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Abstract— People detection and tracking are key aspects in
current research on mobile robots. While plenty of research is
focused on pedestrian tracking in public areas, fewer work ex-
ists on practical people tracking in home environments with non
static cameras. This paper presents a real-time people tracking
system for mobile robots that applies multiple asynchronous
detection modules and an efficient Kalman filter. It allows for
upright pose – and under restrictions, sitting pose – people
tracking in home environments. We evaluate the performance
of the tracking system using different detection modalities on
newly collected indoor data sets. These data sets are made
publicly available for comparison and benchmarking.

I. INTRODUCTION

A long-term research goal is the development of mobile
robots assisting users in domestic environments. Helping
elderly people to live independently for as long as possible
by supporting them in their daily routine and increasing
their quality of life could become a major challenge in
modern society. Mobile robots can add an additional benefit
to the solution of this challenge by providing services that
cannot be done by human care-givers – either due to time
or cost restrictions. To provide these user-centered services,
the robot needs to be aware of the user’s position in the
apartment. While a lot of current research projects focus on
the detection and tracking of pedestrians, fewer works put
an emphasis on people tracking in home environments. Yet,
home environments introduce new challenges like partial oc-
clusions, various poses of the user, and limited computational
resources of the mobile platform that are worth exploring
[1]. Additionally, most data sets used in former works cover
pedestrians in outdoor scenarios or only contain images of
static indoor cameras. Only a few public indoor data sets
exist that are captured by a mobile robot and provide multi-
modal sensor cues, like images and range data [2]. While
the data set of [2] is very large and contains various sensor
modalities, it does not contain a global robot position with
uncertainties and labeled person IDs which are both useful
to evaluate tracking algorithms for mobile robots.

Therefore, in this paper, we present an indoor data set
recorded on our mobile robot platform containing data of
multiple sensors – fisheye images, 3D range data (Kinect sen-
sor), and 2D range data (laser range finder) – and additional
data of the mobile robot. Furthermore, as a main contribution
of this paper, we present a people tracking system that fuses
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detections of multiple asynchronously working detection
modules while respecting the uncertainties of the different
sensor cues and the pose of the robot. We evaluate the
usefulness of different detection methods on the data sets
by comparing the tracking capabilities of the system using
different combinations of input cues. A practical solution
of the tracking system, running in real-time on the robot’s
hardware (the robot and its architecture is described in [1]),
does not include all modules and applies a trade-off between
detection rate and computational performance to allow for
user interaction while keeping enough CPU time for other
required modules of the robot, e.g. localization and path
planning. As performance is not totally satisfying in all
scenarios, we show which state-of-the-art detection methods
would improve the tracking on the robot the most.

The remainder of this paper is organized as follows:
Section II summarizes related work in the research area.
Section III presents our tracking system. Section IV describes
the data sets used for evaluation and the results of our
experiments. Sec. V summarizes our contribution and gives
an outlook.

II. RELATED WORK

People detection and tracking are well-established research
areas, and impressive results have been accomplished re-
cently. A plenty amount of visual detection methods origi-
nated in the field of pedestrian detection, each with their own
benefits and disadvantages (a survey is given in [3]). Recent
approaches like [4], [5] achieve good results at frame-rate by
applying a soft-cascade, tuning features, sampling the image
pyramid and using ground plane constraints. Yet, pedestrian
detection only covers a part of the problem of finding
people in their homes, e.g. related to the variety of poses
encountered and occlusions. On the other hand, [6], [7] are
designed for detection quality and achieve impressive results
given partial occlusion and varying poses. Unfortunately,
they require several seconds of processing time per image.
In the field of mobile service robotics, people are also often
detected by their faces [8], color [9], and gradient features
[10]. Additionally, most mobile robots are equipped with
laser range finders which allow the detection of human legs
[11]. Plenty of research has been done to develop methods for
people tracking on mobile robots in real-world applications.
Most of these approaches focus on pedestrian tracking [12],
[13], [14]. Furthermore, evaluation is often done on pre-
captured data, and real-time performance retreats into the
background while the main focus concentrates on detection
quality. On the other hand, real-time approaches usually
apply very fast detectors [4], [5], a tracking-by-detection
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scheme [15] and special hardware, like stereo-cameras and
dedicated GPUs, which are unfortunately not available on
our mobile robot platform [1]. While GPUs can greatly
increase computational performance, they consume a lot of
energy and heavily decrease the operational time of mobile
robots. Real-time indoor approaches use thermal cameras
[10] or focus on single poses and person recognition [9].
Unfortunately, they work on closed data sets, which makes
comparison hard. Furthermore, many approaches do not
consider the processing time for other required modules like
Monte Carlo localization (MCL), Simultaneous Localization
and Mapping (SLAM), or path planning. The tracking system
presented in this paper runs on a single CPU while keeping
enough processing time for localization, navigation, and user
interaction.

III. MULTI-MODAL PEOPLE TRACKING

In the following, we describe the detection modules and
the alignment of their detections, followed by a description
of the tracking system.

A. Person Detection

Our real-time set-up of the people tracker uses well
established methods, like Histogram of Oriented Gradients
(HOG), motion, face, and leg detection, whose detection
quality is mediocre compared to cutting-edge methods of
Sec. II. Yet, the people tracker is also evaluated offline on
our data sets applying promising new detection paradigms,
i.e. [4], [6], which are not yet useable on our robot, but could
be integrated in the future.

1) HOG Detection: To detect people by their body shape,
we apply a full body and an upper body shape detector based
on Histograms of Oriented Gradients [16], [17]. We use a
scale factor between two layers of the image pyramid of
1.1 for performance reasons. A ground plane constraint for
sitting and standing people is used to reduce false positives.
This also increases the processing performance by a factor
of 2 compared to processing the full image.

2) Face Detection: The face detection system utilizes the
well-known AdaBoost detector of Viola & Jones [8]. The
method is configured to detect faces up to a minimum size
of 30x30 pixels with a scale change between two pyramid
levels of 1.1. We apply the detector only on the upper half
of the image to reduce processing time and false positives.

3) Motion Detection: Each time the robot does not move,
which is signaled by the robot’s odometry, we apply a simple
motion difference detection. The difference image between
two frames is thresholded, and a connected components
algorithm gives bounding boxes of moving regions in the
image.

4) Leg detection: The leg detection module uses range
data delivered by the robot’s laser range finder (LRF) and
applies a boosted set of classifiers to distinguish legs from
other objects in the environment [11]. By searching for paired
legs, the system produces hypotheses of the user’s position.
However, objects similar to legs, like tables and chairs, often
lead to false positive detections.
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Fig. 1. The graphic shows the covariance of the concatenated transforma-
tion y (green) of the two uncertain transformations w (orange) and a (blue).
Hence, the uncertainty of the robot’s pose and the detections is propagated
to the uncertainty of the detections in the world frame.

5) Fastest Pedestrian Detector in the West (FPDW):
To show how our system would improve with a state-of-
the-art pedestrian detection method, we applied the Matlab
implementation method of [4] offline on the images of the
captured data sets, transformed the bounding boxes into
Gaussians, and integrated them into the people tracker.

6) Part HOG: We reimplemented the method of [6] in
a multi-core C++ version which increases the perfomance
compared to the Matlab version by a factor of 2. Neverthe-
less, the method still requires 3 seconds to process a 640x480
image when using a VOC 2009 model [18] and could only
be evaluated offline.

B. Alignment and Transformation of Detections

Each detection module detects people by different body
parts, e.g. the face, legs, or head-shoulder contour. To
facilitate fusion in the people tracker, we transform the
detections to Gaussians in a world coordinate frame and
align them to a common reference point, i.e. the head
of a person. The vision modules produce bounding boxes
which are first transformed into Gaussian distributions in the
camera coordinate frame using the intrinsic parameters of the
camera. The distance to the robot’s camera is estimated by
assuming a detector specific, empirically determined metric
width of the bounding boxes. These Gaussians are then
transformed into world coordinates (world frame) by using
the extrinsic parameters of the camera and the robot’s pose.
The leg detection module generates Gaussian distributions
in the laser scanner’s coordinate frame with x,y given by
the position of the detection and the height z set to zero.
These are transformed into the world coordinate frame, too.
The sensor model describes the certainty of each detector
and is incorporated into the covariance of the corresponding
Gaussian distribution. We use an overall low variance for
leg detections but a high variance in the view-direction of
the robot’s camera for visual detection modules, because
the distance to the robot is estimated by the width of the
bounding boxes which usually have a high deviation.

Compared to image based trackers, tracking in a world
frame includes the motion of the robot and facilitates tracking
by allowing to apply a linear motion model. One key idea
of our approach is that the transformation of detections from
the local sensor frames into the world frame needs to respect
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Fig. 2. Overview of the processing steps of the people tracker.

the uncertainty of the robot’s pose given by the MCL. Since
the pose of the robot is usually uncertain in the world frame,
the covariances of the Gaussians in the local sensor frames
must be increased by this uncertainty. This is visualized
in Fig. 1: transformation w denotes the robot’s pose in
the world frame with an uncertainty represented by the
orange Gaussian. A detection with high variance in distance
estimation (camera is looking in x-direction of the robot
frame) is defined by a transformation a that describes its
position and uncertainty (blue Gaussian) in the robot frame.
The covariance of the detection in the world frame (green
Gaussian) must respect both covariances and is calculated by
covariance error propagation [19]:

Cy = JaCaJa
T +JwCwJw

T , (1)

where Cy denotes the covariance of the concatenated trans-
formation y = g(w,a) = w ·a, and Ca, Cw denote the covari-
ance of a and w, respectively. The Jacobians are given by
Ja = ∂y/∂a and Jw = ∂y/∂w. For clarity Fig. 1 visualizes
the 2D case, while we normally use 3D transformations. We
use the transformation framework of the MIRA middleware
[20] which transparently handles the uncertainty propagation.
Finally, the error-propagated Gaussians are aligned to the
head position of people. The mean of each Gaussian is
moved along the vertical axis to the expected head position.
Furthermore, the vertical axis of the covariance is increased
according to the uncertainty of the head position to the
detected body part, e.g. high additional variance for leg
detections accounting for different heights and poses of
people, but none for face detections. In future work we want
to learn the certainty of the sensor models and the parameters
of the alignment from training data.

C. People Tracking

Our probabilistic people tracking system fuses Gaussians
of multiple asynchronous detection modules. Figure 2 gives
an overview of the people tracker and its processing steps
described below.

1) Data Association: All Gaussian detections within the
last 100 milliseconds are sorted by their detection time and
processed sequentially. First, all hypotheses in the tracker
are predicted up to the timestamp of the detection using the

prediction step of the used filter algorithm (Sec. III-C.4).
Second, the detection is assigned to the closest hypothesis
in the tracker using the Mahalanobis distance:

d = (µh−µd)
T (Ch +Cd)

−1(µh−µd) , (2)

where µh, Ch, µd , Cd are the mean and covariance of the hy-
pothesis and detection positions, respectively. The hypothesis
with the smallest distance d is considered as responsible for
the observation, and the update step of the filter algorithm is
applied to improve the estimated hypothesis. If all calculated
distances exceed an empirically determined threshold dmax =
1.5, the detection is considered as a new track, and a new
hypothesis with a new filter algorithm is inserted at the
detection’s mean position µd with covariance Cd .

Besides the uncertainty given by the covariances of the
Gaussians, we introduce an additional confidence value to
each hypothesis which captures the precision of each detec-
tor. While a leg detection is much more precise in position
estimation (lower covariance of the Gaussian) than a HOG
detection, the probability of being a person might be lower
because many objects like chairs and tables produce false
positives. When a detection is successfully assigned to a
hypothesis the confidence of the hypothesis is increased by:

ch := ch +(1− ch)cd , (3)

where ch is the confidence of the hypothesis and cd is the
confidence of the detection. ch and cd are limited to [0,1]. cd
has a big influence on ch if ch is small and a small influence
if it is close to 1. Finally, ch represents the confidence of a
hypothesis of being a person. In doing so we can validate
hypotheses by the observation of multiple cues. By limiting
the maximum confidence each sensor cue can add to the
overall confidence, multiple cues are required to validate
a hypothesis. Hence, detections from a single cue might
create new tracks but are not outputted until a detection from
another sensors is assigned to the track.

2) Covariance Intersection: Occasionally, a sensor input
produces multiple detections on similar positions that would
be fused in the data association step by the tracker. Examples
are multiple bounding boxes of a visual detector that does
not apply non-maximum suppression or overlapping image
motion detections. Assuming that those detections originated
from the same source, correlation between them is usually
unknown. In that case, a Bayesian filtering algorithm, e.g.
a Kalman filter, would underestimate the covariance of the
detection by fusing all detections on the nearest hypothesis,
because it assumes independence of the measurements.

Therefore, we apply covariance intersection [21] to fuse
those detections to a single Gaussian:

C−1
3 = (1−ω)C−1

1 +ωC−1
2 , (4)

where ω is a weighting parameter that defines the influence
of the source covariances C1 and C2 on the resulting covari-
ance C3. It is set to:

ω =
|C1|

|C1|+|C2|
, (5)
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which balances the influence of both covariances [21]. The
mean of the fused detection is calculated by:

µ3 = C3
[
(1−ω)C−1

1 µ1 +ωC−1
2 µ2

]
, (6)

respecting the covariances of the considered detections.
3) Out-of-Sequence-Measurements: Although the tracker

is sorting all detections in a time interval based on their
timestamp, occasionally the current observation might be
older than the current tracker state. The reason for that is
the different processing time of the asynchronous detection
modules. A connected laser leg detector produces frequent
observations, while a HOG detector needs more time for
processing one image. If processing of the observations is
triggered while the HOG module still processes its image, the
detection of the HOG is outdated in the next processing cycle
of the tracker, because its timestamp (set by the processed
image) is older than the timestamp of the current hypotheses
in the tracker set by recent leg detections. To handle this
out-of-sequence measurement (OOSM), the motion model
of the tracker is skipped and the observation is predicted
to the current timestamp using the predict method of its
assigned filtering algorithm (Sec. III-C.4). The observation
is then normally used to update the hypotheses in the tracker.
A detailed analysis of the benefits of the OOSM modeling
will be subject of future work.

4) Filtering: Generally, we designed the people tracker
as a framework and allow for any filtering algorithm that
can use Gaussian distributions as input and reflect its state
as a Gaussian. As in our former work [22], we apply a 6D
Kalman filter tracker that tracks the position and velocity
of each hypothesis in the system [23]. The state space of a
hypothesis is given by:

x = (x,y,z, ẋ, ẏ, ż)T , (7)

where x,y,z denote the 3D position and ẋ, ẏ, ż the 3-
dimensional velocity. Each hypothesis undergoes a nor-
mally distributed constant acceleration over the time interval
[xk−1,xk]. Additionally, the confidence ch of each hypothesis
is lowered by a fixed time dependent value in the prediction
step of the filter.

5) Hypotheses Management: The system comprises sev-
eral mechanism to manage and limit the number of hy-
potheses. First, the tracker merges hypotheses with similar
positions and velocities. Second, it prunes weak hypotheses
with high positional covariance and low confidence, i.e.
those that are not observed anymore. Third, detections and
hypotheses in walls or obstacles can be pruned by using
knowledge of the operation area, e.g. from an occupancy
map which is also used by the robot for localization.

IV. EXPERIMENTS

We captured eight different data sets on our mobile
platform [1]. The data sets are given in form of MIRA tapes
[20] and contain rectified RGB images of the fish-eye front
camera, LRF data, 3d range data of the Kinect sensor (Tab. I),
intrinsic and extrinsic parameters of the cameras, coordinates
of the different sensor frames, an occupancy map, odometry,

TABLE I
STATISTICS OF THE SENSORS

Sensor data Format Frequency
RGB images (rect. fish-eye) 800x600 px 15 Hz
Kinect Depth 640x480 px 10 Hz
LRF Range vector 12 Hz
Robot pose 2D PoseCov 15 Hz

TABLE II
STATISTICS OF THE DATA SETS

Data set Length Frames Info
Hallway 46 s 629 1-4 people walking
Follow 110 s 1679 following 1 person
Chair+Couch 82 s 1089 1 person sitting down
Sitting 1-4 218 s 2916 1-2 people sitting

and the robot’s pose given by MCL. Note that our tracking
system does not make use of the Kinect data so far. The data
sets increase in difficulty (see Tab. II and Fig. 3). All people
in the data set are manually labeled with bounding boxes in
the RGB image, IDs, and occlusion information using the
VATIC label tool [24]. The full data sets, pure jpg images,
and label information are publicly available1.

We evaluated our real-time tracking system on the afore-
mentioned data sets and compared it to offline trackers using
state-of-the-art detection modules. The 3D Gaussians of the
trackers are transformed into bounding boxes in the image.
The height of each bounding box is calculated using the
height of the corresponding Gaussian (top position) and
assuming that people touch the ground (bottom position).
The width of the transformed bounding box is determined
empirically to half the size of the height. The bounding boxes
and their IDs are compared to the labeled bounding boxes
using the Multiple Object Tracking Performance (MOT)
metric [25] which evaluates the precision, accuracy, and ID
switches of the trackers. The intersection over union metric
is used as a distance measure with a somewhat less restrictive
threshold of 0.25 compared to the standard value of 0.5. The
reason for this is, that we do not explicitly estimate people’s
poses but transform 3D Gaussians to bounding boxes in the
image assuming a fixed height/width ratio. Hence, in case
of sitting postures and almost quadratic labeled boxes, the
overlap of the tracker’s bounding box significantly reduces.

For each data set, we present the precision, recall and MOT
metrics. The following tables show the mean misses (Miss),
the average false positives (FP), the mean mismatch error
(MME), recall (RC), precision (PR), the multi object tracking
precision (MOTP) and accuracy (MOTA) [25]. The first 3
values denote a ratio of accumulated misses, false positives,
and mismatches over the total number of ground truth objects
in the data sets, respectively. The MOTP denotes the average
error in the estimated position for all matched hypothesis-
label pairs. The distance of a match is calculated using
intersection-union metric. Hence, the MOTP is bounded to
the interval [0,1] with 0 being perfect and 1 being worst
(no overlap of bounding boxes). Finally, the accuracy and

1http://www.tu-ilmenau.de/neurob/team/dipl-inf-michael-volkhardt/
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(a) Hallway (b) Follow (c) Chair+Couch (d) Sitting 1-4

Fig. 3. Exemplary labeled pictures of the different data sets. (a) Standing
robot with multiple moving people, (b) robot following a person with
another person passing by, (c) standing robot with person sitting down and
standing up, (d) searching robot, person sitting and occasionally standing
up.

TABLE III
RESULTS OF REAL-TIME AND LASER ONLY TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.30 0.28 0.0109 0.76 0.73 0.50 0.40
- Laser 0.40 0.24 0.0100 0.66 0.73 0.51 0.35
Follow 0.26 0.28 0.0122 0.77 0.73 0.51 0.45
- Laser 0.24 0.39 0.0071 0.79 0.67 0.52 0.35
C.+C. 0.43 0.55 0.0066 0.59 0.51 0.54 0.02
- Laser 0.49 0.19 0.0102 0.52 0.74 0.53 0.32
Sit. 1-4 0.51 0.48 0.0044 0.49 0.52 0.61 0.01
- Laser 0.55 0.87 0.0094 0.45 0.44 0.63 -0.43

consistency of the tracker is given by the MOTA value:

MOTA = 1− ∑k(Missk +FPk +MMEk)

∑k Gk
, (8)

where Missk, FPk, and MMEk are the misses, false positives,
and mismatches for time k, respectively and Gk denotes
the number of all labels for time k. Here, a value of 1
means perfect tracking with no missed objects, no false
positives and no identity switches. Note that the lower value
of the MOTA is unbounded and can easily become negative
- especially if there are false positives in the tracks.

The results of our real-time tracker, using face, HOG,
upper-body HOG, motion and leg detections and a purely leg
detection based tracker are given in Tab. III. Results of an
offline FPDW tracker and a combined FPDW+leg detections
based tracker are given in Tab. IV, while the results of the
offline partHOG tracker and partHOG+leg detections based
tracker are given in Tab. V. Furthermore, we give precision
and recall values of the pure detectors in Tab. VI.

The real-time tracker shows good performance when peo-
ple stand or walk, but performance quickly degenerates when

TABLE IV
RESULTS OF FPDW AND FPDW+LASER TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.51 0.34 0.0075 0.50 0.59 0.55 0.14
+ Laser 0.28 0.40 0.0174 0.77 0.66 0.56 0.29
Follow 0.40 0.22 0.0032 0.60 0.73 0.51 0.37
+ Laser 0.19 0.31 0.0032 0.82 0.72 0.53 0.48
C.+C. 0.835 0.44 0.0065 0.17 0.27 0.64 -0.28
+ Laser 0.66 0.45 0.0093 0.35 0.43 0.57 -0.11
Sit. 1-4 0.94 0.40 0.0033 0.06 0.10 0.72 -0.34
+ Laser 0.67 0.37 0.0058 0.33 0.54 0.55 -0.04

TABLE V
RESULTS OF PARTHOG AND PARTHOG+LASER TRACKER

Data set Miss FP MME RC PR MOTP MOTA
Hallway 0.42 0.16 0.0100 0.60 0.79 0.49 0.41
+ Laser 0.30 0.31 0.0125 0.74 0.70 0.49 0.37
Follow 0.28 0.16 0.0045 0.73 0.82 0.48 0.56
+ Laser 0.11 0.35 0.0045 0.95 0.73 0.49 0.54
C.+C. 0.46 0.44 0.0047 0.55 0.56 0.56 0.10
+ Laser 0.36 0.51 0.0093 0.65 0.56 0.56 0.14
Sit. 1-4 0.52 0.36 0.0032 0.49 0.54 0.60 0.12
+ Laser 0.39 0.39 0.0033 0.61 0.62 0.57 0.22

TABLE VI
RECALL AND PRECISION OF DETECTORS (OFFLINE ON EACH FRAME)

(a) FPDW
Data set RC PR
Hallway 0.76 0.97
Follow 0.53 0.98
Chair+Couch 0.21 0.81
Sitting 1-4 0.13 0.37

(b) PartHOG
Data set RC PR
Hallway 0.58 0.50
Follow 0.62 0.86
Chair+Couch 0.58 0.75
Sitting 1-4 0.53 0.65

people sit (Tab. III). Yet, it is superior to a purely leg-
detection based tracker, except for the Chair+Couch data
set where it produced a higher FP caused by consistent
false positive HOG detection on a floor lamp. Overall the
combination of multi-modal modules increases the tracking
performance resulting in higher RC and PR values. The data
sets where people sit reveal the limits of our tracking system.
The system often misses people sitting calmly when there
are no face or upper body detections (high miss rate for
sitting scenarios). The sitting data sets also include more
false positives mostly caused by the legs of cupboards and
tables and person similar objects like a floor lamp, plants
and a lamp on a cupboard.

The offline FPDW based tracker shows relative good
performance for up-right pose people (Tab. IV). When people
sit performance heavily decreases, which is due to the fact
that the FPDW was trained for pedestrian detection. Yet, in
all cases the performance can be increased when using an
additional leg detector which helps to fill the gap of missing
detections. Because our tracker also includes motion, face
and upper-body detectors, its performance is superior to the
FPDW and FPDW+laser based tracker - especially when
people sit. On the other hand, a real-time CPU C++ imple-
mentation of the FPDW method would definitely improve
our tracker when people are in an up-right pose.

Best results are achieved when using the offline partHOG
based tracker (Tab. V). The high recall and precision values
of the detector result in the highest MOTA values in almost
all data sets. When combining the tracker with a leg detector,
the leg detections help to fill missing detections resulting in
a higher recall. On the other hand precision and the MOTA
go down, because of many false positives of the leg detector.

The pure FPDW detector (Tab. VI(a)) often achieves
better results than the FPDW based tracker. Reasons are
that the tracker keeps hypotheses too long, data association
distance and the motion model are a little too restricted for
this set-up, and finally the projection of the 3D Gaussians
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TABLE VII
PROCESSING TIME OF MODULES

Module Avg. processing time [ms]
800x600 px 640x480 px

Face detector 172.4 99.7
Upper-body / HOG detector 408.8/423.0 242.3/225.4
Motion / Leg detector 3.1/1.0 1.6/1.0
FPDW (offline) 535.4 359.0
PartHOG (offline) 4975.7 2864.7
People Tracker 0.2 0.2

to bounding boxes is error prone, especially in distance
estimation, because the camera is looking horizontally. These
reasons need further investigations in future work. On the
other hand, the combination of FPDW+laser and our real-
time tracker achieve higher performances than the single
FPDW detector, especially when people sit. The partHOG
detector (Tab. VI(b)) achieved similar performance as the
partHOG tracker, because the detector processed every frame
in an offline evaluation.

All presented results were produced using the same set
of parameter of the tracker and the detection modules. We
scaled down the original image resolution of the data sets
to 640x480 to increase the computational performance. A
performance evaluation of the detection modules of the
people tracker can be found in Tab. VII. From there it
becomes obvious that the face and HOG modules do not
process every frame but are set to run every 500 ms. The
complete tracking system runs in real-time and is configured
to consume 60% of the robot’s on-board CPU (Intel i7-
620M quad core processor) leaving enough space for the
other required modules of the robot [1].

V. CONCLUSION

We presented a real-time, multi-modal people tracking sys-
tem for mobile companion robots, that tracks walking people
and is able to track people in sitting poses, if there are enough
detector inputs. The system is evaluated on different data
sets with increasing difficulty. Furthermore, we compared the
performance to offline state-of-the-art people detectors like
FPDW and partHOG and trackers based on these detectors.
Our real-time version of the people tracker achieves better
results than a tracker based on the FPDW detector and the
pure detector, particularly when people sit. Best results are
achieved when using the partHOG detector, which, unfortu-
nately, is far from being real-time capable at the moment.
Yet, the only moderate performances of all tested trackers
show that more research is necessary to track people in
home environments - especially for non-upright poses. To
achieve the long-term goal of autonomous companion robots
that support the elderly, we need to enhance current person
detection algorithms. The modules for face and upper body
detection are not robust enough to detect people in sitting
postures or given occlusion. Using the real-time capable
FPDW detector in the combined tracker could help to raise
up-right posture performance. Real-time implementations of
part based detection concepts like partHOG or poselets [7]
that handle occlusion and multiple postures would greatly

improve detection and tracking performance. Therefore, a
major challenge lies in the development of real-time capable
methods for detection of people in different poses, like sitting
and lying. The Kinect sensor could help to achieve this goal.
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