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Abstract—Falling down and not managing to get up again
is one of the main concerns of elderly people living alone in
their home. Robotic assistance for the elderly promises to have
a great potential of detecting these critical situations and calling
for help. This paper presents a feature-based method to detect
fallen people on the ground by a mobile robot equipped with a
Kinect sensor. Point clouds are segmented, layered and classified
to detect fallen people, even under occlusions by parts of their
body or furniture. Different features, originally from pedestrian
and object detection in depth data, and different classifiers are
evaluated. Evaluation was done using data of 12 people lying on
the floor. Negative samples were collected from objects similar to
persons, two tall dogs, and five real apartments of elderly people.
The best feature-classifier combination is selected to built a robust
system to detect fallen people.

Index Terms—TFallen person detection; Kinect; mobile robot;
3D depth data

I. INTRODUCTION

About one third of elderly people aged over 65 fall at least
once a year in their home [1]. Half of the people cannot
manage to get up after the fall by own means. As lying on
the floor for a long time can cause serious health risks, a
reliable method to detect fallen people and to call for help
is needed. Fast help after a fall can reduce the risk of death by
80% and the need for a hospital visit by 26% [2]. Hence, it is
not surprising that fall detection is among the top requests
to assistant technology in surveys among the elderly [3].
Current commercially available products provide only limited
solutions, since they either must be worn by the user or require
changes to the home of the user. Therefore, mobile companion
robots as those developed within the CompanionAble project
have a great potential in this field [4], [5].

This paper presents a method to detect fallen people in the
depth data of a Kinect sensor mounted on a mobile robot. The
mobility of the robot offers great benefits, like non-invasive
plug-and-play solutions, handling different postures and occlu-
sion by different viewpoints of the robot, and user feedback
through the human-machine-dialog. Yet, methods on a mobile
robot cannot rely on detecting the actual fall, since it might
happen outside of the robot’s field of view. Therefore, our
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method detects fallen people lying on the ground. Compared
to visual methods, the 3D depth data offers new possibilities to
increase the robustness of a detection. Ground plane estimation
and object-background segmentation is much easier with given
3D data, and classifiers can focus on similar training samples
as objects can be normalized in position and orientation. We
evaluated different features originated from pedestrian and
object detection in 3D depth data with different classifiers from
the Machine Learning field of research. To increase robustness
given occlusion, the point cloud is segmented into reasonable
objects, which are aligned and vertically layered. We train a
classifier on the layers of objects and detect fallen people if a
certain number of layers is classified positively. The remainder
of this paper is organized as follows: Section II summarizes
related work in the research area, and Sec. III presents our
method to detect fallen people. Afterwards, Sec. IV gives a
description of experimental results, and Sec. V summarizes
our contribution and gives an outlook on future work.

II. RELATED WORK

Fall detection is well-covered in current research projects.
Yet, recent approaches still suffer from several drawbacks, that
prevent a breakthrough of consumer products. Methods that
detect the actual fall either use worn sensors, external sensors
[6], vision or audio [7]. Established worn sensors use accelera-
tion towards the ground or the deviation of acceleration values
from learned motion patterns [8]. However, these sensors are
intrusive and can be forgotten to be worn by the elderly person,
especially if he or she has cognitive impairments. 2D and
3D visual methods that track the user and detect the fall can
be grouped into the analysis of changes in body shape [9],
[10], position [11], motion velocity [12], and motion patterns
[13] (see [14] for a survey of approaches published till 2009).
They often require multiple static camera installations, have
problems distinguishing a fall from lying or sitting down on
furniture, or require training data of real fall sequences.

Another approach is the detection of fallen people lying on
the ground, which can also be applied on a mobile robot. 2D
methods [15], [16] use multiple models to deal with differ-
ent view angles, multiple poses, and perspective shortening.
Still, these methods are originated from up-right pose people
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detection and suffer from high complexity and low detection
accuracy, because they cannot rely on the typical (2-shape of
people’s head-shoulder contour or exploit the symmetry of
people’s body.

To the best of our knowledge, there are no 3D methods
for mobile robots known that detect people lying on the
ground. Therefore, we investigated methods from 3D people
and object detection. Note that we focused on feature-based
approaches and did not consider model-based approaches [17]
or geodesic extrema [18], [19]. Feature-based approaches for
people detection can be divided into histogram-based features
[20]-[23] and geometrical and statistical features [24]. We
expected that features which capture the surface of objects,
like the Histograms of Local Surface Normals (HLNS) [23],
are especially well suited since the local surface normals of
fallen people should be irregular or cylindrical compared to the
relatively regular, straight surfaces of artificial objects in home
environments, like tables, walls, and chairs. The geometrical
and statistical features of [24] should be well suited to detect
fallen people since the statistical and geometric properties of
a fallen person should be similar to the ones of up-right pose
people. Features for object detection in 3D data are described
in [25]-[27]. Again, we expected features which capture the
curvature of objects, like the Fast Point Feature Histogram
(FPFH) [25], to have the highest potential of detecting fallen
people. Since fallen people are often occluded by parts of
their body or furniture, partial occlusion is a main issue
for the detection of fallen people. Therefore, a layer-based
approach [23], [24] is well-suited to increase the robustness
of the classification. Interest point detectors, like the SURE
or NAREF features [27], [28], promise to be another option to
reach robustness towards partial occlusion. The SURE feature
extracts feature descriptors which are similar to the FPFH at
points that should be invariant against orientation and scale.

III. FALLEN PERSON DETECTION

In this section, we introduce our method to detect fallen
people. The approach consists of five phases as shown in
Fig. 1: Preprocessing, Segmentation, Layering, Feature Extrac-
tion and Classification.

A. Preprocessing

The preprocessing phase uses the range image of a Kinect
and converts it into a preprocessed point cloud.

1) Conversion: Using the intrinsic parameters of the
Kinect, the range image is first converted into a 3D point cloud.

2) Downsampling: The number of points to be considered
in subsequent processing stages is reduced by downsampling
the point cloud using a voxelized grid approach with a grid-cell
size of 3cm X 3em X 3em.

3) Transformation: The conversion of the range image
only considers intrinsic camera parameters. The transformation
phase considers the mounting position of the camera and
transforms the point cloud according to the extrinsic camera
parameters. Especially the pitch angle of the Kinect is of
particular importance, as the later ground plane estimation
assumes the ground plane being parallel to the x-z-plane.
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Fig. 1. The proposed approach for detecting fallen people consists of five
phases (dark grey boxes).

4) Region of Interest (ROI): Fallen people occur close to
the ground, hence only the lower region of the point cloud is of
importance. Therefore, all points with a height over 60 cm are
removed from the point cloud by using a PassThrough-Filter.

B. Segmentation

The segmentation phase partitions the preprocessed point
cloud into objects, which might represent a fallen person.

1) Ground Plane Estimation: The first step of segmenting
the point cloud into its individual objects is the detection of
points belonging to the floor. Therefore, the ground plane is
detected using the RANSAC [29] algorithm. A plane with a
normal parallel to the y-axes is used as model. All points sup-
porting the model must have a maximum Euclidean distance to
the model of 10 cm, and their surface normals must be parallel
to the surface normal of the output plane, with a maximum
angular deviation of 2°.

2) Clustering: All points not belonging to the ground
plane are subsequently segmented into a sequence of clusters
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C ={c,...,cn}. For segmentation, an Euclidean clustering
technique is applied with a distance threshold of 3 cm.

3) Verification: Although the preprocessing restricts the
point cloud already to the bounds of the ROI, the point cloud
still contains objects which were originally higher than the
ROI, as these objects are only cropped by the maximum height
of the ROI. To eliminate these objects completely, we remove
all segmented clusters from C, whose height is similar to the
height of the ROI, with a maximum deviation of 5cm. All
clusters remaining in C might represent a fallen person.

4) Normalization: For the following layering phase a nor-
malization of the position and orientation of the remaining
clusters is needed. Therefore, the centroid of each cluster is
aligned to the coordinate origin. Afterwards, the cluster is
rotated around the centroid by the angle between the xz-axes
and the cluster’s main orientation, which is determined by the
eigenvector related to the biggest eigenvalue of the cluster’s
covariance matrix.

C. Layering

As mentioned in Sec. II, a fallen person might be partially
occluded. Therefore, a layer based approach is proposed.
During the layering phase, each cluster c; is partitioned into a
sequence of adjacent layers L; = {l;1,...,l; x }. To ensure
that the layers of different people cover the corresponding body
parts, even if the people are partly occluded, we are using a
fixed layer size instead of a fixed layer number as [23] and
[24] do. Otherwise the layer width and therefore the layer
content would vary greatly depending on the degree of the
partial occlusion of a person. To define the layer width, we
divided the clusters of completely shown, lying people into
eight layers. Averaging the layer width of several test data led
to a layer width of 22.52 ¢cm. To compensate the variance of the
body height of different persons and the resulting variance of
the layer content, we are using overlapping layers. An overlap
of 2.5 cm between two neighboring layers is used.

D. Feature Extraction

The segmentation phase generates a set of 3D clusters C,
where each cluster ¢; consists of a set of several layers L;.
During the feature extraction phase, for each layer [; ;, a feature
vector f; . is computed. As mentioned in Sec. II, we expect
features based on surface normals as well as geometrical and
statistical features to be well suited for detecting fallen people.
In order to determine the feature with the best performance,
we evaluated the performance of the following four features.

1) Geometrical and statistical features (GSF): Our ap-
proach uses the nine geometrical and statistical features pro-
posed in [24] to characterize the shape of each layer and to
classify it in human or non-human (Tab. I).

2) Histogram of Local Surface Normals (HLSN): The
HLSN uses a histogram of local surface normals plus addi-
tional 2D and 3D statistical features to describe the character-
istics of an object. As in [23] we compute a separate histogram
with seven bins for each normal axis (z, y and z) over the
normals of all points in a layer and add the height and the
depth of a layer to the feature vector.

TABLE 1
GEOMETRICAL AND STATISTICAL FEATURES IN GSF

No. | Feature No. | Feature

fi Number of Points fe | Kurtosis w.r.t. centroid

f2 Sphericity fr Avg. dev. from median

f3 Flatness fs Normalized residual planarity
fa Linearity fo Number of points ratio

fs Std. dev. w.r.t. centroid

3) Fast Point Feature Histogram (FPFH): The FPFH uses
the orientation of the local surface normals to capture the
geometry around a query point [25]. The relative differences
between a point and its neighbors are captured in the FPFH by
determining the differences between their associated normals.
It uses a fixed coordinate frame at one of the points, which
allows to express the difference between the normals as a set of
three angular features. In our approach, we first compute one
FPFH for each point of a layer to finally use the mean of all
FPFHs as the descriptor of the layer. Yet, one could cluster all
FPFHs and use the k centroids of the clusters as a descriptor.
This approach would require a permutation of the centroids
when classifying, which results in a higher complexity and
therefore a higher computational effort.

4) Surface-Entropy (SURE): Besides the layering ap-
proach, the use of an interest point-based method is another
option to reach robustness towards partial occlusions [27].
Therefore, we are evaluating the performance of the SURE
feature. The SURE feature combines an interest point detector
and a descriptor, both based on the orientation of surface
normals. The interest point detector measures the variation
in surface orientation from surface normals and detects local
maxima. The extracted descriptor is similar to the described
FPFH. As the usage of the interest point detector already leads
to a limited number of feature vectors per object, the layering
procedure is not used for this feature.

E. Classification

To assign a label (positive: human, negative: non-human) to
each layer and to finally decide if an object represents a fallen
person, a classification method is needed.

1) Classifier: To obtain the best feature-classifier-
combination, we evaluated the performance of four popular
machine learning techniques: Nearest Neighbor (NN), Random
Forests (RF), Support Vector Machine (SVM) and AdaBoost
(AB). The machine learners were further varied by different
parameters (number of neighbors, number of trees, type of
kernel, etc.), which led to an evaluation of 34 classifiers per
feature.

2) Final Detection: While applying the proposed approach
for detecting fallen people, we finally obtained a sequence of
objects, where each object contains several classified layers. To
decide if one of these objects represents a fallen person, the
number of positively classified layers per object is analyzed.
The evaluation shows, that the best results are obtained by
deciding an object to be classified as fallen person, if a
minimum of three layers are classified positively.
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IV. EXPERIMENTAL RESULTS

In order to evaluate the performance of each feature-
classifier-combination and to determine the overall perfor-
mance of the proposed approach, we carried out a compre-
hensive evaluation.

A. Data Set

A training and a testing data set were acquired by recording
videos with the Kinect of a mobile robot. The data contains
range images of positive and negative examples. As a manual
annotation of each sample is a time consuming task, data which
allowed an automatic annotation was collected. The videos
with the negative examples did not contain any people. For
the positive examples, we made sure that the person is lying
in a predefined region of the range image and that this region
did not contain any other objects. In doing so, we acquired data
of lying people without any partial occlusion. Therefore, it is
guaranteed, that every body part is contained equally often
in the training set and that the classifier does not specialize
on a certain body area. The videos of the positive training
data contain nine different persons each in different poses.
The positive test data mainly contains lying people which are
partially occluded, as this scenario complies to the situation
existing in reality. The videos of the positive test contain ten
different persons in different poses. As the focus of this work
is on evaluating the best feature-classifier-combination and not
on evaluating the segmentation method, the positive data only
contains lying people who can be segmented relatively easy
from the background as other objects have a certain minimum
distance to the person. For the negative data, videos recorded in
five real apartments of elderly people, one common room of a
retirement home as well as videos recorded in a lab containing
objects similar to persons (e.g. a bunch of coats) and two tall
dogs were acquired. As the size, shape, and the orientation of
the surface normals of large (lying) dogs is similar to the one
of lying persons, this data is especially challenging for those
features which are based on surface normals. % of the negative
data is used to train the classifier, the remaining % is used for
testing. Fig. 2 shows some examples of the used data.

B. Performance Measurement

In the practical application of the proposed approach, a low
false positive rate matters more than a low true positive rate.
Since the robot is supposed to undertake control trips in the
apartment during which it is looking for critical situations,
like a fallen person on the floor, a high number of false alarms
likely causes a shut down of the system by the user. In case
of a fallen person, the robot perceives the person usually more
than once during its control trip, which means the robot has
more than one chance to detect the fallen person. As the Fg 5-
score [30] puts more emphasis on precision (PR) than recall
(RC) and therefore the false positive detections are weighted
higher than the true positive detections, it is used to measure
and compare the performance of the different feature-classifier-

Fig. 2.  First row: positive training data. Second row: positive test data.
Third row: Negative data from the retirement home. Fourth row: Negative
data captured in a living lab

combinations:

(1+0.5%)- PR- RC
0.52- PR+ RC

C. Experimental Objectives

Fos =

6]

1) Object-unspecific Evaluation: In order to obtain the
principal performance of each feature-classifier-combination,
its object-unspecific performance on separating the two classes
(human or non-human) was evaluated. Therefore, the feature
vectors of all layers/interest points in the test data were
classified, and the number of correctly and wrongly classified
layers/interest points were accumulated without considering
the object assignment of the layers/interest points.

2) Object-specific Evaluation: Subsequently, the object-
specific performance for the best classifier of each feature
was evaluated. For this purpose, we analyzed how many
layers/interest points per object are assigned to which class. By
varying the number of layers/interest points per object which
need to be classified positively to classify the whole object as
a fallen person, the best feature-classifier-combination with the
best parameter setting can be determined. The object-specific
detection performance is equal to the overall performance of
the proposed approach.

3) Processing Time: For the practical implementation of
the proposed approach, real-time capability is required. There-
fore, it was determined how long each classifier needs to clas-
sify one test sample. Subsequently, the detection performance
of the best and the fastest classifier using the best feature were
compared.

D. Experimental Results

1) Object-unspecific Evaluation: The results of the object-
unspecific evaluation show (see Fig. 3) that the classifier
achieving the best detection performance is depending on
the features combined. Only the AdaBoost classifier leads
to poor performance with all four tested features. A reason
for this might be that we used one-dimensional, brute-force



Proc. IEEE Int. Conf. on Systems, Man, and Cybernetics (IEEE-SMC 2013), Manchester, GB, pp. 3573-3578, IEEE Computer Society CPS 2013

GSF HLSN
100 100
90 B 90 ~ < -
= s
J z S s
80 80 = 5 (g
>
© 7 = . ® T ° o
Q X < S = <
3 o = ° g 3 0 = g
0 = 8 § B %
o ™~ o
L 50 o 1 L 50 B
5| ¢
40 S‘ b 40 1
=
>
30 [ N 30 1
20 20
Classifier Classifier
FPFH SURE
100 100
90 B 90 -
o «©
80 F : 'g B 80
z S
o 0F Z = 4 ® 70 = R
8 5 & T
m‘.’f 60 | s B u."; 60 = 4
g sf E E g sl o E
%) 2
40 | 1 wE =S e E
B <
) = §
30 F b 30 b
= o
<
20 20
Classifier Classifier
Fig. 3. Results of the object-unspecific Evaluation. The graphic shows the

Fo.s-score of the four evaluated features with four different classifiers and
their best parameters — Nearest Neighbor (NN) with k-Neighbors, Random
Forests (RF) with number of trees, Support Vector Machine (SVM) with kernel
parameters and AdaBoost (AB) with number of weak classifiers (wc).

Fig. 4. The number and positions of the detected interest points are unstable
on lying people

trained weak learners. Future work could use decision trees
with more than 1 stump to increase performance. Focusing on
the features, the results show that the HLSN outperforms all
other features. Even in combination with the worst classifier
(AdaBoost) the HLSN yields better or similar performance
in comparison to the other features combined with their best
classifier. In addition, the poor performance of the interest
point-based SURE feature is conspicuous. As the SURE-
descriptor is similar to the FPFH, the difference in performance
can be substantiated by an instability of the detected interest
points. As shown in Fig. 4, the number and positions of the
detected interest points on different people or even on the same
person in a slightly different pose is highly unstable.
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performance (RF) and the fastest classifier (SVM).

2) Object-specific Evaluation: The results of the object-
specific evaluation support the assumptions made on the basis
of the object-unspecific evaluation. The HLSN again outper-
forms the other three features. Fig. 5 shows a Precision-Recall-
curve of the results. The average precision (AP, see legend),
determined by integrating the area under each curve, confirms
the assessments made on base of the Fg 5-score. The curve
was created by varying the number of layers/interest points
per object which need to be classified as positive to classify
the whole object as a fallen person.

3) Processing Time: The best detection performance is
achieved by the HLSN combined with a Random Forest
classifier with 500 trees. But as 500 trees lead to a high degree
of complexity, the time necessary to classify one object is
20.16 ms, which is too high for a robot operating in real-
time. In contrast, a Support Vector Machine with a polynomial
kernel function of degree d = 4 and a penalty parameter
C = 1000 is the fastest classifier, taking 0.178 ms to classify
one object. As shown in Fig. 6, the difference in detection
performance between the RF (Fp5 = 98.23%) and the SVM
(Fos = 96.94%) is negligible compared to the difference
in processing time. Therefore, the HLSN combined with the
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proposed SVM is considered to be the most suitable feature-
classifier combination.

4) Minimum Number of Positive Layers: As shown in
Fig. 6 the HLSN combined with the proposed SVM obtains
the best results by deciding an object to be classified as fallen
person, if a minimum of three layers are classified as positive.

5) Overall performance: The proposed feature-classifier-
combination leads to a good overall performance. Due to its
recall of RC' = 87.17% and its precision of PC = 99.74%, it
achieves a JFg5—score of Fgy5 = 96.94% and an accuracy of
AC = 96.08%. The false positive rate is 0.1%, which is very
low. The depth videos of the real apartments of elderly people
are the most suitable representation of the situation existing
during the practical assignment of the proposed approach. A
further study on this data has shown, that none of these videos
leads to a false positive detection due to the strict preprocessing
and the determined feature-classifier-combination. Since recall
is not perfect, a fallen person is not detected in every frame.
Yet, while the robot drives through the apartment, there are
more than enough positive classifications to integrate and
finally detect a fallen person.

V. CONCLUSION

We presented a method to detect fallen people with a
mobile robot using only 3D depth data. Our method segments
objects in point clouds and layers them to deal with occlusion.
Finally, a trained classifier is used to classify the layers of
the objects, and fallen people can be detected by a certain
number of positively classified layers. Evaluation showed, that
the Histograms of Local Surface Normals in combination with
a SVM classifier are well-suited to detect fallen people.

Currently, the Euclidean segmentation is the bottleneck of
our approach. If people fall on or near furniture, the segmented
object sometimes contains the user and parts of the furniture. In
future work, the segmentation could be enhanced by combining
it with RGB image data. Furthermore, our method uses a layer
unspecific classifier which already proved to give good results.
Yet, one could use a specific classifier for each layer which
should improve accuracy of the method. However, since layers
are likely occluded one would need to permute the layers or
use an implicit shape model and let each layer vote for the
object center [24]. However, both approaches would lead to
higher computational requirements. Finally, the robot needs a
suitable strategy to search for fallen people in the apartment
if it has not recognized the user for a while [31].
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