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Abstract—In the field of human-robot interaction (HRI),
detection, tracking and re-identification of humans in a robot’s
surroundings are crucial tasks, e. g. for socially compliant robot
navigation. Besides the 3D position detection, the estimation of
a person’s upper-body orientation based on monocular camera
images is a challenging problem on a mobile platform. To obtain
real-time position tracking as well as upper-body orientation esti-
mations, the proposed system comprises discriminative detectors
whose hypotheses are tracked by a Kalman filter-based multi-
hypotheses tracker. For appearance-based person recognition, a
generative approach, based on a 3D shape model, is used to
refine these tracked hypotheses. This model evaluates edges and
color-based discrimination from the background. Furthermore,
for each person the texture of his or her upper-body is learned and
used for person re-identification. When computational resources
are limited, the update rate of the model-based optimization
reduces itself automatically. Thereby the estimation accuracy
decreases, but the system keeps tracking the persons around
the robot in real-time. The person’s 3D pose is tracked up to
a distance of 5.0 meters with an average Euclidean error of
18 cm. The achieved motion independent average upper-body
orientation error is 22◦. Furthermore, the upper-body texture is
learned on-line which allowed a stable person re-identification in
our experiments.

Index Terms—person tracking, upper-body pose estimation,
person re-identification, appearance model

I. INTRODUCTION

The detection and tracking of human position and upper-
body orientation is an important requirement to improve
human-robot interaction (HRI), e.g. for the realization of
socially compliant navigation behaviors or polite contact initi-
ation.

The spatial relation between a person and a robot is part of
nonverbal communication. A person’s upper-body orientation
towards the robot permits to estimate the human’s notice of
the robot or even the human’s interest in an interaction - a
recognition task which is highly relevant for many robotic
scenarios in public or private environments, as for example
supermarkets [1], public buildings [2] or own apartments [3],
[4]. Thus, it is a basis for the decision whether to approach
or better to avoid a human. Likewise, the robot’s navigation
behavior in relation to a person’s pose has socio-emotional im-
portance. Accordingly, the robot’s navigation behavior should
be adapted to the person’s pose. For example, the navigation

behavior should conform to the proxemics [5], whereby the
personal space could be modeled by a set of elliptic regions
relatively to the human pose and upper-body orientation [6].

Our mobile robot SCITOS G5 used in this study and in
former projects [1], [2] is equipped with an omni-directional
camera system, 1.5 m above the ground, and two laser range
scanners, which cover 360◦ of a horizontal plane, 0.4 m
above the ground. Both modalities are used to detect and
track persons around the robot. All detected and tracked
person hypotheses about torso position and orientation (with
uncertainties) are represented by 6D Gaussian distributions.
Thereby, we obtain a flexible modular system, where differ-
ent detectors can be added or replaced. For this work, we
use a laser-based leg detector [7] and a visual upper-body
detector, which additionally provides rough estimates of the
upper-body orientation [8], based on HOG features [9]. These
detectors complement each other well, because the laser-based
hypotheses have low uncertainties regarding the distance to the
robot, and the vision-based hypotheses have low uncertainties
regarding the height of the detected persons. Furthermore, the
laser-based detector has a high update rate, and the vision-
based detector has low false positive rate. In order to combine
the positive advantages of both detectors, a tracker processes
the asynchronous hypotheses of both detectors. Figure 1 shows
an overview of the whole system.

The main focus of this work is the refinement of the accu-
racy of the tracked hypotheses, particularly of their orientation
estimation. For this purpose, the parameters of a 3D upper-
body model are optimized by Particle Swarm Optimization
(PSO) [10], to match the appearance of the currently observed
image. Furthermore, the 3D model is used to learn the texture
of each tracked hypothesis for person re-identification. This
permits to recognize a person who left and re-entered the
robot’s detection area. In this work, we considered important,
that the system keeps tracking people, even when the avail-
able computing capacity reduces, e.g. when the robot has to
process further tasks. In such situations, we accept increasing
uncertainties of the resulting hypotheses.

The next section reviews state-of-the-art work, which is
related to our approach. Thereafter, Sec. III describes how the
detectors and the tracker are used to obtain tracking hypotheses
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Fig. 1. System overview: The asynchronous tracker and the leg detector
(green) have low computing requirements and work with high update rate to
continuously track multiple persons. The HOG detector (yellow) works with
lower frequency, but therefore, it has a lower false positive rate than the leg
detector. Since the tracker only outputs hypotheses, that have been supported
by both detectors at least once, the HOG detector significantly reduces false
positive hypotheses. Furthermore, it provides rough upper-body orientation
estimations. The remaining modules (orange) are used for appearance-based
refinement of the pose hypotheses to learn person-specific color models for
person re-identification.

for the people in the robot’s surrounding. The 3D appearance
model-based optimization of these hypotheses is specified in
Sec. IV. Section V shows the performance of our approach in
the context of experimental studies in multi-person tracking.

II. RELATED WORK

Human 3D pose estimation is challenging, because of the
complexity of human articulation and appearance. Therefore,
many approaches depend on multiple camera views [11], [12]
and are thus not applicable on mobile robots. Approaches that
are based on active depth sensors [13], [14], like KinectTM,
are less applicable in the aforementioned scenarios, as they
are limited due to the required data bandwidth, computational
and power resources, interferences through external IR light
sources (sunlight), and their limited field of view.

Approaches that perform on monocular camera images
are advantageous, because they can be used with wide-angle
cameras or even omni-directional cameras. These cameras are
relatively inexpensive, have high information content, and are
nowadays standard equipment on many mobile robots.

Approaches for pose estimation are often divided into
bottom-up (discriminative, conditional, recognition-based) and
top-down (generative) approaches. In our approach, the HOG
detection with view-point estimation as well as the laser-
based leg detection belong to the discriminative approaches.
However, the optimization based on the appearance model
forms a generative analysis-by-synthesis approach.

Commonly, top-down approaches synthesize a model to
render a human pose hypothesis into the image plane and
compare it with the observation based on image features.
The 3D models are mostly modeled by primitives, like cones
[15]. Like in [11], our appearance model uses a mesh based
shape model. Many approaches use silhouette features for
comparison [16]. Since background segmentation is relatively
difficult when the camera is moving, we prefer to use edge
features like in [17]. Other approaches use HOG descriptors
[18] or SIFT features [19]. Additionally to edge features,

we evaluate the HOG multi-resolution pyramid, because we
already use HOG features for discriminative person detection.

As reported in [19], generative approaches are claimed to
be computationally demanding in comparison to discriminative
approaches due to the high computational costs for projecting a
huge set of 3D pose candidates into the image and to compare
each projection with the person image using low-level image
features, like edges and silhouettes. For this reason, some
approaches comprise a combination of a top-down approach
with a discriminative bottom-up approach [20]. Thereby, the
parameter space of the generative model is significantly re-
duced. Furthermore, monocular, articulated 3D pose estimation
is challenging, because of the ambiguity of human 3D poses
in monocular images. This is particularly evident, if only the
silhouette is considered. For this reason, in [20] view-point
specific HOG detectors are used within a first stage to solve
the ambiguity regarding the orientation. This approach is very
similar to our HOG detection with rough orientation estimation
[8], whereas in [8] the orientation classification is faster due
to the application of a decision tree. In [20] two further stages
are applied for 2D body part estimation and to recover 3D
poses. However, all of these stages are processed sequentially,
and this purely visual approach is not real-time applicable. Our
proposed approach makes use of the laser range scanner, and
it performs pose tracking in parallel with appearance-based
pose optimization. Thereby, it achieves tracking of person’s
position in real-time (10Hz) and estimation of joint angles at
lower update rate (approx. 1Hz).

III. DETECTORS AND TRACKER

A. Detectors

Leg detector: The approach of [7] is used to detect pairs of
legs in the 2D laser scan S(t) at time t. To create a 3D torso
hypothesis from a leg pair’s position, it is assumed that the
torso is located above the legs. Since the leg position provides
no evidence of the vertical torso position, the distribution over
human torso heights is used for the leg-based torso hypotheses
HLEG(t). The leg-based hypotheses have infinite uncertainties
regarding the upper-body orientation. In turn, the leg-based
observation model has relatively low uncertainty regarding the
distance to the laser scanner.

HOG upper-body detector: The sliding window approach
in [8] on a multi-resolution pyramid of the input image I is
used to determine the probability p (Iw|c) that image window
w could be observed, when the respective image detail Iw
shows a person with upper-body orientation class c. The output
is a multi-resolution pyramid of probabilities with c = 8 layers
per resolution level, because each upper-body orentation class
covers 45◦ in our approach. Using a calibrated camera, a given
pose hypothesis in 3D space can be mapped onto a position
in the multi-resolution pyramid, yielding the corresponding
probabilities or vice versa. The hypotheses extraction module
(Fig. 1) transforms each pyramid position w, with a probability
p (Iw|c) above a certain threshold into 3D space. Note, that
the observation model of these hypotheses HHOG(t) has rel-
atively large uncertainty regarding the distance to the camera.
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B. Tracker

The asynchronous multi-hypotheses tracker provides filtered
hypotheses H (t) with 10Hz update rate based on the de-
tections HLEG(t), HHOG(t) and the appearance hypotheses
HAPP (t), which are described below. For each update, all de-
tections that have been made since the last update are processed
based on their timestamp t. However, some detectors, such as
the HOG detector, have larger processing time than 100ms.
This means that the detections with timestamp t are only
available at time t+∆t and thus after the corresponding tracker
update. To handle these out-of-sequence detection hypotheses,
the detections are predicted to the current timestamp. This is
basically done by increasing the uncertainties of these hypothe-
ses. A track ID i is assigned to all hypotheses hi(t) ∈H (t),
while they are constantly tracked over time. Whenever a person
leaves the robot’s detection area and re-enters it, a new track
ID is assigned to the person’s hypotheses. Note, that position
and orientation are filtered independently in this work. The
motion direction of moving hypotheses is not used to support
the orientation estimation.

IV. OPTIMIZATION WITH 3D APPEARANCE
MODEL

The previously described tracker provides a 6D hypothesis
with uncertainties hi(t) about the torso position and orientation
of each currently tracked person i. Each pose distribution is
the starting point for the appearance-based optimization of a
3D model. To model the diversity of the human appearance,
this model has 14 degrees of freedom (DOFs). Most of these
model parameters θ are not tracked, because of low update
rates and an uncertain motion model that would not justify the
computing effort.

The appearance model represents a matching function
f (I ,θ), which aims to correlate with the likelihood p (I |θ),
that the current image I might be observed given the pose
parameter vector θ . The model parameters and the matching
function f (I ,θ) are specified below. Thereafter, the de-
scription of the model parameter optimization is given. The
optimized parameters θ are used to provide appearance-based
hypotheses HAPP (t) and for learning a color model of each
tracked person’s texture for re-identification if the person was
lost from view.

A. Appearance Model

The 3D model of an average upper-body without hands (Fig.
2b) was generated with MakeHumanTM[21]. We have fixed
the model’s degrees of freedom (DOFs) for the hands, gender,
age, muscle mass, weight, breast size, proportion etc., because
a more complex 3D model would require more parameters
to be estimated, which would lead to higher computational
costs during the optimization process. To model the torso
position and upper-body orientation (4DOF), the head pan
and tilt (2DOF), articulation of both upper arms (6DOF) and
the bend of the elbows (2DOF), the model already has 14
DOFs. Furthermore, an additional DOF is used to model the
color model for different people. To calculate f (I ,θ), several

(a) Frontal section of omni-camera image (b) articulated 3D model

(c) reversely rendered
texture

(d) model with observed
texture

(e) mean color of
person-specific model

Fig. 2. The observed image (a) is reversely rendered into the texture (c) of
the articulated 3D model (b). Thereby, the forward rendered 3D model with
this texture (d) would appear like the observed image. The reversely rendered
textures (c), which only show partial areas of a person’s upper-body, are used
to adapt a complete person-specific color model (e), which is used for person
re-identification.

features of the image I are evaluated on a graphics processing
unit (GPU). The GPU is mainly used for efficient match value
calculation by special shader programs. It does not need to be
very powerful to calculate the following match values:

Edge Model: In relation to the great variance of texture
and color of people’s clothes, a comparatively invariant feature
can be found in the image gradients. The success of robust
detection approaches, like HOG [9], proves the relevance of
these features. The edge model compares the expected edge
gradient orientations θO of the 3D model pixel by pixel to the
gradient orientations IO in the image, whereas a Gaussian is
used to model the pixelwise match value based on the gradient
orientation difference. The respective magnitudes of the model
gradients θM and the image gradients IM are used as weights
for calculation of the weighted mean fEdg (I ,θ) of all pixel’s
match values.

The expected gradients (Fig. 3c) are modeled by special
vertex and pixel shader programs on the GPU. The vertex
normals of the model are projected onto the image plane and
this is interpreted as expected edge gradient orientation θO .
The magnitudes θM of the expected edges result from the dot
product of the model’s normals and the viewing direction to
the model’s surface. This is similar to “Cel Shading”.

For each observed image, the edge detection module (Fig. 1)
calculates a gradients orientation image IO and a magnitude
image IM like in [9]. Thereby, simple 2x2 Robert’s Cross
kernels are used for horizontal and vertical edge detection. To
reduce noise and emphasize the relevant edges, a nonlinear
filter is applied to the magnitude images IM , suppressing
low values and emphasizing the higher ones. Additionally,
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in order to smooth the magnitude image and therewith the
matching function fEdg (I ,θ), the gradient magnitudes are
spatially spread out similar to the Chamfer distance transform
[22], taking edge orientation from the highest magnitude in
the surrounding pixels. This algorithm allows to propagate the
edge information to arbitrary distance at constant time. Fig. 3b
shows the resulting gradient image, which is used for matching
with the expected gradient image (Fig 3c).

(a) raw gradients image (b) propagated gradients
image

(c) modeled gradients
(expected)

Fig. 3. The edge gradients of the observed image (a) are propagated based
on chamfer distance transformation (b). This increases robustness regarding
deviations of the modeled gradients (c). In all images the gradient orientation
is coded by color and the magnitude by intensity.

Foreground/Background Divergence (FBD) model: The
previously described edge model is affected by strongly struc-
tured clothes or background, because of the contours of the
human cannot be distinguished from texture of the human
or the background. Therefore, the FBD model fFBD (I ,θ)
values the observed image I ’s foreground/background segmen-
tation by the model parameters θ , based on color. A 2D color
histogram (hue and saturation) of the whole visible upper-
body surface pF (H,S) and a second histogram pB(H,S) of
the margin around the visible upper-body pixels are compared
using the Bhattacharyya distance [23]. The FBD match value
fFBD (I ,θ) = 1.0−BD(pF (H,S), pB(H,S)) is high, when
the model parameters θ lead to different color distributions of
foreground and background (as determined by the model). Due
to the histogram calculation on image areas, small changes
of the model parameters θ lead to small changes of the
histograms. Thereby, the matching function fFBD (I ,θ) is in-
herently smooth. The foreground histograms could also be used
for person re-identification, but this has not been investigated
yet.

Color Model: In contrast to the previously described mod-
els, the color model cm is person-specific. Accordingly, a uni-
versal color model c0 for hypotheses optimization of unknown
persons and multiple color models cm>0 for optimization and
re-identification of already tracked persons are utilized. Before
the use of the different color models is explained in more
detail, the match value function fCol (I ,θ) for any color
model cm is specified. For given model parameters θ , “reverse
rendering” is applied to project the observed HSI-image on the
model’s texture. In other words, the texture is calculated which
would have caused the observed image (Fig. 2).

The color model operates in HSI color space. For each
texture pixel, a Gaussian distribution on the HSI color is

specified. The mean color of such a color model is shown in
Fig. 2e. Its parameters are learned on-line using maximum a
posteriori (MAP) estimation. If a tracked person moves in front
of the robot and sequentially shows the entire surface of its
upper-body to the camera, a complete color model is learned.
The currently observed texture is matched with the Gaussian
texture model, by determination of the average likelihood
over all visible texture pixels, that the observed texture color
belongs to the model. Initially, a universal color model c0 is
used for hypothesis optimization. Then, the optimized model
parameters θ are used to adapt the universal model and store
it as person-specific model. A mapping of track id i to person
id m is used to apply the same person-specific color model m
for optimization and adaption while a hypothesis is tracked.
Whenever a new track id i occurs, the generic color model c0 is
used during optimization. Thereafter, the optimized parameters
θ are used to check if a person-specific color model cm>0

matches better than the generic model c0. In that case, this is
considered as re-identification, the color model is adapted, and
the mapping of the new track id to the person-specific color
model is added. If the observation reaches greatest likelihood
for the generic model, the generic model is updated and stored
as new person-specific model. Furthermore, the mapping of the
current track id to the new person id is added.

B. Discriminative Models

The HOG-based detector and the leg detector are used
to generate discrete hypotheses for the tracker. However,
the outputs of these detectors are also used to improve the
appearance-based optimization. In the following, we describe,
how the detector outputs are used to calculate match values
for a given parameter configuration θ .

HOG model: As described in Sec. III-A, the tracker
processes discrete hypotheses, which are extracted from the
HOG filter pyramid by a threshold operation. However, for
evaluation of the model parameters θ the resulting HOG match
value fHOG (I ,θ) is calculated by transformation of the model
parameters θ into the HOG pyramid and interpolation of the
probability values of the adjacent orientations, pyramid levels,
horizontal and vertical positions.

Leg model: For consideration of the leg detections (Sec.
III-A) during optimization, the torso position is extracted from
the parameters θ . Then the leg detector-based torso hypotheses
with uncertainties are used to calculate the likelihood for this
position fLeg (S ,θ).

C. Match value calculation
The previously described partial match values are combined

to the overall match function f (I ,S ,θ) by the gamma op-
erator, known from fuzzy logic. It is a compromise between
product and weighted mean:

f (I ,S ,θ) = γ


5

√ ∏
M∈{Edg,FBD,Col,HOG,Leg}

ωMfM (I ,S ,θ)

+

(1− γ)

1

5

∑
M∈{Edg,FBD,Col,HOG,Leg}

ωMfM (I ,S ,θ)

 (1)
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The applied gamma γ and the weighting factor ωM for each
of the 5 models are specified in the experiments section (V).

D. Optimization

Each tracked person hypothesis is optimized by PSO [10].
In our case, the particle swarm consists of 20 particles. Each
of them represents a 14-dimensional parameter configura-
tion θ . The particle swarm is initialized according to the
Gaussian distribution of the hypothesis. The parameters for
joint orientations, that are not tracked (head pose, etc.), are
initialized according to a predefined Gaussian distribution. The
particle’s velocity vectors are initialized based on predefined
probabilities as well. Then, the PSO is performed for maximal
20 iterations. Thereby, the matching function f (I ,S ,θ) over
the parameter-space Θ is used as optimization criteria.

V. EXPERIMENTS
Before the accuracy of the upper-body orientation is eval-

uated, the matching function of the appearance model is
visualized.

A. Matching Functions

Ideally, the matching values f (I ,S ,θ) increase continu-
ously and spaciously while the model parameters θ converge
with the actual 3D pose parameters of a person in the robot’s
surroundings. This means the models need to be tolerant to
deviations of the parameters from the actual person’s pose to
support the optimization process. On the other hand, the mod-
els need to be specific enough, so that the matching function
has a well distinctive maximum for the correct parameters.
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Fig. 4. Matching function f (I ,S ,θ) with generic color model c0 over two
of the 14 parameter of the 3D model. The correct parameters are located in
the center of the respective plot.

The performance of the used models regarding these criteria
is illustrated by Fig. 4. The applied function parameters (Equ.
1) are γ = 0.1, ωEdg = 0.1, ωFBD = 1.0, ωCol = 1.0,

ωHOG = 0.1 and ωLeg = 0.1. The correct pose parameters
are located in the center. Fig. 4a and 4c show, that the
matching function has good gradients regarding the torso
position. Fig. 4d and 4b show, that the matching function is
less sensitive to the upper-body orientation. But the correct
parameter configuration is still distinguishable. The influence
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Fig. 5. Matching function fCol (I ,θ) of learned color model over two of
the 14 parameter of the 3D model. The correct parameters are located in the
center of the respective plot.

of the person specific color models is shown in Fig. 5. In
contrast to Fig. 4, the correct pose has a more pronounced
maximum, which enables the person re-identification.

B. Upper-Body Pose and Person Re-Identification
To evaluate the proposed tracking system, we performed an

experiment, where 3 test persons walked repeatedly through
an evaluation area in front of the robot (Fig. 6). An external
multi-laser tracking system [24] was used to track the persons’
2D ground truth positions. Each person’s height was measured
manually once. Because the probands were only allowed to
walk in the direction of their upper-body orientation, the
ground truth upper-body orientation could easily be calculated
from the motion direction.

Before the evaluation has been performed, a universal color
model was learned, based on the observations of five different
people. Furthermore, two person-specific color models were
learned, for other people than the three probands. This is to
test, whether the probands are actually detected as previously
unknown persons and new person-specific models are created.
A false recognition as an already tracked person would be
counted as mismatch. The three test persons entered the de-
tection area two times. The first time they had to be perceived
as previously unknown, and the second time they had to be
recognized.

To measure the performance of our tracking system, we
use the Multiple Object Tracking (MOT) performance metric
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Fig. 6. Bird’s-eye view on the experimental setup. The axis arrows show the
position and orientation of the tracked hypotheses within the evaluation area.

[25]. Table II shows the MOT Precision (MOTP), which is the
average position error, and MOT Accuracy (MOTA), which
shows the accuracy and consistency of the tracker:

MOTA = 1−
∑

kMissk + FPk +MMEk∑
kGk

(2)

Thereby Missk is the number of missed ground truth
hypotheses at evaluation step k and FPk is the number of
false positive detections. For validation of the correspon-
dence between ground truth poses and tracked hypotheses,
the Euclidean distance with a threshold of 0.6m is used.
The mismatch error MMEk specifies how many person id
mismatches are made, and Gk denotes the number of all labels
for evaluation time k.

TABLE I
COMPUTING TIME

CPU cycles processing time [ms]
Tracking 1.5 · 106 ± 1.6 · 106 0.6± 0.6

Leg Detection 1.7 · 106 ± 1.8 · 106 0.6± 0.6
HOG detection with

5.1 · 108 ± 1.1 · 108 184± 39view-point estimations
Appearance-based

2.9 · 109 ± 3.4 · 108 1068± 121optimization of
tracked hypotheses

TABLE II
TRACKING QUALITY

without optimization with optimization
# evaluations 355 355
MME 1.72 · 10−2 0.0
MOTP 0.187 0.173
MOTA 0.97 0.99

X error [cm] 10.5 ± 0.71 10.2 ± 0.68
Y error [cm] 11.5 ± 0.64 11.3 ± 0.63
Z error [cm] 6.35 ± 0.02 3.02 ± 0.03

orientation error [◦] 24.64 ± 7.68 22.34 ± 7.57

The tracking was performed on an Intel R© CoreTM i7 CPU
with 2.8 GHz and an Nvidia R© GeForce GTX 470 GPU. The
computation time for each of the modules is shown in table I.
Table II shows, that the proposed tracking system is generally
suitable to track the position of walking persons. Regarding
the upper-body orientation estimation, note that the motion

direction is not used to support orientation estimation during
the experiment. Thereby, it is guaranteed that the orientation
estimation is independent from the movement, and therefore
we do not need to perform a motion-dependent evaluation.
The absolute mean error without the proposed optimization
is 24.64◦. This is relatively large, because each orientation
class spans 45◦, and additionally classification is not perfect.
However, it is shown as well, that the refinement by the
appearance-based 3D model does not significantly improve the
pose estimation. This probably has two reasons. Firstly, a false
classification of the upper-body orientation class supports a
false orientation during refinement. Secondly, the 3D model
has not the same proportions as the used probands. We plan
to investigate the exact reason in the near future. However, for
the color model the precision of the appearance-based pose and
joint angle estimation is much more important, than the pose
estimation accuracy. Because a precise pose estimation enables
to map each real-world point of the upper-body surface to an
according point of the texture, even when the accuracy of the
pose estimation is low. Accordingly, significant improvements
are made for person re-identification. This is reflected by the
reduction of the mean mismatch error MME and the improved
multi-object tracking accuracy (MOTA).

VI. CONCLUSIONS

This work presents an approach for discriminative person
detection and tracking in real-time. Simultaneously, the tracked
hypotheses are used as initial pose of an articulated 3D upper-
body model, whose appearance is matched to the monocular
image. The optimized model allows to learn a texture model for
each tracked person using “reverse rendering”. These person-
specific textures are used for person re-identification. This
allows to recognize, whether people were already tracked, and
to distinguish already tracked people.
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