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Abstract. In activity recognition, traditionally, features are chosen heuris-
tically, based on explicit domain knowledge. Typical features are statis-
tical measures, like mean, standard deviation, etc., which are tailored
to the application at hand and might not fit in other cases. However,
Feature Learning techniques have recently gained attention for build-
ing approaches that generalize over different application domains. More
conventional approaches, like Principal Component Analysis, and newer
ones, like Deep Belief Networks, have been studied so far and yielded
significantly better results than traditional techniques. In this paper we
study the potential of Shift-invariant Sparse Coding (SISC) as an addi-
tional Feature Learning technique for activity recognition. We evaluate
the performance on several publicly available activity recognition data
sets and show that classification based on features learned by SISC out-
performs other previously presented Feature Learning techniques.
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1 Introduction

Context-aware computing provides intelligent systems with the ability to per-
ceive the world from the user’s perspective and allows to provide smart assistance
where necessary. Human activity is an important cue for inferring the state and
context of a user. In recent years, activity recognition has gained increased at-
tention due to its usefulness and practical success in application domains such as
medical diagnosis, rehabilitation, elderly care, assembly-line work, and human
behavior modeling in general. As a result, a number of successful approaches
have been built for recognition of a wide range of activities.

In most cases, activities are recognized by their body movements, since they
are clearly defined by the motion and relative position of the user’s body parts.
Sensors, attached to the body or embedded into objects that are utilized through-
out the activities, are used to capture those movements. One of the main issues
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2 Learning Features with Shift-invariant Sparse Coding

in activity recognition is that the sensor readings are typically noisy and often
ambiguous. By applying signal processing and pattern recognition techniques,
those data can be automatically analyzed, yielding a real-time classification of
the activities.

In activity recognition the goal is to detect and classify contiguous portions
of sensor data that contain the activities of interest. A widely adopted approach
is the sliding window technique, where overlapping frames of the incoming mul-
tidimensional signal stream are extracted and a set of features is computed over
each frame. The features are then categorized by means of some classifier. Popu-
lar features computed from the signal are mean, variance or standard deviation,
energy, entropy, correlation between axes or discrete FFT coefficients (see e.g.
[2] for a good comprehension). Common methods for classification based on the
extracted features include Naive Bayes, Decision Trees, K-Nearest-Neighbors,
and Support Vector Machines (see e.g. [6, 7]).

As mentioned by Plötz et al. in [7], feature extraction is usually a heuristic
process that is driven by domain knowledge about the application at hand. This
process has to be repeated for every new application domain and sometimes even
for new sensor setups in the same domain. Thus, conventional approaches are
usually tailored to specific applications. One way to overcome this restriction
and build a general approach is to find methods to automatically discover useful
features in the data or, in other words, adapt the features to the data.

Activity recognition techniques are usually built of two main components:
(i) a feature extraction technique and (ii) a classifier. Most approaches are using
the above mentioned standard features. Only recently, first attempts have been
made in applying machine learning techniques to learn features from the data.
Plötz et al. [7] use two feature learning techniques, namely PCA and Deep Belief
Networks, to automatically discover features. By applying feature learning as
a preprocessing step, the authors argue, a universal feature representation is
created that captures the core characteristics of the data. The authors show
that classification based on the discovered features yields significantly better
results, then traditional techniques.

We would like to contribute to that line of research by investigating Shift-
invariant Sparse Coding as another technique for feature learning in the area of
activity recognition. The idea of Sparse Coding is that the data can be repre-
sented as a composition of sparsely distributed features. The data is imagined as
consisting of two hidden components, (i) the set of features and (ii) activations of
those features that mark, when a feature occurs in the data. The goal is to learn
the features as well as their activations from the data in an unsupervised man-
ner. The learning problem can be decomposed into two subproblems, the coding
problem and the dictionary learning problem. In the coding problem, the fea-
tures are assumed to be given and fixed. Here, the goal is to find a minimal set of
activations such that the input data is best reconstructed, i.e. the error between
input data and linear superposition of the features according to the activations
is minimized. In the dictionary learning problem, the activations are assumed to
be fixed and the goal is to adapt the features to the data given a known set of
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activations. By initializing dictionary and activations randomly and alternating
the two steps iteratively, one can learn both components simultaneously.

In the domain of time series processing, Sparse Coding has been mainly used
for auditory signal coding. In [9], the authors aim at computing a sparse repre-
sentation of natural audio signals in form of spike trains, where the spikes mark
activations of a set of basis functions (or features), which are also learned, and
represent an optimal dictionary. The authors argue that such a representation
provides a very efficient encoding and uncovers the underlying event-like struc-
ture of the signal. More recently, Sparse Coding has been applied to find patterns
in movement data, like walking cycles of human legs [4].

We use an approach similar to that published in our earlier work [10], where
Sparse Coding has been utilized to learn features from handwriting data and
generate handwritten characters using the features and statistics of their typi-
cal occurrence. The contribution of this work is the use of that framework for
learning features from general activity data, which is much more diverse, and to
build a simple classifier using those features.

We compare our results to those published by Plötz et al. [7], where PCA and
Deep Belief Networks have been compared to conventional approaches for feature
extraction. The authors evaluate their approaches on four publicly available
activity recognition data sets. To be comparable, we will evaluate our approach
on the same data. The rest of this work is organized as follows. We describe our
approach in detail in Sec. 2. In Sec. 3, we compare our approach to previously
published approaches on a number of activity recognition data sets. Finally, we
discuss our work in Sec. 4 and give a brief outlook on its potential in activity
recognition.

2 Method

Feature Learning We formalize Feature Learning as a Sparse Coding (SC) prob-
lem. In general, given an input signal, the goal in SC is to find features (or basis
vectors in SC terms) and a sparse set of feature occurrences (or activations in SC
terms) that, when linearly superimposed, reconstruct the input. We use a special
kind of SC formulation as a Non-negative Matrix Factorization (NMF) problem.
As detailed later, this problem can be solved by minimizing an energy function
on the error between reconstruction and input plus a penalty on the activations.
By imposing a non-negativity constraint, i.e. basis vectors and activations have
to be non-negative, and a sparseness constraint on the activations, the resulting
basis vectors are interpretable as features that constitute an alphabet underlying
the data [5]. We further use a variant of NMF called Shift-NMF [1]. Shift-NMF
introduces translation-invariant basis vectors. Thus, a basis vector can occur
anywhere in the input, which is necessary for temporal signals with reoccurring
features. In the following, we will give a formal description of the problem and
the update equations.

As mentioned earlier, consecutive, overlapping frames are extracted from the
input signal before feature extraction. Feature learning is then performed over
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4 Learning Features with Shift-invariant Sparse Coding

all frames simultaneously. Let Vd ∈ RN×T denote the matrix of the N training
frames of frame length T , where d indexes the dimensions of the signal. For
ease of notation, we separate the dimensions of the signal into distinct matrices,
indexed by d. A single frame is denoted as Vd

n and the scalar elements by V d
n,t.

Let Wd ∈ RK×L be the matrix of K basis vectors of length L, with elements
W d

k,l. We denote the single basis vectors by Wd
k. Let H ∈ RN×K×T be the tensor

of activations Hn,k,t of the k-th basis vector at time t for frame n.
In NMF the input, basis vectors, and activations are constrained to be non-

negative. Thus, for NMF to be applicable, the input signal has to be made non-
negative. We do this by doubling the number of input dimensions and projecting
the negation of its negative parts to the new dimensions. The non-negative input

Ṽd̃ as used in the calculations below is then given by

Ṽ2d = max(Vd, 0), Ṽ2d+1 = max(−Vd, 0) . (1)

For ease of notation, we resubstitute Ṽd̃ with Vd again. However, please keep
in mind, that Vd denotes the non-negative input from now on.

We learn Wd and H with NMF by minimizing the following energy function

F =
1

2

∑
d

∥∥Vd −Rd
∥∥2
2

+ λ ‖H‖1 . (2)

The matrices Rd ∈ RN×T are the reconstructions of the frames by activation of
the basis vectors Wd through activations H, which can be formalized as

Rd
n,t =

∑
k

conv
Hn,k,W

d
k
(t) , (3)

where convX,Y (t) denotes temporal convolution ofX with filter Y at time t. Here,

we introduced normalized basis vectors W
d

k, where the normalization is done
jointly over all dimensions d. This normalization is necessary during learning to
avoid scaling problems as described in [1].

The energy function in eq. 2 formalizes the standard approximation scheme
commonly used for Sparse Non-negative Matrix Factorization. The first term is
the distance measure and the second term is a penalization of the overall sum of
activations, weighed by the sparseness weight λ. Due to lack of space, we refer
to a more detailed explanation in our earlier work [10].

This optimization problem can be solved by alternating the update of one of
the factors H or Wd, while holding the other fixed. Due to the non-negativity
of the two factors, the update can be formulated as an exponentiated gradient
descent with better convergence properties then pure gradient descent (see e.g.
[5]). For a detailed description of the optimization procedure, we refer to [10].

After applying NMF to the data, we have a representation of the input in
terms of learned basis vectors and activations. We interpret the basis vectors as
features and their corresponding activations as temporal occurrences of those
features. For illustrations of the resulting representation, we refer to [10] again.
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The full procedure as described above is applied in the training phase for
learning the features. During application phase, this optimization is applied
again, but the features are given and held fixed and only the activations are
updated. Thus only steps 1 to 3 have to be iterated and step 4 is left out.

Classification As mentioned earlier, we compare our Feature Learning tech-
nique to the ones presented in Plötz et al. [7]. To compare the performance
of the different techniques, Plötz et al. use the K-Nearest-Neighbor algorithm
as a simple classifier. To get comparable results, we also adopt this technique.
The K-Nearest-Neighbor algorithm represents a simple but effective standard
approach that simply stores all feature vectors from a training set and assigns
to a new feature vector the label of the majority of its k nearest neighbors in the
feature space. We emphasize that we do not aim at presenting the best possible
classifier, but merely want to compare our feature extraction technique to the
ones presented earlier.

Applying the classifier to the activations for frame n Hn (which encodes the
temporal positions of features within the frame) directly would yield bad results,
because instances of the same class generally differ slightly in the temporal po-
sitions of features. Thus, to be temporally invariant within a frame, we sum
the activations over the temporal dimension of the frame, yielding the summed
activations for each feature as a feature vector that is passed to the classifier.

3 Experiments

Data sets We evaluate our method in comparison to the results presented Plötz
et al. [7]. The authors tested their methods on four publicly available data sets,
which will be described briefly in the following.

Pham et al. [6] describe the data set “Ambient Kitchen 1.0” (AK) consisting
of food preparation routines with sensor-equipped kitchen utensils. 20 Persons
either prepared a sandwich or a salad, using two kinds of knifes, a spoon, and a
scoop, the handle of each of which was equipped with a tri-axial accelerometer.
In total, the data consist of 4 hours of recording, sampled at 40Hz, where about
50% cover ten typical food preparation activities.

Huynh et al. [3] describe the dataset “Darmstadt Daily Routines” (DA) con-
sisting of 35 activities of daily living (e.g. brushing teeth, setting the table), cap-
tured by two tri-axial accelerometers (one wrist-worn, the other in the pocket)
in a lab-like environment. After preprocessing, they yield a sampling frequency
of 2.5Hz. In [7] only results for the pocket sensor are presented, hence we also
use only the pocket sensor.

Zappi et al. [11] describe the dataset “Skoda Mini Checkpoint” (Skoda) con-
sisting of activities of an assembly-line worker, wearing a number of accelerome-
ters on his arms, while performing ten tasks of quality checks for correct assembly
of car parts. The data consists of three hours of recording, sampled at 96Hz. As
in [7] we only use a single accelerometers at the right arm.

Roggen et al. [8] describe the dataset for the “Opportunity Gesture Chal-
lenge“ (Opp) consisting of activities of daily living in a kitchen environment,
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recorded with multiple accelerometers, body-worn or embedded into objects.
Multiple subjects have been recorded on different days. As in [7] we only con-
sider the data of the right arm of the subjects. Also as in [7] we only consider
10 low-level activities and one unknown activity class. The data is sampled at
64Hz.

In [7] only a small excerpt of the data is used, consisting of recordings of
one subject, because the full data set was not published yet at the time of the
publication. Since we have the full data set and the subject used by [7] is left
unspecified, it is difficult to get a fair comparison. Thus, for the comparison to
[7] to be fairer, we evaluate our method on each single person separately and
present the minimum accuracy over all subjects in the dataset.

Before applying SISC, we normalized all datasets by PCA and resampled
them to 10Hz, which seemed to be sufficient for activity recognition.

Features In Plötz et al., four feature extraction techniques are presented, namely
Statistical, FFT, PCA, RBM. Further a preprocessing technique based on the
empirical cumulative distribution function (ECDF) is used to normalize the
data. ECDF is combined with PCA and RBM and called PCA+ECDF and
RBM+ECDF. We will describe the methods very briefly here. Please refer to [7]
for a deeper explanation.

The method Statistical refers to the most commonly used feature extraction
method, which is to extract statistical measures, like mean, standard deviation,
energy, and entropy over the whole frame. For each sensor, Plötz et al. use x,
y, z, pitch, and roll and compute the statistics over each channel independently
plus the pairwise correlation between x, y, and z, resulting in a 23-D feature
vector for each frame.

The method FFT is also widely used and consists of computing for each chan-
nel independently the Fourier coefficients through the Discrete Fourier Transform
(DFT). Usually only a subset of the resulting Fourier coefficients is used. In [7]
the first 10 are used.

In the method PCA, features are learned by Principal Component Analysis
(PCA). The Eigenvectors corresponding to the largest Eigenvalues are kept as
features. In [7] the 30 largest Eigenvectors are used.

The method RBM refers to a technique based on Deep Belief Networks. Deep
Belief Networks are auto-encoders that use a hierarchy of Restricted Boltzman
Machines (RBM) for extracting useful features. It has been shown that Deep
Belief Networks can uncover features in the data, which, in turn, can be used
for classification. In [7] an architecture consisting of four layers with 1024 Units
in each hidden layer and 30 units in the output layer is used.

Additionally to the methods described above, we present results using Shift-
invariant Sparse Coding (SISC). For SISC a number of parameters have to be
chosen. We applied grid search to find a single set of parameters that gave the
highest average classification accuracy for all data sets. The final parameters are
as follows: the frame size T is 7 seconds, the width of the basis vectors L is 2.5
seconds (note however that the effective width, i.e. the part of the basis vector
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that is actually used and above zero, can vary), the number of basis vectors K
is 20, and the sparseness parameter λ is 0.1.

In the classification stage of our method we used a K-Nearest-Neighbor clas-
sifier with K set to 5. Higher values had no significant impact on the results.

We validated our results by class-balanced 10-fold cross-validation. Regarding
computational performance, the learning phase takes up to half an hour on a
2.6GHz Quad-Core CPU for the larger data sets. The application phase takes
about 30 milliseconds per frame, which is well within real-time boundaries.

Results We conducted one experiment devoted to the classification accuracy
using the respective feature extraction techniques. In Fig. 1 the classification ac-
curacies for the seven techniques are shown. The results of the first six techniques
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Fig. 1: Classification accuracies of the seven approaches for the four datasets.

are taken directly from [7]. The authors state, that these results are comparable
with those published earlier for those data sets. The seventh technique SISC is
our shift-invariant Sparse Coding approach. Interestingly, SISC yields signifi-
cantly better results on three of the four data sets. We reason that this is mainly
due to the shift-invariant nature of this coding technique, which learns features
independently of their position in a particular frame and can, in turn, detect a
feature even if it is shifted slightly in a frame. Because when a pattern is slightly
shifted in a frame, the sum over activations, and hence the feature vector, does
not change, which is not the case for PCA and RBM.

In summary, one can use SISC to successfully learn features in an unsu-
pervised manner without prior domain knowledge. Further, SISC outperforms
PCA and Deep Belief Networks as a Feature Learning technique in some cases.
The caveat, however, is that PCA and Deep Belief Networks are faster during
application phase, since they can be applied by simple matrix multiplication,
while in SISC a few iterative steps have to be computed for each frame. But, for
small frames sizes of up to a few seconds the computational time lies well within
real-time boundaries.
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4 Conclusion

We have presented Shift-invariant Sparse Coding (SISC) as a Feature Learn-
ing technique for activity recognition. We compared our method to traditional
methods for feature extraction and to two recent approaches for Feature Learn-
ing, namely PCA and Deep Belief Networks. The evaluation was performed on
four publicly available data sets. The results show that SISC outperforms all
other methods on three of the four data sets. Thus, SISC has great potential for
application in activity recognition.

Plötz et al. [7] mention that Feature Learning techniques can potentially be
used for further sub-frame analysis, which is important if one wants, e.g., to
assess certain properties, like the quality of the activities performed. SISC is
particularly suited for that task, because the sparse nature of the representation
and the shift-invariance allows features to be well localized in time. Thus, the
exact position of the features or the relative positions of different features in a
frame can be used as a cue for sub-frame analysis.
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