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Abstract— Intersections are the most accident-prone spots in
the road network. In order to assist the driver in complex
urban intersection situations, an ADAS will be required not only
to recognize current but also to anticipate future maneuvers
of the involved road users. Current approaches for intention
estimation focus mainly on discerning only two intentions
based on a vehicle’s behavior. We argue that for distinguishing
between more than two intentions not just a vehicle’s kinematic
behavior but also its driving situation needs to be taken into
account. In our system we estimate four different intentions
by modeling and recognizing driving situations in a Bayesian
Network and using the behavior as additional evidence. For
the behavior based estimation we present a newly engineered
feature, the Anticipated Velocity at Stop line, that turned out
to be a very strong indicator for the intention. Our system is
evaluated on a real-world data set comprising approaches to
seven different intersections on which we can show that our
approach is able to estimate a driver’s intention with a high
accuracy.

I. INTRODUCTION

Research in the field of driving intention estimation, es-
pecially associated with intersections, has become a popular
topic in academia as well as for automotive manufacturers.
The growing interest is due to the fact that intersections are
highly accident-prone spots in the road network and a safe
crossing requires to take other road users and their intentions
into account. As the majority of the accidents occurring at
intersections are related to driver errors, an Advanced Driver
Assistance System (ADAS) that provides support and warns
of critical situations would be of great benefit.

In intersection scenarios especially those intentions need to
be discernable that result in different maneuvers, like cross-
ing straight versus turning. Knowing the path that another
vehicle will take, is an important information for detecting
possibly hazardous situations early on. Even estimating the
intention of the ego-vehicle itself can be useful in multiple
ways: For example to avoid turning accidents with parallel
driving bicyclists or to prevent the driver from red-light
running.

One major obstacle in anticipating a vehicles’s upcoming
maneuver is the fact that its behavior, that is its kinematic
properties, is not solely dictated by the driver’s intention but
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naturally also by the current driving situation. An intention
estimation system therefore needs to consider both kinematic
behavior and driving situation in order to arrive at accurate
predictions.

Recently, several works for intention estimation in the
context of urban intersections have been proposed. In [1] an
approach is introduced that is able to distinguish between
multiple different intents and is evaluated by discerning
between right turn and go straight intersection approaches.
Each driver intent is assigned a parametric longitudinal
behavior model and is inferred using a Bayesian Network.
One way of determining these longitudinal behavioral mod-
els is to incorporate map data and manually optimize the
longitudinal model parameters. Even though this approach
seems promising it requires an expert for parameterizing the
underlying driver model and presupposes detailed knowledge
of the correct paths inside of each regarded intersection.
In a subsequent work [2], the authors extend this approach
towards an architecture for generic driver intent inference,
capable of reliably separating right turn from straight inter-
section crossings. However, this approach relies on measur-
ing a driver’s gaze direction, which can be hard to obtain.

Other approaches, like presented in [3], make heavy use
of intelligent intersection safety systems (Car2X). These
systems fuse available data from the infrastructure with data,
requested from the involved traffic participants. The infras-
tructure itself estimates the maneuver of each approaching
vehicle. While such an approach has benefits due to the
quantity and quality of the available information and its
holistic view, this method strongly relies on a sufficiently
equipped road infrastructure.

Between two driving intentions is distinguished in [4],
based on nonlinear constrained dynamic optimization. It is
assumed that a typical driver tries to minimize jerk, time
and steering effort. The intention whose anticipated trajectory
minimizes the above mentioned costs, is selected.

Several approaches are based on directly comparing col-
lected velocity profiles of intersection approaches to de-
termine the driver’s intentions. [5] states that generalized
velocity profiles for different driving maneuvers can be
captured using Gaussian Processes. Further, the authors of
[6] describe in their approach the capability of Gaussian
Processes to estimate driving intentions. For each maneuver
a Gaussian Process is trained in order to distinguish between
the underlying intention models, making use of the current
position and velocity. Unfortunately, the Gaussian Processes
trained for one intersection can hardly be generalized to
another intersection.
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An approach for identifying critical situations using in-
tention estimation is presented in [7], [8]. This method for
intention estimation is based on Dynamic Bayesian Networks
and attempts to detect mismatches between a vehicle’s
intended and expected maneuvers when approaching an
intersection. As soon as the algorithm finds a significant
difference between intention and expectation it defines the
situation as critical. One downside of the method is that it is
limited to situations at unsignalized intersections with only
two vehicles.

In this paper we propose a method for intention estimation
that takes a vehicle’s driving situation explicitly into account.
We argue that this allows to discern between intentions that
cannot be told apart from a vehicle’s behavior alone and thus
enables us to consider a higher number of intentions. Our
system combines kinematic behavior and situation informa-
tion in order to discern between four different intentions. The
method presented herein is robust to different intersection
layouts and real-time capable. We also present our insight
that one feature, the Anticipated Velocity at Stop Line (AVS)
is a strong indicator for the intended maneuver. Our approach
is evaluated on real-world recordings obtained on different
intersections with different drivers.

The remainder of the paper is structured as follows. In
Section II the acquisition of real world data is presented.
Section III describes the detailed structure of our proposed
system as well as methods and features used. The evaluation
and the results obtained therein are the topic of Section IV.
In Section V we conclude the paper with a summary of the
gained insights and give a brief outlook on future work.

II. DATA ACQUISITION

In order to evaluate our proposed system and the de-
veloped AVS feature on real world data, recordings from
multiple test drives have been taken into account. The data
was acquired using two different drivers approaching seven
different intersections, resulting in a total number of 37
approaches. Four of these different intersections can be seen
in Fig. 1. The recordings took place in an urban environment
with regular traffic. Approaches where the ego-vehicle does
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not arrive at a red traffic light as first but instead as last
vehicle in a row, have also been considered.

A. Test Set-up

The test car was equipped with a forward-facing laser
scanner operating at 100Hz. It is able to detect vehicles
directly in front and to determine the relative distance as
well as the relative velocity respectively to the ego-vehicle.
Furthermore, a consumer-grade GPS is used to determine
the ego-vehicle’s position. Information about the vehicle’s
velocity is obtained by tapping the CAN-Bus and sampling
it at 100Hz. To have the ability of a subsequent qualitative
analysis of the encountered scenarios and the possibility to
annotate missing information, the test drives were recorded
with a stereo-camera.

B. Data-Processing

In order to obtain missing, implicitly available features
from the recording data further data processing has been
conducted. The vehicle’s acceleration is computed by de-
riving the recorded velocity. Since the noisy character of the
velocity curves is increased by the derivation, we applied
a smoothing moving average on the result, considering the
n = 20 last data points.

As there was no traffic light recognition system at our
disposal, the traffic light state of each approach was labeled
by hand using the recorded video data. The position of an
intersection’s stop line was obtained by taking the average
GPS position when the vehicle waits as first during a red
traffic light. The distance to the stop line d is calculated
by determining the difference between the stop line’s GPS
position and the vehicle’s current position. For the purpose
of training and benchmarking our proposed system the ’Car
following’ intentions are labeled by experts.

III. SYSTEM OVERVIEW

The goal of our system is to anticipate the intended
maneuver of the ego-vehicle when it approaches a signaled
intersection. Four different intentions are considered:

L Go straight

II.  Turn right

III.  Stop at red traffic light
IV.  Car following.

Most of the published work focuses on intentions / and
Il as they can be generally well discerned based on the
longitudinal behavior of a vehicle. A correct estimation al-
lows to anticipate conflicting trajectories early. Nevertheless,
intention /I is also highly relevant as its corresponding de-
celerating behavior can be mistaken for a right turn intention
and it is useful to anticipate red-light running. It is one of
the intentions that can hardly be distinguished by behavioral
features alone and profits from situational cues. Intention
1V, ’Car following’, considers all cases where a vehicle’s
behavior is dominated by the behavior of its leading vehicle.
Thus it is forced to slow down or stop because of a vehicle
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Fig. 2. System Overview

ahead. As this intention comprises various situations where a
vehicle drives below the usual velocity, it requires situational
cues for an accurate estimation. Besides using this intention
for subsequent active safety systems its explicit consideration
provides further benefit. As it has been shown in [1], a close
preceding vehicle usually impairs a behavior-based intention
estimation considerably. The explicit information about this
case can be valuable for subsequent evaluating systems.

So in order to build a system that is able to distinguishing
between all four intentions both a vehicle’s driving situation
and its behavior need to be taken into account. Models for
driving situation and behavior are created separately and
afterwards combined in a single Bayesian Network. Before
presenting the combined system its individual components
are introduced.

A. Driving Situation Modeling

The driving situation is modeled according to the frame-
work proposed in [9]. In this framework, a concept termed
configuration is used, which models how and by what a
vehicle’s behavior is determined. It is based on the intuition
that a vehicle drives at a desired velocity unless it has to
react to surrounding entities. For example, one configura-
tion, tagged StoppedByRedTrafficLight, is active when the
observed vehicle has to slow down or stop because of a red
traffic light ahead. Each configuration comprises an affected
and an affecting entity, in this case the braking vehicle
and the traffic light, respectively. The focus on bilateral
interactions accounts for the scalability of the approach.

A configuration is specified by defining the considered
entities as well as relevant features in a graph, which are
mapped to a Bayesian Network. An example of a Bayesian
Network for the InfluencedByLeading Vehicle-configuration is
given in Fig. 3.

The network models the situation in which an observed
vehicle has to lower its velocity due to a nearby vehicle
in front. The top node returns the probability of the corre-
sponding configuration being active, while the lower nodes
encode individual, discretized features and their probabilities
in percent. Configurations focus on bilateral interactions
between two entities for reasons of scalability. Hence in order
to discern between multiple configurations, their individual
networks have to be combined into a single Bayesian Net-
work with an additional classification node. A more detailed
account on this framework can be found in [9].
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InfluencedByLeadingVehicle
True | 4.9
False | 95.1

Y

CarAheadDistance
Near 9.8
Medium 459
Far 23
NotPresent | 21.3

Acceleration
HighDeceleration
MediumDeceleration
LowDeceleration
Acceleration

Velocity
LowVelocity
MediumVelocity
HighVelocity 6.5
VeryHighVelocity | 70.5

/

18
4.9

8.2

13.1
42.6
36.1

CarAheadRelativSpeed
MuchSlower
Slower
Similiar
Faster
NotPresent

CarAheadTTC
Long
Medium
Short
Not Present

CarAheadNetTimeGap
Long 39.3
Medium 26.2
Short 13.1
NotPresent | 21.3

49.2
&3
1.6
45.9

6.6
39.3
34.4
19.7
0

Fig. 3. A single configuration InfluencedByLeadingVehicle that has been
mapped to a Bayesian Network using several discretized features and their
probabilities in percent.

As only intentions /Il and IV require situational cues,
the configurations modeled are the aforementioned Stopped-
ByRedTrafficLight and InfluencedByLeading Vehicle. The way
they are incorporated into the total system will be detailed
in Subsection III-D.

B. Feature Selection for Behavior Representation

Since intention /V can hardly be characterized by a single,
specific behavior, only three behavior models, one for each
of the intentions /-1II, were developed. The overall approach
was to inspect the available features and then select a
suitable behavior classifier based on type and properties of
the features that turned out to be strong indicators.

One feature that has proven to be a strong indicator for
intention estimation is the velocity profile [6], [1] during the
intersection approach. It is intuitively clear that a driver will
slow down before performing a turning maneuver while he
will keep his velocity when crossing the intersection straight.
This property can also be found in the data we recorded,
as it can be seen in Fig. 4 (a). When a driver intents to
stop at a red traffic light his decelerating behavior is even
more pronounced. Nevertheless, at a point 15 to 20 meters
away from the stop line it is not possible to discern between
"Turn right’ and any of the other intentions reliably, as their
velocity profiles overlap significantly.

Another feature that makes intuitively sense, is the ac-
celeration. It is obvious that a vehicle, which has to be
brought to a stop at a certain point, experiences a stronger
deceleration than when it is only slowed down for a normal
turn. Unfortunately, acceleration is a rather instable feature
requiring significant filtering in order to account for its noisy
nature. While this filtering stabilizes its values, acceleration
is weaker than velocity, as illustrated in Fig. 4 (b)

Because combining both features lead to an unsatisfactory
separation of the individual intentions an investigation on
engineering new features was conducted. One important
insight was that although the data is highly variable, the three
intentions can be linearly separated based on their velocity
when the distance to the stop line approaches zero. Another
observation we made was that in most cases the velocity
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Fig. 4. Velocity profiles (a), acceleration (b) profiles and AVS feature (c) for 37 intersection approaches. The red lines show the velocity profiles for a red
traffic light, green corresponds to straight intersection crossings and blue to right turn intersection crossings. The shaded gray area indicates the interesting
range of 15 to 20 meters, where an estimation leaves sufficient time for a reaction if necessary.

profile in the last 20 meters to the stop line can be roughly
approximated by a straight line. If we were able to predict
the velocity at the stop line based on the current kinematic
behavior to a sufficient accuracy, we would obtain a very
strong feature. We tag this feature Anticipated Velocity at
Stop Line (AVS).

The AVS feature predicts the estimated velocity at the stop
line based on the current acceleration, velocity and distance.
It combines all available longitudinal kinematic information.
The AVS is determined using the simple kinematic extrapo-
lation

Vs = U+ ats, (D

where v denotes the current velocity, a the current accel-
eration and ts the expected time to the stop line. While
determining

1
Ty = iatg + vts + x, 2)

for z, = 0 and x = —d, where d indicates the distance to
the stop line, we obtain two possible solutions for ¢

—v + Vv? 4+ 2da

ts1 = a (3)
—v — Vv?2 4+ 2da
tso = — 4

Between these two possible solutions we have to decide
which to choose in order to determine the correctly antic-
ipated velocity at the stop line ¢,. We assume v,d > 0 for
intersection approaches, while discarding negative values for
ts in context of real-life traffic scenarios. For a < 0 two
possible solutions ¢, 1,%5,2 > 0 come into question. The stop
line is passed twice. Hence, we have to take a closer look
at this specific scenario. Looking at (3), for real-numbered
solutions and v > 0, d > 0, a < 0 the inequality

V2 4 2da < v

holds true. Thus it follows from (3) that ¢, ; takes on strictly
positive values. Additionally, it can easily be inferred form
(3), (4) and that ¢, 1 < t5> and we can therefore conclude
ts,2 > 0. The vehicle then passes the stop line at t = ¢, ; for
the first time. Based on the assumed constant negative a after
passing the stop line, the vehicle’s velocity becomes negative.
Hence, the vehicle starts driving backwards and passes the
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crossing for ¢ = ¢4 2, again. We are interested in ¢, since
the first crossing of the stop line is crucial. Moreover, passing
the stop line a second time, backing up, does not correspond
to a realistic driving scenario; this is why we discard ¢, ».

Note that t,1 < 0,%s2 > 0 cannot be encountered while
assuming v, d > 0. Therefore, the logical conclusion for all
realistic scenarios is t5 = t, 1. Thus, we obtain with (3) and

(D),
vy = V02 + 2da. 5)

As already mentioned it is possible that neither (3) nor (4)
have a real-numbered result and t,1,t52 € C. This is the
case, for —a < 12’—2, when the vehicle’s negative acceleration
is high enough that it does not reach the stop line at all.

In order to obtain a purely real-numbered result and to
have a fully continuous function for all possible input values
d,v € Ry and a € R the square of (5) is considered. Our
introduced feature AVS is finally given by

AV S = v? + 2da.

The AVS feature values for the previously regarded inter-
section approaches are shown in Fig. 4 (c). Obviously, the
different behaviors can now be separated much more easily.

C. Behavior-based Intention Estimation

The previous step identified velocity, acceleration, and AVS
as suitable features besides the distance to the intersection
itself. As we strive for a system that estimates upcoming
maneuvers several seconds before the actual maneuver, we
did not consider the vehicle’s yaw rate. Although it is a
strong indicator for turning maneuvers, significant changes
of the yaw rate can only be observed a short time before and
during the actual turning maneuver.

As method for the behavior-based intention estimation,
Logistic Regression was selected. With this choice, the
intention is directly classified using the selected features,
since Logistic Regression is a linear classification algorithm.
Besides providing class probabilities it has other advantages
like its high accuracy and its training and prediction speed.

For a set of N features x1,...,xny and N 4 1 regression
coefficients [y, ...0n, it arrives at a prediction hypothesis h
for a binary classification task by

1
hw) =1 T ¢ (Bothrizit. +BneN) ©




Due to the sigmoid function used here, its output is
guaranteed to be in the range (0, 1), which is suitable for its
interpretation as probability. For multinomial classification
tasks, one common approach is to combine the result of
multiple binary classifiers.

In first tests, using only distance and AVS gave already
good results and adding the velocity provided further im-
provement. As adding acceleration to this constellation lead
only to a small decrease in accuracy, it is not used here.

Given the features, the classifier returns three values P;,
Prr, Prrr denoting the probability of the vehicle behaving
according to intentions I, II or III, respectively.

D. Overall System

The overall system consists of a Bayesian Network that
combines both the InfluencedByLeadingVehicle- and the
StoppedByRedTrafficLight-configuration for the driving sit-
uation recognition and the behavior-based intention estima-
tion. The latter is incorporated by a dedicated node for which
the evidence, as given by the probabilities returned by the
Logistic Regression, is entered. The Bayesian Network is
depicted in Fig. 5.

Intentions
Go straight
Turn right
Stop at red traffic light
Car following

41
37.7
16.4
9

4.

Y

Behaviors
Go straight
Turn right
Stop at red Traffic Light

StoppedByTrafficLight
True | 106
False | 89.4

InfluencedByLeadingVehicle
True | 4.9
False | 95.1

41
426
16.4

CarA

~

{CarAhcarlTTC} {Car:\headNetTimeGa

{'l'rafﬁcLi@tDistance} {'l'rafﬁcLight} { Velocity } {A i } }

{CarAheadRelativSpeed} p

Fig. 5. The complete Bayesian Network for estimating the driver’s
intention. Combining the two configurations InfluencedByLeadingVehicle
and StoppedByRedTrafficLight, as well as the probabilities from the behavior
estimation

Evidence from this node, labeled ’Behavior’ in Fig. 5,
and of both configurations is then combined into a single
classification node, which returns probability estimates for all
four intentions. Since we modeled the configurations and the
behavior separately, their most certainly existing dependence
is expressed by this classification node, labeled ‘Intentions’
in Fig. 5.

The system is designed to run continuously during an
intersection approach. Based on the current velocity and the
current distance to the stop line it computes a Time-To-
Intersection (I'T'I) by simply dividing the distance by the
velocity. As soon as the T7'] falls below a certain threshold,
which is 1.5 seconds in our case, the system enters all current
features as evidence into the Bayesian Network as well as
the probabilities obtained by the Logistic Regression, and
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then returns the most probable intention of the classification
node as estimation.

IV. RESULTS

The newly introduced feature as well as the overall system
are evaluated using the real world data acquired as described
in Section II. In total 37 approaches at seven intersections are
available for evaluation. In order to provide sufficient training
data, both Logistic Regression and Bayesian Network use
all measurements from each event in the training set where
the vehicle is less than 25 meters away. This yields about
600 cases per fold for training. Given the features, our
unoptimized Python implementation takes less than 5 ms for
a single estimation.

A. Time To Intersection Estimation

The performance of the proposed methods are measured
by their accuracy for different estimated 77" /s. An accuracy
reported at a T'T'T of 1.5 seconds means that the intention
estimation was triggered in the moment the estimated 771
fell below 1.5 seconds.

In order to verify that our model achieves an accurate
estimation for the actual remaining time to an intersection,
the actual remaining 7'7'] was compared to the estimated
TTI for all events. Fig. 6 (a) contains a histogram of the
actual remaining 7T’ at the time our model firstly predicted
aTTI of 1.5s.

It shows that assuming a constant velocity leads to con-
servative estimations, where only six approaches are over-
estimated, while the mean of the actual TT'] exceeds our
prediction.

B. Evaluation of the AVS Feature

The benefit of our newly introduced feature is evaluated
by comparing the classification performance of the behavior-
based intention estimation in two settings: In one setting the
more established features velocity and acceleration are used
and in the other setting they are replaced by the AVS feature.
In both settings the distance is also available as feature. The
goal is to discern intended right turn from intended straight
crossing maneuvers. The intentions are predicted at a TT'1
of 2s.

As the ROC curve of Fig. 6 (b) illustrates, the single AVS
feature achieves a significantly better estimation accuracy
than when relying on the unprocessed kinematic features.
For our application the AVS feature offers several advan-
tages in comparison to the established longitudinal kinematic
features. Firstly, the correct classification rate is superior
and secondly, the dimension of the input feature space is
reduced which results in reducing the overall complexity of
the underlying classification process.

It has to be noted that our evaluation was performed using
a rather small data set consisting of only 20 approaches, with
14 right turns and 6 straight intersection crossings. While for
these events the results seem promising further testing has
to be done in order to derive valid generalizations. Still, it
is striking that AVS performs well over all intersections used
in the test set.
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C. Overall System Performance

Finally the complete system, as described in Section III-D
for discerning four considered driving intentions is evaluated
using the acquired real world data. The 37 approaches are
distributed over the four intentions as follows: / *Go straight’
6 approaches, II *Turn right’ 14 approaches, I ’Stop at
red traffic light’ 13 approaches and IV ’Car following’ 4
approaches.

Due to only having 4 cases of ’Car following’ we chose
a four fold stratified cross-validation to ensure the presence
of a "Car following’ approach in every fold.

The performance for a TTT1 1.5s is given in the
confusion matrix in Table I. We obtain an overall classi-
fication accuracy of 91.9% and are able to identify 50%
of the approaches labeled as ’Car following’, correctly.
Considering the rather small number of training examples for
’Car following’ approaches, the system shows satisfactory
results. Furthermore, Fig. 6 (c) shows the development of the
classification accuracy dependent on the prediction horizon.
Our system is able to identify the correct intentions in more
than 80% of the events when the predicted T7T'I is 3 seconds.

V. CONCLUSION AND FUTURE WORK

In this paper a method for intention estimation was pre-
sented that is robust to different intersection layouts and
is capable of discerning between four different intentions
reliably. The method is based on the intuition that some
intentions can only be recognized if, besides a vehicle’s
behavior, also its driving situation is taken into account. We
show that on a data set with a high variability our system
is able to accurately anticipate the intended maneuver 1.5
seconds in advance.

Additionally, we found that one feature, the Anticipated
Velocity at Stop line, is a strong indicator for a driver’s

<+ Prediction /

I 11 o 1v Actual |

6 0 0 0 I

0 13 1 0 II

0O 0 13 0 III

0o 2 0 2 v
TABLE I
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intention. With this feature we are able to separate different
behaviors more reliably in contrast to solely relying on the
more established kinematic features. One possible explana-
tion is that a driver roughly plans its velocity at a certain
point and tries to reach this velocity with a minimum jerk.

In order to strengthen the expressiveness of our findings
we will have to increase the size of our data set. It will
be interesting to evaluate our system on more cases of *Car
following’. Especially cases where the ego-vehicle had to
stop shortly in front of a crossing needs further investigation.
It is possible that there is a need for introducing acceleration
models in order to discern different intentions after the
ego-vehicle has slowed down and starts to continue its
intersection approach. Nevertheless, note that our approach
proves effective on many different intersections where for
each only few data samples were available.

In future work annotating the state of a traffic light
could be replaced by state-of-the-art detectors. An interesting
research topic would be to investigate how the estimation
accuracy can be further improved by adapting the system to
an individual driver.
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