,
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we mark hypotheses that do not lead to a user interaction
as false positives and ignore them subsequently. Finally,
we developed a method to guide the search tour of the
robot by checking positions in the apartment with a high
user occurrence probability based on previous observations.
Because we aim for a practical solution, all methods run
in real time on the robot’s hardware. Note that we assume
that there is only one person in the apartment. Generally, the
method is not restricted to a single user. Since we do not use
any person recognition, the robot would then just find and
stop at the first user in sight. The remainder of this paper is
organized as follows: Section II summarizes related work in
the research area. Sec. III briefly presents our person tracking
system and Sec. IV addresses the search behavior of the
robot. Afterwards, Sec. V gives a description of experimental
results and Sec. VI summarizes our contribution and gives
an outlook on future work.

II. RELATED WORK

People detection and tracking are well-covered research
areas, and impressive results have been accomplished in
recent years. A huge amount of visual detection methods
originated from the field of pedestrian detection, each with
their own benefits and disadvantages (see [4] for a survey).
Recent approaches like [5], [6] achieve good results at frame-
rate by applying a soft-cascade, tuning features, sampling
the image pyramid, and by using ground plane constraints.
Note that pedestrian detection only covers a part of the
problem of finding people in their homes, e.g. related to
the variety of poses encountered. In contrast, [3] achieves
impressive results, given partial occlusion and varying poses,
but requires several seconds per image. In the field of mobile
service robotics, person detection in camera images mainly
focuses on the face [7] or the aforementioned pedestrian
detection methods. Additionally, most mobile robots are
equipped with a laser range finder (LRF) that allows the
detection of human legs [8].

Plenty of research has been done to develop methods for
people tracking on mobile robots in real-world applications.
Often, evaluation is done on pre-captured data and real-
time performance retreats into the background while the
main focus concentrates on tracking quality [9], [10], [11].
The method of [12] tracks people in real-time but requires
special hardware, like a stereo camera and a dedicated
GPU which are both not available on our mobile platform
[1]. Our practical solution uses well established methods
like HOG, motion, face, and leg detection, whose detection
quality is moderate compared to aforementioned cutting-
edge methods. This is mainly because our robot has limited
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processing power, which must be shared by other modules,
e.g. for navigation and interaction. Promising new detection
paradigms could not be applied in this work, because they are
only implemented in Matlab so far [5]. Note that we cannot
apply methods that depend on GPU [6] offline because the
robot directly reacts on the output of the people tracking
system.

To the best of our knowledge, there is very little work
on searching and finding people in home environments. In
a former work, we developed a method to search people by
checking predefined places where people usually rest, e.g.
chairs and sofas [13]. The appearance of an empty place
was learned using a multi-modal color model that captured
daytime and viewpoint. Furthermore, a similar color model
of the user’s clothes was learned. By comparing the current
impression of the place’s appearance to the model of the
empty place and the user model, a SVM decided if the place
was occupied by the user or not. The system was accom-
panied by a person tracker that helped to detect standing
and frontal sitting people. The search tour was guided by
external feedback of infrared motion sensors installed in the
apartment that gave a coarse location of the user. The method
has two main drawbacks: First the places had to be learned
in different illumination conditions and daytimes beforehand.
This training required that the user was not at home. Second,
the learned color model of the user and the place had to
differ. In this work, we follow a different approach and try to
enhance our person tracker by verifying hypotheses, lowering
false positives, and developing an intelligent search strategy.
This search strategy selects different points in the apartment
to drive to. We apply a greedy strategy, which selects the
navigation point that is closest to the robot or has the highest
probability of the user’s presence. The field of perception
planning offers more advanced exploration strategies to cover
the whole apartment that could be integrated in the future
[14], [15], [16]. We do not rely on infrared sensor hints as
they are not available in every apartment and often require
time-consuming installations.

III. PERSON TRACKING SYSTEM

Our probabilistic person tracking system fuses the output
of multiple detection modules. To detect people, we make
use of a persons’ legs, face, motion, and body-shape. The
leg detection module applies a boosted cascade of classifiers
in the range data of a laser range finder to classify segments
as legs [8]. Afterwards, pairs of legs are merged to positions
of people. The face detection system utilizes the well-known
AdaBoost detector of Viola&Jones [7]. Each time the robot
does not move, which is signaled by the robot’s odometry, we
apply a simple image difference detection. After thresholding
and a connected components algorithm, we get bounding
boxes of moving regions in the image. Furthermore, we
apply a full body and an upper body shape detector based on
Histograms of Oriented Gradients [17], [18] with a ground
plane constraint. Each module detects persons by different
body parts, e.g. the face, legs, or head-shoulder contour.
To facilitate fusion in the person tracker, we transform the
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Fig. 1. Overview of the processing steps of the person tracker.

detections to a world coordinate frame and align them to
a common reference point, i.e. position of the head [13].
New position observations are transformed into Gaussians
in 3D world representation and the positional uncertainty of
the detection is respected in the covariance of the Gaussian.
Figure 1 gives an overview of the person tracker and its
processing steps which are described below.

A. DATA ASSOCIATION

All detections within the last 100 milliseconds are sorted
by detection time and are processed sequentially starting
with the oldest one. First, all hypotheses in the tracker are
predicted up to the timestamp of the observation using the
prediction step of the used filter algorithm (Sec. III-B). Then,
the observation is assigned to the closest hypothesis in the
tracker if their Mahalanobis distance is below an empirically
set distance dmax = 1.5:

d = (µh−µd)
T (Ch +Cd)

−1(µh−µd) , (1)

where µh, Ch, µd , Cd are the mean and covariance of the
hypothesis and detection positions, respectively. Otherwise,
a new hypothesis is created.

1) Covariance Intersection: Occasionally, a sensor input
produces multiple detections on similar positions that would
be fused in the data association step by the tracker. Examples
are multiple bounding boxes of a visual detector that does
not apply non-maximum suppression or overlapping motion
detections. Assuming that those detections originated from
the same source, correlation between them is usually un-
known. In that case, a filtering algorithm, e.g. a Kalman
filter, would underestimate the covariance of the detection
by fusing all detections on the nearest hypothesis, because it
assumes independence of the measurement which does not
hold in this case. Therefore, we apply covariance intersection
[19] to fuse those detections to a single Gaussian:

C−1
3 = (1−ω)C−1

1 +ωC−1
2 , (2)

where ω is a weighting parameter that defines the influence
of the source covariances C1 and C2 on the resulting covari-
ance C3. It is set to:

ω =
|C1|

|C1|+|C2|
, (3)
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Fig. 2. Dependencies of modules involved in the search behavior.

which balances the influence of both covariances [19]. The
mean of the fused detection is calculated by:

µ3 = C3
[
(1−ω)C−1

1 µ1 +ωC−1
2 µ2

]
, (4)

respecting the covariances of the concerned detections.

B. FILTERING

Generally, we designed the person tracker as a framework
and allow any filtering algorithm that can use Gaussian
distributions as input and reflect its state as a Gaussian. As in
our former work [13], we apply a 6D Kalman filter tracker
that tracks the position and velocity of each hypothesis in
the system. The state space of a hypothesis is given by:

x = (x,y,z, ẋ, ẏ, ż)T , (5)

where x,y,z denote the 3D position and ẋ, ẏ, ż the 3-
dimensional velocity.

C. HYPOTHESES MANAGEMENT

The system comprises several mechanism to manage and
limit the number of hypotheses. First, the tracker merges
hypotheses with similar position and velocities. Second, it
prunes weak hypotheses by removing those with high posi-
tional covariance, i.e. those that are not observed anymore.
Third, hypotheses in walls or obstacles can be pruned by
using an occupancy map which is also used by the robot
for localization and path planning. Finally, the tracker can
ignore detections and prune hypotheses that lie on marked
areas of a so-called “ignore observation map” that is similar
to an occupancy map. This mechanism can be used to mark
areas where the privacy of the user should be respected, e.g.
in the bathroom. Furthermore, it is also used by the search
behavior to discard false positives.

IV. SEARCH BEHAVIOR
The previous section described how the robot can detect

and track people when they are in the field-of-view of its
sensors. In a typical home scenario, the user can quickly
go to another room and, therefore, easily leave the robot’s
detection range. As it is not desired that the robot always
closely follows the user, the robot needs a mechanism to
search a person in the apartment. Our dialog application of
the robot already makes use of a list of navigation points
defined by the user to send the robot to a location in the
apartment, e.g. near the couch or into the kitchen. Those
navigation points include the position and orientation of the
robot and are used to guide the search tour of the robot.

The general process and the dependencies between the
modules involved in the search process are shown in Fig. 2.

When the search behavior is triggered, the robot starts driving
to the closest navigation point using adaptive Monte Carlo
localization, E*-path planning and motion control based on
the dynamic window approach [1]. Once the robot reaches a
navigation point, it marks it as visited and chooses the next
closest one from the list. The navigation points serve as a
hint where to look for people. In Sec. IV-C we describe how
to improve the selection scheme. While the robot drives to
a navigation point, the search module checks for hypotheses
from the person tracker. When one or more hypotheses are
found, it stops and turns to the closest one and triggers
a verification process (Sec. IV-A). This verification labels
hypotheses as certain or uncertain. Usually the hypotheses
include strong true positives, i.e. detected by multiple sensor
cues, weak true positives, i.e. only observed by one cue and
false positive, i.e. either from a single or multiple cues. If
none of the hypotheses has been verified, the robot drives
closer to the nearest hypothesis and restarts the verification
process. If the hypothesis is still not verified, it is marked
as a false positive (Sec. IV-B), and the robot continues its
search tour. If a hypothesis has been verified, the robot
starts approaching it, which means driving very closely
while respecting the orientation towards it. Then the robot
waits some time for any input through the touchscreen,
which normally automatically happens if the user answers
to the robot’s interaction request. If an input is recognized
the search behavior ends. Otherwise, the hypothesis is also
marked as a false positive. This heuristics causes the robot to
eventually reach the user even if the verification mechanism
fails and verifies a false positive of the tracker.

A. HYPOTHESES VERIFICATION

The verification is triggered on demand each time the
search behavior wants to verify a hypothesis. We apply two
detection modules that cannot be run parallel to the person
tracker all the time. First, we use a computationally expensive
partHOG with a VOC2009 model [3], [20]. This module
reaches high average precision given partial occlusion with
the drawback of taking 4-5 seconds to process an image
making use of a parallel CPU implementation. For this time
the robot physically stops its tour and pauses some expensive
modules to allow fast processing of the image. The partHOG
module detects sitting and partially occluded people. Second,
because the robot is standing still, we can apply a motion
module similar to the one that is already used by the person
tracker. In contrast, this module also detects small motions
like people leaning towards the robot, turning their heads, or
waving with one hand. We noticed that these are all natural
movements of users to signal the robot to come closer.

Without this verification process, the robot would need
to drive to and approach every uncertain hypothesis of the
person tracker and wait for user input. Because the person
tracker occasionally produces false positives, the verification
process should significantly decrease the time it takes to find
the user in the apartment.
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Fig. 3. Person occurrence map overlayed on the occupancy map. Proba-
bility of person occurrence from blue to red (scaled for clarification). White
crosses - exemplary navigation points. Triangles - field of view of sensors
used to integrate person occurrence probability.

B. HANDLING FALSE POSITIVES

As stated before, hypotheses that are not verified by the
aforementioned process or by user input are marked as
false positives. We insert a rectangle region with a scenario
dependent width (2 m) around the hypothesis into the “ignore
observation map” (Fig. 2). Thus, the person tracker ignores
detections and prunes hypotheses in this region (Sec. III).
Hence, the robot can continue its search tour and look
for people in other areas of the apartment. Without this
mechanism the robot could endlessly wait in front of a,
possibly even verified, false positive. To prevent marking
too many areas in the apartment, we clear the regions after
a certain time, e.g. one search tour. This allows the person
tracker to detect people in those regions again.

C. PERSON OCCURRENCE MAP

The selection of navigation points in the search tour of
the robot can be enhanced if we select those points close
to positions that have a high probability of people’s occur-
rences. Therefore, a module estimates a person occurrence
probability map of the environment taking the hypotheses of
the person tracker into account. This map is encoded as a
2D histogram, where the bins represent discretized rectangle
areas of the apartment and each count in a bin signals a
hypothesis in this area. The robot cannot simply drive to the
bin with the highest probability because the destination might
lie in a wall or the field of view would not correctly cover
the area of the bin. Instead, the robot selects a navigation
point at which its field-of-view covers an area with a high
occurrence probability. Hence, we model the detection range
of the robot as a triangle with one corner on the position
of the navigation point and the perpendicular bisector of the
triangle corresponding to the orientation of the navigation
point (Fig. 3).

By integrating the area covered by the triangle in the
person occurrence map, we can calculate the probability of
a person’s occurrence for each navigation point. The robot
now selects the navigation point with the highest probability
instead of the closest one. Once it has checked the area, the
navigation point is labeled as visited and the second most
likely point is selected. By using this mechanism, the robot

16 m² 14 m²

10 m²
3m²

Fig. 4. Occupancy map of experimental environment with overlayed labels.
Blue - living room, green - guest room, red - kitchen, yellow - hallway.
White ellipses - location of user in experiments. White crosses with arrows
- navigation points with orientation.

first checks areas where the user was frequently detected in
the past. We expect that this significantly lowers the time
for finding the person, if the person still acts under the
distribution of the learned model. Of course, if the user is
in an unusual spot where he or she was rarely before, the
search-tour duration could be worse.

V. EXPERIMENTAL RESULTS

The operational area of the experiments is a three-room
scenario including a living and guest room, a kitchen, and a
corridor. Figure 4 gives an overview of the arrangement of
the rooms and their extensions. Furthermore, the navigation
points are given as crosses with an arrow indicating the
orientation of the robot. The location of the user in the
experiments is visualized by circles. The user was sitting
on two different locations on the couch in the living room,
on two arm-chairs in the guest room, one chair in the kitchen
that was moved around a table, and finally standing in the
hallway. The exact position and orientation of the user on
each location was slightly varied during the experiments.
Although, our person tracker only robustly detects people in
an upright position, with the enhancement presented above
it is possible to robustly find the user in a sitting pose as
well. This means that the tracker often produced an uncertain
hypotheses of sitting people, i.e. through legs or a single
HOG detection, and this hypothesis is verified subsequently.
There is a balcony behind the kitchen in Fig. 4 which is
separated by big windows. These caused frequent reflections
and motions from objects outside (cars, plants, clouds).

A. VERIFICATION

First, we evaluated if our verification mechanism does
improve the ability of the robot to find and locate the
person in the apartment. These experiments did not use the
person occurrence map to guide the search tour (Sec. IV-C).
Yet, all experiments include the handling of false positives
(Sec. IV-B). We divided the experiments into three parts
to test different methods. The first method does not apply
any verification mechanism (NoVer), the second method uses
only motion verification (MoVer) and the third method uses
the partHOG and motion verification (HoVer).
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TABLE I
SUCCESS RATE AND DURATION OF SEARCH TRIALS FOR DIFFERENT

METHODS. DURATION GIVEN FOR SUCCESSFUL TRIALS.

method suc. rate avg. t [s] max t [s] std t [s]

NoVer 0.72 53.1 146 43.9
MoVer 0.87 59.4 116 34.0
HoVer 0.91 55.5 115 34.6

To evaluate each method, we defined three starting lo-
cations for the robot to begin its search tour, i.e. in the
living room, in the guest room, and in the kitchen. The user
located itself on one of the six positions in the apartment
(Fig. 4). The search tour to each location is repeated three
times leading to 3× 6× 3 = 54 trials for each method. We
measured the success rate of the search behavior by counting
a successful trial if the robot correctly found, approached,
and stopped in front of the user, and the user was easily able
to reach the touchscreen to end the search tour. We counted
a failure if the robot did not find the user, did not approach
the user, hit an obstacle, or if the search tour took more
than 3 minutes. For comparison: the time the robots needs
to drive to each navigation point starting from the position
in the guest room without checking for any hypotheses is 80
seconds averaged over 5 trials.

The results of the trials are shown in Tab. I. The durations
to locate the user are only calculated on the successful trials.
The success rate of NoVer is significantly lower than MoVer
and HoVer. HoVer achieved a higher success rate compared
to MoVer, because the partHOG module detected sitting
persons that did not move or whose legs where occluded.
The most frequent reasons for failure in the trials (in order
of occurrence) were:

1) the robot hitting an obstacle in the rooms,
2) the search tour took more than 3 minutes,
3) the robot completely missed the user,
4) the robot did not verify the user.

The problem of hitting obstacles is significantly increased for
method NoVer because the robot does not verify hypotheses
and approaches many false positive, e.g. behind windows, on
tables, or cupboards. Although, the robot normally perceives
these objects and avoids them, occasionally it bumpers when
turning and navigating close to those obstacles. The second
problem only appeared when using the NoVer method (see
below). Missing the user occurred roughly equally likely with
all methods. This sometimes happened if the user was in an
unfavorable pose not sitting frontal to the robot’s camera or
with the legs occluded. Finally, when using the MoVer or
HoVer method, the robot might not verify a hypothesis by
motion or partHOG and ignores it as a false positive. Yet,
the verification failed only two times in the experiments.

The average and maximal duration of the successful trials
(Tab. I) are relatively large compared to the 80 seconds it
takes the robot to visit all navigation points. When using
NoVer, the duration is mainly increased by the robot ap-
proaching uncertain hypotheses and waiting for user input
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Fig. 5. Histogram of the search durations of the different methods

until finally marking this hypothesis as a false positive if
no input is given. When using MoVer or HoVer the robot
only turns to the hypotheses and verifies it. Yet, the robot
needs time to apply the verification modules. This results
in a slightly bigger average duration. This becomes most
apparent in trials, where the position of the user is close to the
robot’s starting location. There are less uncertain hypotheses
where the robot could save time by not approaching them.
Additionally, the robot needs time to verify the hypothesis of
the user whereas the NoVer methods just drives to it. On the
other hand, the maximum time and the standard deviation of
the verification methods is lower than when using the NoVer
method.

For further clarification, the difference in the duration of
all search trials is displayed as a histogram in Fig. 5. The
width of the bin is set to 30 seconds, and we plot the duration
counts for all three methods in the center of each bin. We set
the search time of all failure trials, e.g. also those where the
robot hit an obstacle, to 180 seconds which is equal to the
maximum time we allowed the robot to find the user. Hence,
the values in the last bin also include the unsuccessful trials.
The NoVer method either is very fast (bin 1) or takes very
long (bin 5 and bin 6) or completely fails (bin 6). The MoVer
and HoVer method caused many mediocre duration trials, but
also with many fast trials and few failures.

To summarize: Without the verification, the robot ap-
proaches each hypotheses. This could result in a lower search
duration, but also lowers the success rate of finding the user
in a reasonable time. By using the verification methods,
the robot needs more time for verification, but yields a
higher success rate. Therefore, we advocate the use of the
verification mechanism.

B. PERSON OCCURRENCE MAP

To evaluate the usefulness of the person occurrence map
(Sec. IV-C), we first estimated the map by tracking the user
performing short sequences of daily activities and during the
experiments of Sec. V-A. The resulting map looks similar to
Fig. 3 with the highest probability of occurrence in the living
room, followed by the guest room, kitchen, and hallway. We
replace the navigation point selection of the HoVer method
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Fig. 6. Durations of successful search tours when using HoVer and CoVer
methods.

by the occurrence map selection described in Sec. IV-C and
call this method OcVer. To show the difference between the
two methods, we set the starting location of the robot to
the kitchen and repeated the experiment of Sec. V-A. We
measured the duration it took the robot to reach the user on
each of the six positions in the apartment averaged over three
trials. The results are shown in Fig. 6. Although the robot is
starting in the kitchen, the time it takes the robot to find the
user on the couch1, couch2, and guest1 position are shorter
when using the OcVer method. This is because the robot does
not check the kitchen and hallway position and directly drives
to the living room. While the robot drove to the living room,
it also detected the user on the guest1 position resulting in
a short search duration. A problem becomes apparent when
the user is sitting on the guest2 position. The robot first
drives through the guest room to the living room and does
not detect the user on the arm-chair first, but only when
checking the guest room later. This results in a much higher
average search duration. This becomes extreme when the
user is in the hallway. Although, physically close to the
starting location, the robot ignores this room and checks the
other navigation points first, resulting in a very high search
duration. When the user was sitting in the kitchen, the robot
still detected it when it started driving to the living room.
In future work, we want to solve the problem of ignoring
close navigation points by including advanced exploration
strategies [14], [16] and combine them with the occurrence
probability map.

VI. CONCLUSIONS
We presented a method to search and locate people in

home environments by using a mobile robot. While driving
through the apartment, the robot incorporates the detections
of multiple person detection modules into a multi-modal
person tracker. To enhance the search behavior, we use a
motion and a partHOG detector to verify the hypotheses of
the person tracker and prune false positives. Experiments
of over 150 search trials substantiate that the implemented
verification mechanism improves the success rate of finding
the user and lowers the average search time. By modeling

the usual occurrence probability of the user, the average
search time can be further lowered if the user acts under
the previously learned model.

In future work, we plan to enhance the person occurrence
model by including contextual information like the time of
the hypotheses, e.g. the user is usually in the kitchen at noon
and on the couch in the evening. Another aspect is using
more advanced exploration strategies based on the person
occurrence probability and the map of the apartment [16].
Additionally, one could use other verification modules, like
person detection in data of the kinect sensor or any kind of
color and texture models.
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