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Abstract— In order to act socially compliant with humans,
mobile robots need to show several behaviors that require the
prediction of people’s motion. For example, when a robot avoids
a person, it needs to respect the human’s personal space [1]
and the avoidance behavior needs to be smooth, so that it is
understandable to the interaction partner. To achieve this, the
robot needs to reason about future paths a person is likely to
follow. Because humans adapt their avoidance behavior to the
robot’s motion, the proposed method performs lifelong learning
of the people’s behavior while it adapts its own behavior to
their motion. The human avoidance behavior is modeled by
a discrete, multi-modal, spatio-temporal distribution over the
people’s future occurrences. This prediction is based on the
people’s positions and their velocities relatively to the robot and
the obstacle situation of the robot’s environment. The proposed
prediction method is significantly better than a simple linear
prediction. Particularly, for tactical decisions, like whether to
avoid a moving person on the left or on the right side, this
approach is well suited. Furthermore, when the humans get
used to a robot, also a long-term change of the human behavior
towards the robot can be learned by our approach.

I. INTRODUCTION
For mobile service robots, the navigation has not only

instrumental function to accomplish the robot’s tasks. Es-
pecially in public, sometimes crowded environments, like
supermarkets or home improvement stores, the navigation
is also part of nonverbal communication and has socio-
emotional importance. To optimize the human-robot inter-
action (HRI), it is necessary that the robot’s navigation
behavior is socially acceptable for the users of the robot and
for uninvolved bystanders, likewise. Particularly, assistant
or guiding robots need to be comprehensible, kind, and
non-intrusive. The application area of our robot is a home
improvement store. The robot’s task is to guide customers to
goods they are looking for. As one result of long-term field
trials executed in 2008 and 2009 [2], the following three
behaviors appeared important within this scenario:

Polite approaching: When a robot recognizes a person
willing to interact with the robot, it should approach the
person in a socially acceptable manner. The approached
human feels more comfortable when the robot shows an
approach behavior [3] where certain distances are kept [4].

Person focused guiding: When a robot guides a person,
e.g. through a home improvement store, it should adapt its
speed depending on the distance to the person, so that the
person can follow comfortably.
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Regardful navigation: During navigation, mobile robots
have to pass or avoid bystanders who are not interested in
an active interaction with the robot. Thereby, the navigation
should conform to the proxemics [1] again.

These three behaviors are essentially influenced by the
humans’ motion relative to the robot. To achieve a smooth
transition during the execution of these behaviors and thereby
to improve understandability for the humans, the robot needs
to reason about future paths the humans are likely to follow.
From our own experiments and literature we know that the
human motion towards other humans differs from the motion
towards robots. Hence, typical human motion patterns can
not be learned from human-human interaction. In fact, the
humans’ paths depend on the robot’s appearance and its
behavior [5], [6]. Therefore, our approach learns how humans
move in the presence of our robot by observing the humans
during its operation.

Although the proposed prediction method can be used for
all three behaviors, we will refer to the regardful navigation
in this paper. Essentially, our robot respects the personal
space [1] around humans while it avoids them or gives way.
Particularly, when a human and a robot avoid each other,
each of them needs to anticipate the other’s motion and adapt
its own behavior accordingly. While the robot learns how
humans avoid it and uses this prediction to avoid the humans,
it adapts its behavior towards the human. The human motion,
in turn, is influenced by the robots actions. Considering this
feedback loop, the robot performs lifelong learning of the
human avoidance behavior, while it continuously adapts its
own behavior.

The prediction of the humans’ motion is based on their
relative position to the robot, the human’s velocity vector,
and a sparse coding of the current obstacle situation in their
environment. In contrast to related work (Sec. II) for human
motion prediction, we are interested in short-term prediction
of the human motion while the human and the robot are
avoiding each other. The global position of a person becomes
less important than the spatial relation between human and
robot. This allows us to use a relative representation of
the person position in the state space, resulting in a better
coverage with training data and a better generalization for
changing environments.

The next section reviews related work in the field of
human motion prediction. Afterwards, Sec. III describes how
humans are tracked and their future occurrences are predicted
in our approach. Sec. IV describes how these predictions
are integrated within the Dynamic Window Approach [7] to
obtain a regardful navigation behavior. Thereafter, in Sec. V
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the prediction quality and measurable advantages for humans
are evaluated.

II. RELATED WORK

Many methods for avoiding [8], [9] or approaching [10]
humans by mobile robots integrate typical motion patterns of
humans into the robot’s path planning algorithm. For exam-
ple, in [8] stationary laser-range finders are used to capture
motion patterns of humans within an office environment. A
Hidden Markov Model is trained on this data and applied
to predict future positions of detected people. The predicted
trajectories are used during global path planning by the A*
algorithm on a 3D time-space cost map.

However, these approaches do not generalize for changes
in the environment. Therefore, in [11] the goal-directed
trajectories of pedestrians are modeled using inverse rein-
forcement learning. The learned cost functions generalize
for changes in the environment or even entirely different
environments. During path planning with the D* algorithm,
the time-varying predictions are added as costs to the cost
map. However, for this approach the pededstrians’ prior prob-
ability distributions over global target positions are required.
Therefore, the persons’ trajectories within the robot’s opera-
tional environment are tracked with external laser scanners.

The intention of the above mentioned approaches is to
predict the humans’ motion already when the robot is far
away. Then the predictions are used to spaciously avoid the
humans, preferably not influencing their trajectories by the
robot’s presence. However, in crowded environments it is
almost impossible for the robot to reach its goal if the robot
does not consider that the people will avoid it. In [12] this is
called the “freezing robot problem”. The proposed solution
is a direct interaction of human and robot, where the robot
acts socially compliant while human and robot engage in
joint collision avoidance. Accordingly, in [13] the basic idea
of feature matching using maximum entropy distributions
[11], is used to model the cooperation of multiple people.
This model is used to predict the trajectories of the humans
and the robot based on their current positions. Then, the
robot follows the trajectory which was predicted for itself.
However, like in [11], the humans’ global target positions
need to be estimated.

Furthermore, it is noted in [12], [13] that humans react
differently to robots than to other humans. Therefore, models
which are learned from human-human interaction, like the
social forces model [14], relative motion prototypes [15] or
inverese reinforcement learning [16], are not directly trans-
ferable to human-robot interaction. In contrast to the above
mentioned methods, training data needs to be captured while
the robot is actually present. In this case, the robot is able
to capture the training data, and the operational area does
not need to be equipped with an external tracking system,
like laser-range finders, which were used for many of the
aforementioned approaches. Because humans are only locally
avoided, the time of avoidance and the necessary prediction
time reduces, resulting in generally less uncertainties.

III. PERSON TRACKING AND PREDICTION
A. Person Tracking

The positions of people are tracked by the robot using
a Kalman filter-based tracking system. The system applies
visual person detection and upper body orientation estimation
[17] based on Histograms of Oriented Gradient (HOG)
features [18]. An additional cue is given by laser-range
finder-based boosted leg detection [19]. The Kalman filter
tracks person hypotheses in a nine-dimensional state space
in which position, velocity, and orientation of the person are
represented by 3 dimensions, respectively.

For the human motion prediction, we are only interested in
the position and velocity of persons in the xy-plane. There-
fore, the system generates a person specific track for each
hypothesis si(t) = (pi(t),vi(t)) for each time step t, where
pi(t) denotes the person’s 2D position, vi(t) denotes the 2D
velocity and i is the identification number of the respective
track. Note, that position and velocity are given relatively to
the current robot position r(t). The robot’s velocity might be
added to the state space to improve the prediction, but this
increase of dimensionality is not investigated in this paper.
B. Human Motion Prediction

For prediction of the future person positions, the person’s
state si(t) is complemented by the obstacle situation in
the robots environment e(t). The obstacle situation e(t) is
coded by a 3D vector, whereas each dimension represents
the average distance of a 90◦ section (left, front, right) of
the 270◦ laser scan. This results in a seven dimensional
state space si(t) = (pi(t),vi(t),e(t)). An on-line clustering
function c(si(t)) = c j is used to iteratively form C clusters
from all observed states si(t) in state space S. As shown in
Fig. 1, for each cluster c j a spatio-temporal belief distribution
is stored in terms of a set of belief distribution grid maps
Mc j

1 , . . . ,Mc j
T . The cells of each map Mc j

τ represent the
belief Bel(c j,∆tτ ,x,y) of the expected person’s position (x,y)
relatively to the current robot position r(t) in a future time
interval ∆tτ .

Bel(c1,∆t2,x,y)c1

c2

c3

∆t1

∆t2

∆tT
S

x

y

Fig. 1. Each cluster c within the seven-dimensional state space S holds a
discrete, multi-modal belief distribution map over the future person positions
for multipe prediction time intervals ∆t. The positions of the grid cells
are relative to the initial robot position r(t) at the time of prediction.
Accordingly, the robot’s initial position r(t), which is marked by a red
ellipse, is always located in the center of the belief maps. The dashed
arrow shows the motion of the maximum belief, which is visualized by
the intensity of the red color, over time.

While the robot interacts with humans, each tracked
person hypothesis is mapped to the state space yielding
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the current state si(t). Then, si(t) is used to update the
position of the best matching cluster c(si(t)) according to
a sequential implementation of the k-means algorithm [20],
using the normalized Euclidean distance as distance measure.
Furthermore, the current person position pi(t) is used to
update the belief distribution maps of previous best matching
clusters c(si(t − ∆t1)),c(si(t − ∆t2)), . . . ,c(si(t − ∆tT )). For
each previous best matching cluster c(si(t − ∆tτ)) at time
t − ∆tτ the current person position pi(t) is transformed
relatively to the previous robot position r(t−∆tτ). The belief
distribution of the cluster is finally updated by incrementing
the belief value of the cell in map Mc(si(t−∆tτ ))

τ that corre-
sponds to that relative person position. Hence, the current
person position acts as prediction for the past point of time
t−∆tτ .

IV. REGARDFUL NAVIGATION
To obtain a regardful navigation behavior, the predicted

spatio-temporal occupation probabilities of the tracked peo-
ple are respected during planning of the robot’s motions.
This is performed by the “regardful navigation objective”,
an additional objective rating candidate motion commands
in the dynamic window approach (DWA) [7]. The physically
possible velocities, which are achievable by the according
motor commands, are sampled. For each velocity v, a cost
value cost(v) is calculated, which specifies the probability
that the robot will collide with the personal spaces of
the tracked persons within the prediction window ∆t. The
prediction time varies between 2 and 5 seconds, depending
on the robot’s velocity. Therefore, for each currently tracked
person i the considered time window is sampled T times to
find the maximum violation of the person’s personal spaces
at a future point of time by the future robot position. Then,
the maximum violation costs of all persons are averaged:

cost(v) =
1
i ∑

i
max

∆t1,··· ,∆tT
F(r(t)+v ·∆t︸ ︷︷ ︸

r′=r(t+∆t)

, t,∆t, i) (1)

The cost function F predicts the violation costs of the
personal space of a person i at time t +∆t by the robot at
its future position r(t+∆t). The future robot position results
from the robot’s velocity v and the prediction time ∆t. A
simple cost function Fl linearly predicts the future person
position and represents the violation costs of its personal
space by a Gaussian function:

Fl(r′, t,∆t, i) =exp
(
−|r

′− (pi(t)+vi(t) ·∆t)|
2σ2

)
(2)

This simple cost function is presented here, because it is used
during our experiments to benchmark a more sophisticated
cost function Fp, which uses the learned belief distribution
maps to predict the future person positions:

Fp(r′, t,∆t, i) =∑
x,y

exp

(
−
∣∣r′− (x,y)T

∣∣
2σ2

)
·

Bel(c(si(t)),∆t,x,y)
∑
x,y

Bel(c(si(t)),∆t,x,y)
(3)

The cost function Fp(r′, t,∆t, i) of a certain cluster c j = c(si)
is visualized in Fig. 2. For each time interval ∆t, a continuous
cost function for violation of the person’s anticipated per-
sonal space is coded by a Mixture of Gaussians. Therefore,
a Gaussian function is placed at each grid cell (x,y)T of the
belief distribution map, and each Gaussian is scaled with
the belief Bel(c j,∆t,x,y) of the cell. Then, the given robot
velocity v (green arrow) is used to calculate the future robot
position r(t +∆t) = r(t)+v ·∆t (green ellipse) relatively to
the current robot position r(t) (red ellipse). The costs of a
velocity v result from the value of the mixture of Gaussian
function at the future robot position r′ = r(t +∆t).

∆t1

∆t2

∆tT

x

y r(v, t +∆t)

Fig. 2. Cost value calculation for a given cluster c j and robot velocity v
(green arrow) for different time intervals ∆t: At each grid cell (x,y) a two-
dimensional Gaussian function represents the costs for entering the personal
space of a person located at the cells center. Each Gaussian function is scaled
by the belief Bel(c j,∆t,x,y) (see Fig. 1) that a person will be at this position
at ∆t. The costs of a future robot position r(v, t +∆t) result from the value
of this mixture of Gaussian function at the future robot position.

One parameter of the cost calculation functions Fl and
Fp is the standard deviation σ of the applied Gaussian
function. It influences the size of the personal space around
the detected people and, thereby, how respectful the “regard-
ful navigation objective” behaves. Furthermore, the robot’s
politeness is also dependent on the weight of this objective
compared to the weights of the other objectives within the
DWA. As noted in [12], a robot could learn that humans
always give way when the robot aggressively approaches
them. Accordingly, it is not enough if the robot predicts
the human motion correctly. Instead of that, the robot needs
to keep enough distance that the person does not hesitate
to choose a more pleasent path. Accordingly, in the next
section the prediction accuracy and the degree of the robots
politeness are investigated separately.

V. EXPERIMENTS
To analyze the abilities of our approach, we performed

several experiments, separated into analysis of the motion
prediction on its own and the actual influence of the obtained
robot behavior to the human motion. These experiments were
performed in a hallway of an office building (Fig. 3).

A. Prediction accuracy
The first experiment was supposed to validate whether

the belief distribution maps are generally suitable to pre-
dict the human motion. Therefore, the quality of the cost
function Fp(r′, t,∆t, i), which is based on the predicted belief
distribution maps, is compared with a simple cost function
Fl(v,∆t, i), which is based on linear prediction of the human
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Fig. 3. One floor of the office building where the experiments were
performed. The operational area of the guide robot is highlighted green.

motion. The used quality criterion is the continuous cross-
correlation ccF of the predicted cost function F (r′, t,∆t, i)
and a ground-truth cost function G(r′, t + ∆t, i), which is
based on a subsequent observation of the actual person
position at time t ′ = t +∆t:

ccF(t,∆t, i) =
∫

r∈R2

F
(
r′, t,∆t, i

)
·G
(
r′, t +∆t, i

)
dr (4)

G(r′, t ′, i) =exp
(
−|r

′−pi(t
′)|

2σ2

)
(5)

The evaluation of the cost functions is suitable for the
continuous linear prediction that is used for Fl and the
predicted discrete distribution that is used for Fp. Further-
more, the cost functions are evaluated, because they directly
influence the robot’s regardful navigation behavior. Certainly,
the cost functions (Eq. 2, 3, 5) depend on the used standard
deviation σ . Therefore, different standard deviations have
been investigated.

Fig. 4. Robot’s path (blue) within the hallway. The tracked paths of the
people in the robot’s environment are shown in red color. The tracked person
positions were firstly used for online evaluation of the prior trained motion
model and thereafter to train the motion model for later evaluation.

For this experiment, the robot visited different navigation
points at the main floor, using the E* algorithm [21] for
global path planning. During its tour, people were tracked
and their states si(t) were used to predict the future cost
functions using Fp(r′, t,∆t, i) and Fl(r′, t,∆t, i). Furthermore,
the posterior observed states si(t+∆t) were used for the cost
function G(r′, t +∆t, i) and to update the belief distribution
maps. Note, that during this first experiment the cost function
Fl(r′, t,∆t, i) has been used for regardful navigation. This is
to make sure that the robot does not change its behavior
during learning of the human motion, because this might
in turn effect the learned human motion. The robot’s path
during this experiment is shown in Fig. 4 with blue color.
The persons’ tracks, which were used to train and evaluate
the predictions, are shown in red color.

Fig. 5 visualizes the belief grid maps of a trained cluster.
Altogether 600 clusters were used, and for each of them
20 belief distribution maps were learned, with each map

(a) 1.75s - 2s (b) 2.75s - 3s

(c) 3.75s - 4s (d) 4.75s - 5s

r(t) p(t)

(e) 0s - 5s
Fig. 5. Visualization of one cluster’s trained belief distribution maps
of future person positions (see schematic diagram in Fig. 1). The cluster’s
initial person position and velocity (red arrow) is considered relatively to
the initial robot pose (blue arrow). Each belief distribution map covers a
250ms interval in time and 15m×15m in space with 40×40 grid cells. For
each grid cell, the belief is coded by the intensity of the red color: a)-d) 4 of
20 individual belief distribution maps e) belief distribution over all intervals
from 0s to 5s accumulated

storing the belief over a 250ms interval, resulting in a total
prediction window of 5 seconds. Each grid map covers
15m×15m = 225m2 of the robot’s local surroundings using
40×40 = 1600 grid cells. Using floating point precision to
store the belief, overall around 74MB were necessary to store
all belief distribution maps of all clusters. Admittedly, an
intensive examination of the number of neccessary clusters
should be made or an incremental cluster approach should
be applied in future.
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(b) σ = 2.0m
Fig. 6. Evaluation of linear predicted cost function Fl and cost function
Fp, which is based on our proposed motion model. Both cost functions
were evaluated by cross correlation ccF with the ground-truth cost function
G, whereas in a) a standard deviation σ = 1.0m and in b) σ = 2.0m was
used. Each plot is low-pass filtered by averaging over 50 consecutive cross
correlation values. There are less position observations for 5s prediciton than
for 1.5s, because the on-board tracker could not always track the persons
complete 5s.

Fig. 6 visualizes the prediction quality of the proposed
approach Fp (solid graphs) and the linearly predicted cost
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A B

(a) Linear prediction while the person
avoided the robot turning away from the wall.

A B

(b) As (a), using the learned prediction.

A B

(c) Linear prediction while the person
avoided the robot according to right-hand
traffic rules.

A B

(d) As (c), using the learned prediction.

Fig. 7. Robot’s path (blue) and human path (red) during mutual avoidance while person
and robot repeatedly swapped positions A and B. In a),b) the person avoided the robot always
turning away from the wall. In c),d) the person avoided the robot according to right-hand
traffic rules.
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Fig. 8. Evaluation of linear predicted cost function Fl
and cost function Fp, which is based on our proposed
prediction method. Particularly, for the 5.0s prediction the
improvement by the learning approach compared to the
linear prediction becomes evident.

function Fl (dashed graphs). Note, that the cross correlation
of an equally distributed belief would be around 0.055 and
the maximum reachable cross correlation is 1.0. After 50
predictions of a certain prediction window ∆t have been
validated, the average cross correlation value ccF over the
last 50 evaluations is plotted. It is shown that the proposed
approach Fp always gains a better ccF than the linear method.
Furthermore, it is shown that the difference between both
approaches increases, because Fp improves due to learning
and Fl is static. This is particularly evident for the 5 seconds
prediction interval. The use of different standard deviations
in Fig. 6(a) and Fig. 6(b) shows that a bigger σ generally sup-
ports the cross correlation, but does not induce a qualitative
difference. Note, that the applied Kalman filter-based tracker
uses a linear prediction model. Thereby, whenever persons
were not detected properly, the linear predicted cost function
Fl profits. Furthermore, many persons were tracked in great
distance to the robot. Thereby, the robot often had very little
influence on the people’s path, and the people could continue
their mostly linear path. However, particularly when person
and robot are very close to each other, the prediction becomes
important because both have to deviate from a straight-lined
path. This is investigated in the next experiment.

B. Detour of humans during robot avoidance
In this experiment, the actual influence of the human

motion modeling on the robot behavior is investigated. Obvi-
ously, the satisfaction of the robot’s interaction partners with
the robot’s behavior would be a particularly suitable quality
criterion. However, at the moment technically measurable
quality criteria are used. Taking into account that humans
prefer to walk economically, we used the people’s detour
during robot avoidance to benchmark the robot’s behaviors.

Therefore, we created a setup where a person and the robot
repeatedly had to swap positions, whereby they were forced
to pass each other (Fig. 7). Thereby, two different avoidance
behaviors were performed and for each behavior the linear
predicted cost function Fl and the proposed cost function Fp
were tested. During two experiments, the person avoided the

robot at the side with the greatest clearance (Fig. 7(a) and
7(b). The “greatest clearance avoidance” corresponds to a
careful behavior, which expects little abilities of the robot.
During the third 7(c) and fourth 7(d) experiment, the person
avoided the robot according to right-hand traffic rules. This
means that the person had to walk between robot and wall,
when moving from starting position B to goal position A.
Initially, the robot’s belief distribution maps were untrained.
Thus, the robot had to learn the humans’ avoiding strategy
and adapt its behavior while the experiment was performed.

The prediction accuracy for the second experiment is
visualized in Fig. 8. It shows that Fl is insufficient to
model this nonlinear avoidance behavior. In contrast, Fp
continuously improves while on-line learning compared to
Fl . Note, that the robots behavior and therewith the human
avoidance strategy changes while the robot learns the human
motion. The actual impact to the robot’s motion and thereby
to the human avoidance becomes clear, when the human
detour is evaluated.

Although the robot uses its laser-range finder for obstacle
detection and person tracking, the evaluation is based on an
external tracking system [22], delivering ground truth data
independent of potential error in the robot’s self localization
or person tracking system. While the person and the robot
avoided each other, the detour of the human relatively to
the direct connection of starting point and end point was
captured. The visualization of the paths is shown in Fig.
7 and the results of the avoidance detour calculation are
presented in Fig. 9.

For both avoiding strategies, during training of the pro-
posed prediciton function Fp, the detour decreases steadily
and reaches lowest values compared to avoidance, which
is based on linear predicition Fl or without prediction Fn.
Further below is explained, why the linear prediciton causes
the robot to avoid in the same direction as the person. Since
no avoidance would be better in this case, the plot for Fn in
Fig. 9 additionally shows the detour, when the robot assumes
that the person stays where it is currently observed. Notice,
that the detour decreases when linear prediciton is used,
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Fig. 9. Human detour for clearance directed (a) and right-hand traffic (b)
avoidance. For both strategies the progress of the detour when using linear
prediciton Fl , proposed prediciton Fp and no prediciton Fn are plotted. Each
plot is low-pass filtered by averaging over 4 consecutive detour values.

although the linear prediction does not learn. Instead, the
person learned to avoid the robot early, to prevent it from
avoiding in the same direction. During “clearance directed
avoidance” the robot had to avoid the person towards the
wall when moving from A to B and vice versa. During
“right-hand traffic avoidance” the robot only had to avoid
the person towards the wall when moving from B to A.
Because the wall limits the robot’s avoidance space, the
human avoidance detour is greater for the “clearance directed
avoidance”. When the robot uses linear prediction for the cost
function Fl , it tends to avoid the person turning away from
the wall. This is because next to the “regardful navigation
objective” a “distance objective” is used for the “dynamic
window approach” [7]. This objective calculates greater costs
cost(v) for velocities, which lead towards the wall. When the
person applied “right-hand traffic” and walked from B to A,
person and robot perfectly avoided each other. But when
the person walked from A to B or when the person applied
the “biggest clearance avoidance”, the person and the robot
tried to avoid each other at the same side. Thereby, the robot
even had to back up sometimes. This is the reason why the
linear prediction causes particularly long avoidance detour
for humans which apply the “clearance directed avoidance”.

VI. CONCLUSIONS

This paper addresses the joint collision avoidance of
humans and robots. Instead of global prediction of human
motion and spaciously avoidance of the tracked people,
they are avoided locally in a socially compliant manner.
Thereby the human motion is directly influenced by the
robot’s presence and its navigation behavior. Therefore, we
propose a method for lifelong learning of the human motion
in proximity to a robot. The motion prediction is based on
the person’s position and velocity relatively to the robot and
the obstacle situation in their local environment. We have
shown that belief distribution maps are suitable to learn and
predict human motion within a large hallway environment.
Furthermore, these predictions are efficiently integrable into
the DWA for motion planning respecting the human personal
space. Our experiments show that particularly the correct
prediction of the person’s avoidance direction of the robot
has great influence on the joint collision avoidance. In
contrast to linear prediction, our proposed method could
anticipate the direction of avoidance correctly for different

avoidance strategies. Thereby, the human avoidance detour
during the avoidance maneuver is significantly lower.

The proposed approach is able to predict the motion of
several persons and to respect their personal space. How-
ever, the motion prediction does not explicitly consider the
interactions of these persons among each other. Accordingly,
we plan to extend the proposed approach in future work.
Furthermore, we plan to socially evaluate the robot behavior.
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