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Abstract In this work, we present the scenario of a camera-based training system
for patients with dysfunctions of facial muscles. The system is to be deployed ac-
companying to therapy in a home environment. The aim of the intended application
is to support the unsupervised training sessions and to provide feedback. Based on
conversations with speech-language therapists and the analysis of existing solutions,
we derived a theoretic model that facilitates the conceptual design of such an appli-
cation. Furthermore, the work is concerned with implementation details, with main
focus on the automatisation of the face analysis. We motivate the selection of the
features and examine their discriminative power and robustness for the automated
recognition of therapeutic facial expressions in a real-world application.

1 Introduction

Facial expressions play an important role in interpersonal communication. Diseases
like Parkinson, stroke, or mechanical injury of the facial nerve can lead to a dys-
function of facial muscle movements. The resulting problems are manifold. One
consequence of this is that the structure of daily life needs to be adapted to the
health impairments. For example, food intake affords more time, if eating and swal-
lowing difficulties exist. Patients with impaired eyelid closure need to wear a ban-
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dage at night to protect their cornea and the loss of eyelid blink can contribute to
drying of the eye. In the long term, this leads to damage of the cornea and may re-
sult in blindness. Furthermore, leisure activities like swimming have to be stopped
because of the poor corneal protection [1]. Besides implications on daily life and
physical abilities, facial muscle dysfunctions can also have negative effects on men-
tal health. Lack of appropriate facial expressions may lead to misunderstandings in
face-to-face communication. In combination with impaired appearance of the face
caused by imbalance of the facial muscles, low self-confidence and social isolation
may be the consequences. In addition to medicinal treatment, the regular practice
of therapeutic face exercises under supervision of a speech-language therapist is an
important part of rehabilitation. Due to the need for a high practicing frequency, pa-
tients need to conduct unsupervised exercises at home - accompanying to therapy. A
view in the mirror supports the self-supervised training (Figure 1). However, the in-
correct execution of exercises can impede the training success or even lead to further
impairment [2]. The development of technical assistance systems aims to overcome
these problems. Such systems can be realized in various forms, e.g., as pure software
applications running on a notebook, or as a multifunctional robotic assistance plat-
form. The latter can additionally comprise reminder, communication and training
functionalities. Training functionalities aim at improving the patients cognitive [3]
and physical [4] state. A therapy-accompanying training system for facial exercises
would complete the recent developments of such systems. Against this background,
we aim at the development of an automated, therapy-accompanying training sys-
tem for patients with facial muscle dysfunctions. In this publication, we give an
overview of the status of our work with respect to design- and implementation-
related tasks. We present a theoretic model, which supports the conceptual design
of a training system that is suited to the needs of the target user group. The theoretic
model is appropriate for the design of a variety of systems for cognitive and physical
stimulation. However, in this paper, we concentrate on the topic of facial exercises.
Further emphasis is put on the automation of the training session monitoring. In this
context, we motivate the application of the depth features, which we have selected
for the specified task. To enable a better understanding for the practical side of this
application scenario, we additionally present and examine the features’ suitability
for a real-world scenario by evaluating their discriminative power and their robust-
ness. A more detailed description and evaluation of the features is given in [5]. The
images that are necessary for the analysis of the training sessions are captured using
the Kinect from Microsoft (www.xbox.com). Although there are other methods that
are suited for the recording of depth information with higher resolution, we decided
for the Kinect because of its moderate price and widespread availability.

2 Existing practical solutions

In this Section, we give an overview of therapy-accompanying solutions that are
already employed for the rehabilitation of facial muscle dysfunctions. We discuss
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these solutions to identify the main functionalities, which are needed for the design
of a comprehensive and automated training system. However, the use of media-
technology is slowly evolving in this field. Conventionally, the therapist selects a
set of exercises and hands out printed drawings or images as an instruction manual
and reminder. The software PhysioTools was developed in order to facilitate and
streamline this process (www.theorg.de). It includes a database of various exercises
for physical therapy and enables the therapist to compile a set of exercises for a
training session. Furthermore, it arranges the images and their associated text in a
printer friendly layout. Therapists do not need to search or create descriptive im-
ages and to write instructions on their own. However, a video can even be more
descriptive because it depicts the process of the exercise execution, instead of the
final state only. The software LogoVid comprises demonstrative videos of various
exercises that are supplemented by oral instructions (www.logomedien.de). Both
mentioned solutions mainly fulfill a tutorial function. The software CoMuZu is sup-
plemented by documentation and feedback functionalities (www.comuzu.de). The
target audience are teenagers. As a result, the whole user interface and the story is
rather playful in order to give a motivating add-on. The therapist is able to unlock
required exercises and in this way design an individual exercise schedule. Instruc-
tions for exercise execution are provided in videos. After each training session the
teenager is advised to keep a diary about the training with respect to its success and
difficulties. Afterwards, the diary can be reviewed by the therapist in order to get an
impression of the training performance. However, it is rather impractical and ques-
tionable that the patient has to do the evaluation on his own. The three examples
show, that current solutions lack an objective and sophisticated feedback function,
because the patients have to perform the unsupervised exercises in front of a mir-
ror and evaluate their correctness for themselves. This involves several difficulties.
Experience and knowledge of the patient with respect to exercise evaluation may
be insufficient, and especially children depend on the support of their parents. In
addition, the patient has to concentrate on the execution and evaluation of the ex-
ercises simultaneously, which can be very demanding. As a result the patient may
lack attention with respect to important details of the exercise. There are studies that
indicate that incorrect execution of exercises may lead to an impairment of the fa-
cial muscle capabilities [6]. This impairment comprises synkineses that are caused
by compensatory motions. Synkineses are involuntary facial movements that ac-
company voluntary facial movements. For example, a patient may tend to close the

Fig. 1 Patients regularly have
to conduct unsupervised facial
exercises at home in front of a
mirror.
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eyes to perform an exercise that is physically demanding, e.g., the stretching of the
mouth. After a while, this leads to miswiring of nerves and both movements will be
involuntarily connected. Further compensatory motions are the raise of the chin, if
the patients have to touch the nose with their tongue. A third difficulty is the lack of
objective documentation. The evaluation that is made by the patient may be dispro-
portionally optimistic or pessimistic, depending on the current mood. Every person
is susceptible to ”non-objectiveness”, even a therapist. However, patients, who are
directly affected by success or failure, might even be more biased in their evaluation
because of their mood. More objective feedback is given by biofeedback approaches
that employ electromyography to measure the electrical activity of the muscles dur-
ing practice. This enables the detection of subtle muscle movements that are not
visible to the eye. However, the method is more common in earlier states of facial
muscle dysfunction, when no movements are visible, and has limited suitability for
use in a home environment [1]. Besides the documentation of single practicing ses-
sions it would be helpful to have a solution that enables long-term documentation.
The therapist could browse through the exercising history and may identify pro-
cesses of improvement or impairment, which developed slowly over a larger time
span. Other solutions focus on a more playful aspect. The game Mimik Memo is de-
signed for children between three and eight years (www.haba.de). It can be played
by two to six children. The game consists of cards that show drawings of animals,
which perform facial exercises (e.g., tongue touches the tip of the nose). The task
to mimic the exercises is embedded in a game scenario. Concerning the therapy of
children with facial dysfunctions, a game scenario adds an important motivational
component. Summarizing the above yields four main functionalities which consti-
tute an assistant and comprehensive training system. These functionalities refer to
tutorial, feedback, documentation, and motivational aspects that are able to support
and enrich exercising. In the next Section, we will discuss these aspects in more de-
tail. Furthermore, we will derive a schematic model that is suited to support future
developments of such training systems.

3 A schematic model or: What is lacking in practical solutions?

The four aforementioned functionalities roughly coincide with the specifications
that we have determined in discussions with speech-language therapists. In the
following, we give a detailed description of each functionality and construct a
schematic model as a basis for the design and implementation of an automated
training system (Figure 2). The model is suited for various systems of cognitive and
physical stimulation, however, we focus on facial exercises. The schematic model
facilitates the conceptual work by enabling the identification of beneficial subfunc-
tionalities (outer area of the illustration). The determination of the subfunctionalities
is based on the analysis of the presented solutions and the discussions with speech-
language therapists.
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Fig. 2 Schematic model for the conceptual design of an automated training system.

The design - or exclusion - of each subfunctionality depends on the needs of the
target users and the intended price and complexity of the system. The schematic
model represents an ideal system. ’Ideal’ refers to the inclusion of a comprehensive
range of subfunctionalities - a larger range than a real-world application in general
may need. The tutorial functionality consists of two elements: a database and an
interface. The database provides a collection of therapeutic face exercises, which
can be activated by the therapist for each of the patients individually. This allows
for the creation of individual training schedules that can be adapted according to the
success or failure of preceding training sessions. For each exercise, there is instruc-
tion material in form of videos including oral explanations. Important background
knowledge can be documented in textual form as well. The interface element of the
tutorial functionality visualizes and verbalizes the instructions for the patient. It is
important to keep the target users in mind, when designing this interface. While an
adult patient may get along with a rather simple video and some textual instructions,
a child needs more playful and vivid instructions to keep its attention. Furthermore,
some patients may be impaired by additional disease patterns. As mentioned in the
introductory Section, possible causes of facial dysfunctions are brain lesions, gen-
erated by a stroke. Besides decreased physical abilities, brain lesions can also result
in cognitive impairments. One example is the language ability impairment apha-
sia, which is characterized by difficulties with respect to reading, writing, speech
production and speech processing. For persons with decreased speech processing
abilities a high amount of visual instructions is essential in order to understand the
correct exercise execution. Similar to the tutorial functionality, the feedback func-
tionality consists of two elements as well: a feedback unit and an interface. The
feedback unit automatically generates information about mistakes and imprecisions
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in the exercise execution. Thereby, the mirror is replaced by a camera and the video
of the patient doing the exercise is shown on the screen. As mentioned in the intro-
ductory Section, exercise evaluation by the patient may be affected by the lack of
experience, the emotional state, and the disability to concentrate on the execution
and the evaluation at the same time. An automated feedback, however, guarantees
results that are more objective and reproducible. The feedback unit provides two
sorts of feedback: evaluative and instructive feedback. Evaluative feedback gives a
rating of the exercise execution. This rating can vary from a binary rating (good/bad)
to a refined scale (0-100% similarity to the ideal exercise). Additionally, it is pos-
sible to realize such a rating for different areas of the face, e.g., mouth or cheeks,
separately. The challenge is to find a suitable measure for the assessment of exer-
cise quality. Instructive feedback comprises advice on inaccuracies during practice
and gives concrete feedback for improvement (”Puff your left cheek stronger.”).
Therefore, it is more similar to a real therapist than the evaluative feedback. The
interface of the feedback functionality conveys the feedback information in an oral
or visual form to the patient. A textual form is less feasible, because patients would
have to watch the text and the video of their face simultaneously. Besides the out-
put of evaluative and instructive information, the interface can be used to provide
an avatar that synthesizes the face of the patient. The objective of this is twofold:
first, an avatar would add a motivational aspect for children, e.g., by enabling chil-
dren to slip into the role of their favorite comic character. Secondly, a neutral avatar
helps patients who are emotionally affected by the impaired appearance of their
face and who avoid looking in the mirror. This property of the feedback interface
is closely related to the motivational functionality. Detailed information about the
conceptual design of the feedback unit will be given in the following Section. The
ideal training system additionally comprises a documentation functionality. This
functionality is fully automated and focuses on the exercise quality and the exer-
cise frequency. The exercise frequency can be logged to establish a schedule, in
which every day of practice is registered, supplemented by the exercise duration.
The exercise quality unit comprises the documentation of the exercise success or
failure. Retrospectively, the therapist can see which exercises have been performed
incorrectly or which have been less difficult for the patient. The automation of the
documentation process allows the patient to fully concentrate on the exercise ex-
ecution during practice. Additionally, no manipulation of the documentation with
respect to exercise quality or frequency would be possible. The functionality can
be used for short-term documentation, which may comprise information about one
single training session or about long-term documentation, which would capture the
process over several weeks or even months. The unit that documents the exercise
quality needs input from the feedback functionality. Thus, to have a consistent doc-
umentation, it is important that the evaluation tool gives objective and reproducible
results. The motivational functionality contains elements that motivate the patients
to do the practicing sessions with a regular frequency and with certain accuracy. The
design of the motivational functionality depends on the target audience. Although
one may assume that the inclusion of gaming elements is mainly beneficial for the
motivation of children, studies showed a positive impact on the motivation of adults
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as well, when, e.g., using Wii sports ([7], [8]) (www.nintendo.co.uk). Furthermore,
the integration of the documented training success, e.g. in form of high-score lists,
may motivate the patient to practice with a higher frequency in order to exceed ear-
lier performances. Additionally, some extra functionalities may be unlocked, if a
patient achieves a further level, which may also enlarge the motivation. Group work
may also be more motivating, e.g., as intended with the Mimik Memo game. How-
ever, in case of an application that is planned to be highly adaptable to the needs
of an individual patient, practicing in groups may enlarge the complexity of sys-
tem development. Summarizing the above, we think that the feedback functionality
plays an essential role because it contributes to the construction of a consistent doc-
umentation and the documented success, on the other hand, can be integrated into
the motivational functionality. Therefore, in the following Sections, we focus on the
embedding of the feedback unit into the training system and discuss and evaluate
the automation of the feedback process.

4 Conceptual design and details of the automatic training system

In this Section, we focus on the conceptual and implementation-related aspects of
the training system. First, we provide a schematic overview of the process steps
comprised by the system. Additionally, we describe the collection of test images,
the selection of features and the choice of the camera type. Finally, we present our
preliminary results and status on the way to the solution of this extensive task.

4.1 Overview of the training system

In the following, we examine the embedding of the feedback unit in the process
of automated feedback generation. As shown in Figure 3, the training system is
divided into three layers: the human actions, the interface and the algorithm. The
layer on the top comprises the actions of the patient. Via an input interface, such as
a camera, the algorithmic layer receives an image or a video of these actions. The
algorithmic layer is the basis of the automated feedback and consists of two units:
the automated face analysis unit and the feedback unit. The task of these units is to
analyze the appearance of the face in order to derive information about the training
performance. The properties of the face are captured by the extraction of descriptive
features from facial regions. As a result, in each image of the data stream, the face
has to be localized and distinctive facial points (e.g., the nose tip) and regions (e.g.,
the cheeks) have to be detected. The extracted features are analyzed automatically
in order to generate evaluative and instructive feedback. The feedback is forwarded
to the output interface, e.g., a display or a speech synthesis (or both). The instructive
feedback comprises information about necessary changes in exercise execution and,
therefore, directly affects the actions of the patient. Evaluative feedback only com-
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prises an assessment of the exercising quality. However, we assume that a negative
evaluation of the training will also affect the actions of the patient.

Fig. 3 Embedding of the feedback unit in the process of automated feedback generation.

To be more precise, we can say, that the described scenario does not involve
a face-appearance-to-feedback mapping but rather a feature-to-feedback mapping.
However, features only describe a part of the face properties. Thus, an important
question for the selection of the features is, whether they are suited to represent the
properties of the face and the quality of the exercise. If the feedback that is given
by the training system does not correlate to the feedback of a therapist, then there
are two main possibilities: the mapping of the describing features to the feedback
is incorrect or the features are not suited to represent the appearance of the face. In
order to reduce the probability for the latter, the features need to be examined more
closely (left image of Figure 4). The first question is, whether the features are suited
to separate the different exercises. If the features are not able to capture the char-
acteristics that distinguish the different exercises then it is unlikely that the features
are able to describe the more detailed differences that are necessary to characterize
a correct or an incorrect exercise execution. The second question is, in how much
detail the features are able to describe different states of an exercise: How do the
feature values change if a face expression changes from a neutral state to the final
state of the exercise? The third question refers to the robustness of the features. In
a real-world application it is not feasible to localize the position of the points and
regions for feature extraction manually. As a result, they have to be detected au-
tomatically. However, automated labeling is less accurate than manual positioning.
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Thus, we need to evaluate the robustness of the features with respect to varying
regions of feature extraction. The performance of the features - extracted from man-
ually labeled points and regions - must be compared to the performance of features
extracted from automatically detected areas. The right image of Figure 4 shows the
58 manually labeled landmarks used in our approach. For the automated labeling of
these landmarks, we train an Active Appearance Model (AAM) ([9], [10]). AAMs
have various applications in the area of object detection. Commonly, they are em-
ployed for the classification of facial expressions. In this work, however, we apply
them for finding and placing the landmarks. The nose tip is detected robustly by a
threshold-based localization algorithm using curvature analysis [11]. This approach
is more accurate for the nose tip detection than the solution found by the AAMs,
however, it is not suited for landmarks that lie in areas with less characteristic and
changing surface shape, as for example the corners of the mouth or points on the
cheek. In the following, we motivate the selection of depth features as robust de-
scriptors of the landmarks and evaluate their discriminative power with respect to
the distinction between different exercises. Furthermore, we compare the results for
manually and automatically labeled regions. Prior to that, we will have a closer look
on the exercises to be included into the training system that is currently developed.
These exercises are the basis to define, which regions of the face need to be localized
and analyzed more closely.

Fig. 4 Left image: Analysis of features comprises the evaluation of the discriminative power and
the robustness. The discriminative power consists of the features abilities to discriminate between
the different exercises and the different states of one exercise. Right image: 58 manually labeled
landmarks.
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4.2 Therapeutic face exercises

In cooperation with speech therapists, we selected a set of nine therapeutic face
exercises by certain criteria (Figure 5).

Fig. 5 Exercises that have
been selected in cooperation
with speech therapists (from
left to right and top to bot-
tom): pursed lips, taut lips, A-
shape, I-shape, cheek poking
(right/left side), cheeks puffed
(both/right/left side(s)). Ex-
ercises are performed by a
person without facial move-
ment dysfunctions for better
visualization.

The first criterion was the ability to transfer the exercises to various disease pat-
terns because speech-language therapy is geared towards people with various facial
movement dysfunctions. Facial palsy for example comprises a reduced ability as
well as the total inability to move facial muscles [12]. It can be caused by brain
lesions or mechanical injury of the facial nerve. Another result of brain lesions can
be dysarthria, which results in speech disorders and articulation problems. A fur-
ther disease pattern is the myofunctional disorder, which is caused by an imbalance
of facial muscle strengths, and often affects children [12]. Typical symptoms are a
constantly opened mouth and an incorrect swallowing pattern. The exercises that
we selected are beneficial for each of these disease patterns. Additionally the ex-
ercises should train several face regions: the lips, the cheeks and the tongue. Each
exercise has to be retained for around two or three seconds. The speed of the per-
formance is not important. Therapeutic tools like spoons and spatulas, as well as
movements of the head, e.g., moving the chin to the chest, should be avoided in
order to prevent occlusions. Occlusions lead to missing information, which would
necessitate more cameras for observing the patient. However, we constrain the num-
ber of cameras to a frontal one to reduce hardware costs, which is important in order
to guarantee widespread use of such a system. Additionally, the complexity of cam-
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era calibration is reduced. The selected exercises are easy to practice and build a
set of sub-exercises that can be combined to more complex and dynamic series of
exercises: As an example, the alteration between pursed and taut lips or pursed lips
and a neutral face are possible. Due to the lack of a public database that comprises
facial exercises, we collected our own dataset which will be made available as soon
as possible. It contains eleven persons conducting the nine exercises. For each ex-
ercise, there are around seven images showing different states throughout exercise
execution. This amounts in a total size of 696 images in the dataset. For the follow-
ing tests, we only employ image data that show healthy persons doing the exercises.
Because our main focus in this paper is the selection and evaluation of the features,
we want to eliminate other sources of error. Thus, we omit data recorded from per-
sons with dysfunction of facial expressions, as we expect their ground-truth to be
ill-defined. This is due to the circumstance, that an incorrect execution of an exercise
may resemble other exercises (Figure 6).

Fig. 6 Patient with facial paresis on his right side. Left image: The exercise right cheek puffed
is conducted correctly, because the bulge of the cheek is a passive process as reaction of a higher
air pressure inside the mouth and a contraction of the buccinators on the left facial side. Right
image: The exercise left cheek puffed is conducted incorrectly. The lack of contraction in the right
buccinators leads to the bulge of the right cheek.

4.3 Choice of suitable features

Looking at the example images of Figure 5 reveals that the execution of the exercises
has strong and manifold impact on the facial surface. Whereas the exercises pursed
lips and A-shape lead to a rather concave cheek surface, the other exercises produce
a convex curvature. But even the convex surfaces are manifold. The cheek boxing
exercise results in a rather steep and local bulge, whereas the cheeks puffed exercise
causes a more global and smooth bulge. Exercises with a wide mouth, like taut
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lips and I-shape, produce small wrinkles. However, the magnitude of the surface
bulge differs between individuals because it depends on the face type (e.g., full
versus slim). Nevertheless, the shape of the face surface is a reasonable property to
separate the different appearances of the face as shown in earlier works of [13], and
[14]. In total, we use three depth feature types that analyze the shape of the surface:
curvature type histograms, point signatures and line profiles. They will be discussed
more detailed in the following Sections. To capture depth data, we use a Kinect
camera. The camera outputs 2.5D depth images. These are two-dimensional images
- similar to a gray-value image - that contain object-to-camera distance information
in each pixel instead of intensity information. In addition to the depth image, the
Kinect simultaneously captures a color image. Via camera calibration, the intrinsic
and extrinsic camera parameters can be determined [15]. Using the information of
the 2.5D depth image, these can be employed to generate a 3D point cloud. Figure
7 shows a 2.5D depth image, the corresponding color image and a 3D point cloud.

Fig. 7 2.5D image, its corresponding color image and the generated 3D point cloud. For better
visualization, the point cloud is shaded using Gouraud’s method. Depth information in the 2.5D
image is visualized by colors. The scale reaches from dark blue (close) to dark red (far).

4.3.1 Curvature type histograms

We determine the curvature type for each pixel of the face ([11], [16]). The curva-
ture type contains information about the surface that is surrounding the pixel. This
information comprises the direction of the surface curvature (convex, concave) and
its shape (hyperbolic, cylindric, and elliptic). There are eight different types of cur-
vature. The left image of Figure 8 shows four examples. In an image, the face is
represented by 8.000 to 13.000 pixels. If - for each pixel and its neighborhood - the
curvature type is determined this results in a feature vector with a length similar
to the number of pixels. In order to reduce the dimension of the feature vector, we
summarize the curvature values with a histogram. To maintain spatial information,
we define several facial regions from which separate histograms are extracted. Here,
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our approach follows the work of [13], who focus on the classification of six facial
expressions. They divide the face into seven regions (e.g., chin, lower cheek, upper
cheek) and summarize the curvature types with histograms. In their dataset that is
used for testing purposes regions for feature extraction were localized manually by
humans. In contrast, we detect the regions automatically, which is less accurate than
manual labeling. As a result, we have reduced the number of regions from seven
to four in order to increase the size of each region (right image of Figure 8). This
decreases the influence of small variations of the region border locations, but also
decreases the accuracy. The borders of each of the four regions are determined by
connecting fiducial points of the face. To enable a stable detection of the regions
it is important that the fiducial points can be localized easily. Suitable positions lie
in distinctive areas of the face that are only slightly influenced by changes of the
face surface. This enables a good detection of the same point in different images. In
Figure 9, we show examples for the distribution of curvature types in the left cheek
region for two different facial expressions. The curvature types are represented by
different colors.

Fig. 8 Left image: Examples of curvature types. Top left: hyperbolic convex, top right: elliptic
convex, bottom left: cylindric concave, bottom right: planar. Right image: Four regions that are
used for feature extraction. Borders of the regions are determined by fiducial points (red).

Fig. 9 Top: Person perform-
ing the exercises pursed lips
and both cheeks puffed. The
blue points mark the corners
of the left cheek region of
the person. Bottom: Detail
view for the left cheek area,
showing the curvature types
represented by colors (brown:
elliptic convex, orange: ellip-
tic concave, green: hyperbolic
convex, blue: hyperbolic con-
cave). As expected, the cheek
has a large amount of elliptic
convex area.
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4.3.2 Point Signatures

In [14] point signatures are employed for the recognition of faces. We adapt this ap-
proach for our task of therapeutic face exercise classification. Similar to curvatures,
the idea of point signatures is to describe the properties of the surface shape. Point
signatures capture the slope of a path that runs around a distinctive point in the face
to describe the neighborhood of this point. We selected the nose tip as centre point
because it can be detected more robustly. The point signature is calculated as fol-
lows: A sphere is centered into the nose tip. The intersection of the sphere with the
facial surface creates the path (left image of Figure 10). To capture the slope of the
path, the distance information of the points that lie on the path needs to be sampled.
Depending on the position of the person to the camera, the absolute distance values
vary, although the face may be identical. To obtain a distance measure relative to the
position of the person, we fit a plane into the intersection points and displace this
plane along its position vector until it goes through the tip of the nose (right image
of Figure 10). The distance of the curve to the displaced plane is now sampled in
regular steps of 15 degrees. The slope of the path can be visualized by a coordinate
system with the axes ’degree’ and ’depth distance’ (Figure 11). The size of the ra-
dius is determined by multiplying the distance between the eyes with a factor f. We
use the following values for f: 0.4, 0.5, 0.7, 0.8 and 1.0. As a result, we get five point
signatures with a length of 24 samples each. To reduce the length of the resulting
feature vector, we apply a discrete cosine transform (DCT) on each point signature
and retain the first twelve coefficients [17].

Fig. 10 Left image: Intersection path of the 3D face point cloud and a sphere. Right image: Plane
fitted in the intersection points (red) and the displaced plane (magenta) that is used for distance
calculation. The black curve on the plane is the projection from the intersection curve. The distance
between these two curves is sampled in an interval of 15 degrees.
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Fig. 11 Left image: Person doing the exercises pursed lips and both cheeks puffed. Point signature
paths (for f=0.5) are marked on both faces. Right image: Curves showing the slopes of the paths.
Each curve consists of 24 samples (360:15= 24). The sample index multiplied with the sampling
interval (15 degrees) results in the size of the angle, starting from the point on the curve that is
intersected by an imaginary connection of the nose tip to a point on the center of the chin. The
middle of the curve represents the root of the nose, which has the smallest distance to the displaced
plane. At the beginning and the end of the curves it can be seen that the distance of the lips to
the displaced plane is smaller for the exercise pursed lips (green curve) than for the exercise both
cheeks puffed (blue curve).

4.3.3 Line Profiles

We developed the line profiles on the basis of the point signatures. Whereas a point
signature consists of a path that runs radially around a point, a line profile connects
two landmark points. We selected line profile paths that comprise the cheeks and
the mouth because these regions show characteristic changes if a face performs
facial exercises. The paths can be seen in Figure 12. Seven paths run from the tip of
the nose to silhouette landmark points. The two remaining paths connect silhouette
points. A path consists of N equidistant points in a three-dimensional space. To
obtain a representation of the path, which is invariant with respect to translation and
rotation operations of the face, we need to extract relative distance values. Therefore,
we extract the Euclidean distances between the points. The number of points per
path depends on the size of the face and the executed exercise. To get a constant
length and to reduce the length of the feature vector, again we apply a discrete
cosine transform and retain the first twelve DCT coefficients.

4.4 Feature evaluation: Results

In the preceding Sections, we introduced three feature types that comprise informa-
tion about the surface of a face:

• curvature type histograms
• point signatures
• line profiles
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Fig. 12 3D face with the
marked paths of the 9 line
profiles curves.

In the following, the features are examined with respect to their ability to dis-
criminate between the executed nine therapeutic exercises. We assess the quality of
this ability by the average recognition accuracy, which describes the ratio of the cor-
rectly detected exercises to the total number of exercises. According to the number
of images in our dataset the total number of exercises is 696. Feature types are eval-
uated individually and in combination. As mentioned in Section 4.1, several steps
are necessary for the evaluation of the features’ suitability for the planned scenario.
We concentrate on two of these aspects. First, we evaluate the features that were
extracted from manually labeled regions in order to exclude other influences like
deviating region borders. Second, we evaluate the features that were extracted from
automatically determined regions using an AAM and a curvature-based nose tip de-
tection. Training and classification is performed by applying linear Support Vector
Machines [18]. The dataset was split up into training and test set using the leave-
one-out cross-validation. Additionally, all images of a person that is present in the
test image are excluded from the training set. This approach is consistent with the
mentioned application scenario in which the images of the test person will not be
part of the training data. The number of feature dimensions was reduced from 232
to 8 by using a Linear Discriminant Analysis [19]. If features are extracted from
manually labeled regions, line profiles perform better than the other features. How-
ever, the best result is obtained by the combination of the three types. This results in
an average recognition accuracy of 91.2%. The performance of the curvature type
histograms is rather low compared to the other two feature types. However, curva-
ture type histograms outperform point signatures and line profiles if automatically
detected regions are used. This is due to the fact that curvature features extract in-
formation from larger regions than point signatures and line profiles. As a result,
the curvature type histogram is more robust against small variations of the region
borders. Again, the combination of the three features leads to the best performance
and results in an average recognition rate of 75.1%. This result confirms the suitabil-
ity of the features for the classification of the presented therapeutic facial exercises,
even in an automated scenario. The deviations of the landmarks, determined by the
AAM, compared to the position of the manually labeled landmarks were -1.9 pixels
(mean value) in x-direction with a standard deviation of 4.7 pixels. In y-direction
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the mean value of the deviation was 6.0 pixels with a standard deviation of 15.9
pixels. Considering the distances of the persons to the camera, six pixels correspond
to about 0.95 centimeters on the face.

Fig. 13 Results for the single feature types and their combination. The blue bars represent the
results for the features that are extracted from manually labeled regions. The red bars show the
results for the features extracted from automatically detected regions.

5 Conclusion and future work

In this publication, we presented our state-of-work for the development of an au-
tomated, therapy-accompanying training system. On the basis of existing therapy
solutions and conversations with speech-language therapists, we derived a theoreti-
cal model that supports the conceptual design and implementation of such a system.
Furthermore, we presented nine facial exercises, which were - in cooperation with
therapists - determined as beneficial for the therapy of facial dysfunctions. On the
basis of the selected exercises, we collected and manually labeled a dataset that
comprises 696 depth images with their corresponding color images. This dataset
was used to evaluate features that are the fundament for the implementation of an
automated face analysis unit. The features were examined in two respects. First, we
evaluated their discriminative power concerning the classification of different ex-
ercises. Second, we tested their robustness regarding varying locations of feature
extraction. The latter is relevant to determine, whether these features are suitable
for a real-world application. Future work will be focused on the evaluation of the
features’ suitability for the separation of different states of an exercise. Furthermore,
we will examine the mapping of the feature values to an evaluative and instructive
feedback scale.
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