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Abstract. In this work, we examine landmark localization and feature
extraction approaches for the unexplored topic of therapeutic facial exer-
cise recognition. Our goal is to automatically discriminate nine thera-
peutic exercises that have been determined in cooperation with speech
therapists. We use colour, 2.5D and 3D image data that was recorded
using Microsoft’s Kinect. Our features comprise statistical descriptors
of the face surface curvature as well as characteristic profiles that are
derived from face landmarks. For the nine facial exercises, we yield an
average recognition accuracy of about 91% in conjunction with manu-
ally labeled landmarks. Additionally, we introduce a combined method
for automatic landmark localization and compare the results to land-
mark positions obtained from Active Appearance Model fitting as well
as manual labeling. The combined localization method exhibits increased
robustness in comparison to AAMs.

1 INTRODUCTION

Diseases like stroke or mechanical injury of the facial nerve can lead to a dys-
function of facial movements. These impairments of facial expressions and muscle
control may have various consequences like eating difficulties and impaired face
appearance, which can restrict daily life and can lead to social isolation. Similar
to rehabilitation exercises that help to regain body functions, there are exercises
for the recovery of facial expressions. Besides practising under supervision of a
speech therapist, patients additionally have to conduct unattended exercises on
their own. However, the incorrect conduction of exercises can impede the training
success or even lead to further impairment. An accompanying training platform
could enrich unsupervised training exercises by a feedback functionality [1].

The design and implementation of such a training platform is a challenging
and complex task that comprises several subtasks. In this work, we will focus on
two subtasks – the automated facial landmark localization and the evaluation
of features. However, in order to enable a better understanding of the context
of our work, we also give a brief overview of the remaining subtasks. Figure 1a
presents five of the involved subtasks, which will be discussed in the following.
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Facial movements cause changes of the face surface, which can be captured
by depth image sensors like Microsoft’s Kinect3 or Time-of-flight Cameras4,5.
The extraction of depth features (see Fig. 1a) allows to examine the face surface,
independently from skin colour and lighting conditions. Although there exist
other systems that are capable of recording depth data with much higher depth
resolution than the Kinect (e.g. [2]), we decided to use this sensor because of
its moderate price. This makes our target application suitable for widespread
use in low-cost training platforms. Furthermore, the Kinect allows to capture
additional data channels such as intensity images in parallel to depth images.
These might be helpful if depth information is not suitable to describe certain
facial movements. For example, it can hardly be determined whether the eyes
are closed by solely processing depth information. In a real-world scenario, where
regions for feature extraction should be detected automatically, we additionally
need a fully automated facial landmark localization.

The nine therapeutic face exercises that we focus on in this paper are rather
static. The pace of the exercise conduction from neutral face to final state, e.g.,
both cheeks puffed, is not important. It is more relevant that the exercises final
states are retained for a few seconds. Nevertheless, it is likely that additional
information, obtained by examining the dynamics of an exercise instead of single
static snapshots, may contain valuable information. Additionally, it is possible
to reduce the amount of noise in the data by smoothing over time.

The evaluation of the exercises, which is essential for a feedback functionality,
is a complex task. Besides the choice of appropriate technical tools, it is necessary
to define in which cases an exercise is performed correctly and in which not.
Additionally, it needs to be assessed how feedback should be communicated in
order to be most beneficial for a patient.

Furthermore, it is necessary to collect a database of training and test images
that contain the exercises performed by healthy people as well as the exercise
conduction by people with dysfunction of facial expression abilities. In our ex-
periments, nine therapeutic facial exercises are employed that had been defined
in cooperation with speech therapists. In our studies, we only use training and
test data recorded from exercises of healthy persons. We omit data recorded from
persons with dysfunction of facial expressions, as we expect their ground-truth
to be ill-defined. This is due to the circumstance, that incorrect conduction of
an exercise may resemble other exercises, as shown in Fig. 1b.

Since each of the above-mentioned subtasks covers diverse aspects, we focus
on the landmark localization and the succeeding feature extraction for thera-
peutic exercise classification here. Our depth features are extracted from 2.5D
images and 3D point clouds recorded by the Kinect Sensor. We refer to 2.5D
images as 2D images that contain the object-to-camera distance instead of the
object’s intensity value. We analyse the facial surface by extraction of curva-
ture information and surface profiles. Surface profiles comprise line profiles and

3 http://www.xbox.com/en-US/kinect
4 http://www.pmdtec.com/
5 http://www.mesa-imaging.ch/
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point signatures. Line profiles are based on paths that connect two landmark
points, whereas point signatures are based on radial paths around single land-
mark points.

We examine the features’ discriminative power with respect to the classifica-
tion of nine therapeutic exercises and their robustness regarding varying feature
extraction regions. In the targeted real-time scenario, regions and points for fea-
ture extraction need to be determined automatically. We expected that this step
leads to variations from manually located face regions and landmarks. Therefore,
it is necessary that the features are robust against these deviations. Two differ-
ent approaches for automated landmark localization have been tested: Active
Appearance Models [3] and a combined approach that consists of learned spatial
relations of the facial landmarks and tree-structured parts models.

 

(a) (b)

Fig. 1: (a) Different subtasks of the design and implementation of an automated
therapeutic exercise platform. (b) Patient with facial paresis on his right side.
Left image: The exercise right cheek puffed is conducted correctly because the
bulge of the cheek is a passive process as reaction of a higher air pressure inside
the mouth and a contraction of the buccinator on the left facial side. Right image:
The exercise left cheek puffed is conducted incorrectly. The lack of contraction
in the right buccinator leads to the bulge of the right cheek.

2 RELATED WORK

Automated recognition of therapeutic face excercises is a still relatively unex-
plored research field. In practice, there are already tools that support the patient
with regard to exercising that is not supervised by a therapist. These tools com-
prise video tutorials (LogoVid 6) or exercise diaries (CoMuZu 7). However, at
this moment there are no commercial solutions available that automatically rec-
ognize and evaluate a performed therapeutic exercise.

6 http://www.comuzu.de
7 http://www.logomedien.de/html/logovid7a.html
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In [4] the benefit of facial exercises for the prevention of synkinesis after facial
paresis is analyzed. Synkinesis is an involuntary associated facial movement such
as eye closure during smiling. In order to determine the grade of synkinesis, [4]
manually measure the eye opening width by using an image editing software. [5]
present a system for the diagnosis support of patients with facial paresis using
2D colour images. Therefore, they analyse facial asymmetries in the eyes, nose
and mouth regions.

At present, there are no publications known to us that focus on the automated
recognition of therapeutic facial exercises using depth information. Nevertheless,
we can utilize approaches from works on face detection, as well as person and
emotion recognition. [6] use curvature of the surface of a 2.5D image to detect
salient face features, like eyes and nose. A triplet consisting of a candidate nose
and two candidate eyes is processed by a classifier that is trained to discriminate
between faces and non-faces. Based on curvature information estimated on a 3D
triangle mesh model, [7] classify 3D faces according to the emotional state that
they represent.

Point signatures were developed by [8] as an approach for general 3D ob-
ject recognition. Additionally, in [9] they present an enhanced point signature
algorithm that is specialised on face recognition. [10] extract point signatures in
2.5D images and Gabor filter responses in gray-level images and employ their
combination for face recognition.

In this work, we follow the method proposed in [7] to create histograms
of curvature types. We utilize the face recognition algorithm from [9] for the
classification of our nine therapeutic exercises and supplement it with a similar
approach that employs line profiles instead of radial profiles. In contrast to [7],
where manually placed landmarks are used, we additionally evaluate our results
with automatically located landmark positions.

3 METHOD

In the following, we briefly summarize the determination of surface curvature
(section 3.1) as far as it is necessary to understand the basic principles of our
curvature feature types (section 3.2). For detailed information, we refer to [11].
In sections 3.3 and 3.4 the extraction of line profiles and point signatures is pre-
sented. In the last section, we focus on the automation of the feature extraction
process.

3.1 Curvature Analysis

Our aim is the classification of faces according to the therapeutic exercises a
patient performs. Facial movement leads to a change of the face surface. We
analyse the surface by extracting curvature information from 2.5D range im-
ages and 3D point clouds. The parametric form of a surface in 3D is s(u, v) =
[x(u, v) y(u, v) z(u, v)]T , with u and v denoting the axes of the parameter plane
(Fig. 2a). Based on this function, we can determine the first and the second
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fundamental forms, which uniquely characterize and quantify general smooth
shapes. The elements of the first fundamental form I are:

I =

[
su · su su · sv
su · sv sv · sv

]
. (1)

The subscripts denote partial differentation. The elements of the second funda-
mental form J are:

J =

[
suu · n suv · n
suv · n svv · n

]
, (2)

with n being the unit normal vector of the tangent plane in the point with pa-
rameters (u, v). Although both fundamental forms are a unique representation
of the surface, combinations of both are more common for surface characteriza-
tion, because they allow for an intuitive interpretation. Using I and J, the shape
operator matrix W can be computed by:

W = I−1 · J . (3)

The mean curvature H gives information about the direction of the curvature
(convex, concave) and is determined by:

H =
1

2
tr [W] , (4)

with tr [W] being the trace of the shape operator W. The Gaussian curvature K
contains the information whether curvatures that are orthogonal to each other
point in the same or in different directions (Fig. 2b). It is computed as follows:

K = det [W] . (5)

Opposed to the general parametric representation, the parametrization of a 2.5D
range image takes a very simple form s(u, v) = [u v z(u, v)]T . Because a 2.5D
image is spanned by two axes that generate a discrete (pixel) grid, the derivation
of s with respect to u and v is simplified and results in su = [1 0 zu]T and
sv = [0 1 zv]T . Therefore, for the computation of H and K only the partial
derivatives of z are relevant:

H =
zuu + zvv + zuuz

2
v + zvvz

2
u − 2zuzvzuv

(1 + z2u + z2v)
3
2

, (6)

K =
zuuzvv − z2uv

(1 + z2u + z2v)2
. (7)

3.2 Extraction of Curvature Information

Prior to feature extraction, we smooth the face surface using an average filter.
We extract the mean and Gaussian curvature for each pixel, respectively 3D-
point, in order to obtain information about the facial surface. This results in
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around 2 × 8000 to 2 × 13000 values per face, depending on the face-to-camera
distance. In order to reduce the dimensionality of the feature space, we accu-
mulate the curvature values in a histogram [7]. To maintain spatial information,
we define four regions (A-D) from which histograms are extracted (Fig. 2c).
Each histogram is weighted with the number of pixels of the region described by
it. The selected cheek regions are axially symmetric, due to the fact that some
of the therapeutic exercises are asymmetric and each face side contains valu-
able information. Two additional regions, in which high facial surface variation
among all exercises is visible, were included into the feature extraction process.
Further refinement of the regions was omitted in order to to maintain a certain
robustness in case of automatically determined regions.

uv - Parameter Plane

n

Surface in R³

s(u,v)

su

sv

(u,v)

(a) (b)

1 2

3 4

BA

C

D

5

(c)

Fig. 2: (a) Surface in 3D with the corresponding parameter plane (image accord-
ing to [11]). (b) Two surfaces with orthogonal maximum and minimum curva-
tures that point in different (left surface: hyperbolic convex) and in the same
directions (right surface: elliptic convex). (c) Regions A-D are employed for cur-
vature feature extraction. Region borders are derived from landmark points 1-5.
The determination of the landmark points is explained in sections 3.5 and 4.1.

The curvature type histogram feature is obtained by extraction of mean cur-
vature H and Gaussian curvature K for every 2.5D pixel, respectively 3D point
according to (4)-(7). In the next step, both values are combined to eight discrete
curvature types as shown in Table 1 [6]. Subsequently, the discrete curvature
types of each region are summarized with histograms. The concatenation of
these histograms forms the feature vectors that are subjected to the classifica-
tion process. For each image, a 32 dimensional feature vector is extracted (8
curvature type histogram bins per each of the four regions).

3.3 Extraction of Line Profiles

Although curvatures are extracted from each pixel, their combination in a his-
togram blots out some of the local information. Line profiles, in comparison,
contain highly localized information by describing paths along the face surface.
Instead of using 2.5D images, line profiles are extracted from a point cloud in
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Table 1: Curvature type definition using mean and Gaussian curvature (H, K)
K < 0 K = 0 K > 0

H < 0 hyperbolic concave cylindric concave elliptic concave
H = 0 hyperbolic symmetric planar impossible
H > 0 hyperbolic convex cylindric convex elliptic convex

3D. Each of the three dimensions is expressed in meter. For a 2.5D image, two
dimensions are given in pixel units. However, the real world distance that is de-
scribed by the difference of one pixel depends on the person-to-camera distance.
The smaller the distance of an object to the camera is, the more pixels does this
object cover on a 2.5D image. As a result, comparison of different line profiles is
more difficult, when using 2.5D images.

In total, we extract nine line profiles from the 3D point cloud of the face.
Every line profile connects two defined landmark points. Figure 3a shows the
paths of the profile lines. Seven profiles start at the nose tip, connecting it in
radial direction to silhouette points. Two line profiles are horizontally located
and link two silhouette points.

The paths over the face consist of N equidistant points pn(x, y, z), with
n = 1...N . Nearest-neighbour interpolation is employed in order to calculate
missing points. The L2-norm of the position vectors of every 3D point pn already
creates a distinctive curve as can be seen in Fig. 3b. However, in order to achieve
invariance with respect to the viewpoint (i.e., translation and rotation operations
of the facial point cloud), relatively coded central differences between the 3D
points are calculated (left image of Fig. 3c).

The images show, that the curves consist of 70 samples. This value may
vary because the size of the head (subject-specific) or the length of the curve
(exercise-specific) may change. To get an identical size of the curve for every
subject and every exercise and to reduce the amount of feature dimensions, we
conduct a discrete cosine transform [12] on the curves and build our feature
vector using the first 12 dct-coefficients. The right image of Fig. 3c shows, that
the inverse discrete cosine transform with 12 coefficients yields a reasonable
reconstruction of the original curve. We derived the line profiles from the point
signature approach presented in the following section.

3.4 Extraction of Point Signatures

Similar to line profiles, point signatures are paths on a surface [8]. Instead of
connecting two landmark points, the curve runs radially around a distinctive
point p0 of a 3D point cloud. As can be seen in Fig. 4a, in our approach the
point p0 is located on the tip of the nose. In order to obtain the point signature,
a sphere is centered into the point p0 of the 3D point cloud. The intersection of
the sphere with the facial points forms a curve Q in the three-dimensional space
(Fig. 4b). The depth information of these intersection points, combined with the
value of the sphere radius, contains characteristic and unique information about
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Fig. 3: (a) 3D face with marked paths of the nine line profiles. (b) Line profile
from nose tip to the point of the chin for the exercise A-shape. The curve shows
the length (in metre) of the position vector of each point pn. The opening of the
mouth, resulting in higher values, in the middle of the curve and the chin shape
on the right are visible. (c) Left: Distance line profile. Right: The reconstructed
line profile using the first 12 dct-coefficients.

the depth value distribution in the surrounding area of the point p0. However,
taking the absolute depth values of this intersection points is not reasonable
(as already discussed for the line profiles in section 3.3) because they are not
independent with respect to translation and rotation of the head. As a result,
we create a reference curve Q′ that can be employed to calculate relative depth
information. To obtain this curve, we fit a plane P through the set of intersection
points. The plane is determined with regression analysis by a singular value
decomposition that gives the surface normal of the plane. The plane is now
shifted along its normal vector into the point p0. This results in a new plane
called P ′ (Fig. 4c).

In the next step, the curve Q is projected onto P ′ building a new curve Q′.
Now the curve Q′ is sampled around the approximated surface normal at p0
with a rotation angle of 15 degrees. For each sampled point in Q′ the distance to
its corresponding point in Q is collected. The starting position for the distance
sampling needs to be equal between the different images to obtain curves that
are comparable. Therefore, we define a starting position, which is determined
by a reference point pref . The reference point is located on the chin as marked
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in Fig. 4a. The sphere radius length has to be determined such that the arising
path does not protrude beyond the surface of the face and no background points
are sampled. The length of the radius is computed from the eye distance deye,
multiplied by a factor f . The eye distance is estimated from the distance between
the mean positions of each eye that are obtained by the landmark positions of
each eye (Fig. 4a). We use the following values for the empirically determined
factor f to extract five different point signatures that cover varying areas of the
face: 0.4, 0.5, 0.7, 0.8 and 1.0.

Sampling of the radial curve with a fixed interval of 15 degrees generates 24
values per point signature. The more point signatures are extracted, the more
precisely the surface of the face can be described. However, a high amount of
point signatures leads to a high-dimensional feature space. Again, we reduce
the dimension of the feature vector to twelve values by applying discrete cosine
transform on each point signature as shown in section 3.3.

pref

p0

deye

(a) (b) (c)

Fig. 4: (a) Landmark points and line segments that are employed for the ex-
traction of point signatures. (b) Intersection curve Q of the sphere with the 3D
point cloud. (c) The planes P (red) and P ′ (magenta). The projected curve Q′

is marked on P ′.

3.5 Automation of the Feature Extraction Process

The features presented above have in common that distinct facial areas need
to be determined for extraction. Manual determination of these landmarks and
regions is not feasible in a real-world application. Thus, they have to be detected
automatically, which may lead to less accurate localizations. In this work, we
compare two different approaches for landmark localization: Active Appearance
Models and a tree-structured parts model algorithm that is combined with a 3D
spatial relations model.

AAMs are mainly applied in the field of facial expression recognition on 2D
gray-value images ( [3], [13]). On the basis of several training images a combined
mean texture and shape model is derived. The fitting of this mean model to a new
and unknown face is improved by determination of a coarse initialization position
using the Viola and Jones face detector [14]. In the next step the AAM adapts
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itself to the new face by minimizing the error between the model intensities and
the image intensities. The parameters that describe the fitted model are usually
subjected to classification of facial expressions. In constrast to this, the AAM
can be used for the mere detection of landmarks without further consideration of
the model parameters [15]. In this paper, we focus on the application of AAMs
for the detection of the 58 landmarks only (Fig. 5b).

Tree-structured parts models are an approach for face detection, pose es-
timation and landmark localization [16]. In total 68 landmarks are located in
this approach. The number of landmarks on the face silhouette is similar to the
number of silhouette landmarks detected by the AAM approach. However, tests
showed that the placement of landmarks in the center of the face, e.g., in the
nose or eye region, is too imprecise for the targeted scenario. Therefore, only the
information of the silhouette landmark positions is kept.

A spatial relations model and surface curvature are computed in a parallel
process in order to localize the landmarks in the upper, rigid face half (Fig. 5a).
The spatial relations model comprises a smaller subset of landmarks, which was
derived from the landmarks and regions that are necessary for feature extraction.
The idea of the spatial relations model is based on the fact that distances and
angles between the landmarks of a face lie in a constrained range. The model is
computed from training data and centered in the nose tip of a face (Fig. 5c). In
total, 14 position vectors show the direction and absolute value to 14 landmarks
(Fig. 5d). Additionally, for each landmark the maximum deviation of the training
data from the mean position is computed. As a result, a spherical search space
can be constructed around each position vector tip by using the maximum devi-
ation distance as radius. In order to be able to fit the model to a new image with
unknown landmark localizations, the nose tip and the nose ridge vector must be
detected (Fig. 5e). This can be done via curvature analysis and Support Vector
Machine (SVM) classification because of the distinctive surface of the nose. The
3D mean model is then translated and rotated so that the model reference vec-
tor and the nose ridge vector are congruent. Possible landmark candidates lie in
each of the 14 spherical search spaces that are centered at the tip of a vector.
Now, the previously computed curvature information can additionally be used
as input for 14 single SVMs in order to further reduce the landmark candidate
number. For each of the 14 landmarks a separate SVM is trained. In the end, for
each landmark a centroid of the remaining candidates is computed and defined
as the new landmark position.

In contrast to the rigid upper face half, the lower one has a more dynamic
surface appearance. As a result, mean and Gaussian curvature are not appro-
priate for landmark localization in this area. In the last step, upper face half
landmarks from the spatial relations model and lower face half landmarks from
the tree-structured parts model are fused to one landmark set. Thus, at present,
both processes are parallel and independent from each other. Our future goal is
to combine the results of both approaches for complementary verification and
error minimization.
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The AAM and the tree-structured parts model are fitted on the 2D intensity
images. Subsequently, we need to transform these landmark positions to posi-
tions in depth images. Therefore, intrinsic and extrinsic camera parameters were
determined by camera calibration [17]. They can be employed to align the 2.5D
images with their corresponding intensity images. As a result, corresponding
points have the same position in the images of both channels, and the labeled
landmark positions can be accordingly transferred. Additionally, these camera
parameters can be used to transform the points of the 2.5D image to a discrete
3D point cloud [17].

Colour image

Curvature-based 
nose ridge 
detection

Tree-structured 
part models

3D point cloud
Spatial 

relations
model 

Curvature-based 
landmark candiate 

reduction

Landmark 
positions: upper 

face half

Landmark 
positions: lower 

face half

Centroid 
computation

(a)

(b) (c) (d) (e)

Fig. 5: (a) Process of landmark localization. (b) The 58 landmark positions of
the Active Appearance Model. (c) Spatial relations model fitted on a face. (d)
3D spatial relations model. (e) Face with nose ridge vector (red).

4 EXPERIMENTS

In the first section of the experimental part, we focus on the dataset and the
exercises that are used for our experiments. The evaluation of the features dis-
criminative power with respect to the classification of therapeutic exercises is
presented in section 4.2. Results from experiments that test the robustness of
the features related to variations of region borders are given in the last section.

4.1 Exercises and Dataset

In cooperation with speech therapists, we selected a set of nine therapeutic face
exercises by certain criterions. The exercises should train the lips, the cheeks,
and the tongue and should be beneficial for various types of facial muscle dys-
functions, e.g. paresis of muscles or muscle imbalance. Furthermore, the selected
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exercises should be easy to practice and should build a set of sub-exercises that
can be combined to more complex dynamic exercise units, e.g. by alternating
between them. The exercises have to be performed in an exaggerated manner,
to enable a maximum training effect, and have to be retained for around two or
three seconds. The speed of the performance is not important. Although some
of these are vocal exercises, it is not necessary to vocalize a continuous sound
while performing the shape. Images that visualize the exercise conduction are
shown in Fig. 6.

Fig. 6: Exercises that have been selected in cooperation with speech therapists
(l. to r.): pursed lips, taut lips, A-shape, I-shape, cheek poking (right/ left side),
cheeks puffed (both/ right/ left side(s)). For better visualization colour images
are shown.

Due to the lack of a public database that shows the performance of ther-
apeutic exercises, we recorded a dataset, which contains eleven persons, who
conducted the nine exercises. For each exercise, there are around seven images,
showing different states of exercise conduction. This amounts to a total size of
696 images in the dataset. Some parts of the scene, which was captured by the
Kinect may be shadowed, if they are seen by the depth camera but are not
illuminated by the infrared projector. This leads to invalid values in the 2.5D
image [18]. These values were removed by replacing them with the mean depth
values of adjacent valid neighbour pixels. For every depth image, there exists
a corresponding colour image that has been recorded with maximum time dif-
ference of 16 milliseconds. The colour images have been labeled manually with
58 landmark points that were used for the training of the AAM (Fig. 5b), or
for the feature extraction from depth data. The transferability of landmark po-
sitions between the 2.5D image and the colour image was already explained in
section 3.5.

4.2 Evaluation of the Discriminative Power

The following section gives an overview of the classification results. Since we
wanted to evaluate the basic suitability of the described features for the task of
classifying therapeutic exercises, we extracted the features from regions obtained
via manually labeled landmarks, thus excluding other influences like deviating
region borders. We evaluated each feature group individually and in combination.
Training and classification was performed by applying SVMs of the LIBSVM
package [19]. We tested linear SVM and a Radial Basis Function kernel. Optimal
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values for the penalty parameter C and the kernel parameter γ were obtained by
a grid search on the training set [20]. In order to avoid overfitting to the training
set, we employed a 5-fold cross-validation during parameter optimization. In
combination with the amount of data (696 images, 232 feature dimensions), the
linear SVM led to the best results because it avoided overfitting. The dataset
was split up into training and test set using the leave-one-out cross-validation.
Additionally, all images of the person present in the test images were excluded
from the training set. This approach is consistent with the mentioned application
scenario in which the images of the test person will not be part of the training
data. Linear discriminant analysis (LDA) was used prior to the linear SVM
classification in order to reduce the feature dimensions from 232 to 8. LDA
is a linear transformation of the feature space that maximizes the between-
class separability and minimizes the within-class variability [21]. We obtained an
average recognition accuracy over the nine classes of 90.89 %. Detailed results
for the single features are given in Fig. 8.

4.3 Evaluation of the Automated Landmark Localization

As mentioned before, in a real-world scenario regions and landmark points for
feature extraction have to be detected automatically. Therefore it is crucial, to
employ a robust landmark localization. Although AAMs usually comprise 58
landmarks, in this section we constrain our evaluation to the landmarks that
are relevant for our succeeding feature extraction (Fig. 7a). Figure 7b shows
the mean pixel distances and standard deviations between the manually labeled
landmarks and the two automated localization approaches. The AAMs are vi-
sualized in red and the combined parts and spatial relations model approach is
visualized in black. The localization using the combined approach led to smaller
deviations than using AAMs. A deviation of six pixels corresponds to about
0.95 cm. Additionally, it can be seen that the landmarks in the upper rigid half
of the face were more robustly detected than the landmarks in the lower face
half. Better localization resulted from the more distinctive and invariant surface
shape in these landmark areas. Furthermore, images were labeled manually on
2D colour images. The landmarks with the smallest deviations are landmarks
that are easier to label in the colour image because of distinctive visual prop-
erties, e.g., the darker inner eye corners or the edge between cheek and nose
wing.

4.4 Evaluation of Feature Extraction from Automatically
Determined Regions

In this section, we evaluate the robustness of our different features types with
respect to varying region borders and landmark positions. Figure 8 shows the
results for each of the three feature types for manually and automatically local-
ized landmarks. For manual determination of the landmark positions, curvature
analysis is weaker than point signatures and line profiles with respect to the dis-
crimination of nine therapeutic exercises. This result occured because curvature
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(a) (b)

Fig. 7: (a) The 15 landmarks that are relevant for feature extraction. (b) The plot
shows the mean values and standard deviations for the distances (in pixel units)
between the manually labeled landmark positions and the positions localized
by AAMs (red) and by the combined approach (black). Six pixel correspond to
about 0.95 cm.

information for several pixels is combined into histograms, and therefore, aver-
aged over larger regions. However, curvature analysis achieved better results for
automatically detected landmarks than the line profiles because it covers a larger
region. Thus, small deviations of the silhouette landmarks have less influence on
the regions used for feature extraction, especially if a landmark is incorrectly
localized outside the face region.

As shown in section 4.3, the combined approach led to more robust landmark
localization than the AAMs. As expected, this resulted in better average recog-
nition rates for each of the feature types. By concatenating the different feature
types a rate of 90.89 % correct exercise classification was obtained if manual
labeling is used and 69.14 % if the combined localization approach is used.

Fig. 8: The bar plot shows the average recognition rates (in %) for each of the
three feature groups. As expected, feature extraction from manually determined
regions and landmarks led to better results than the extraction from automati-
cally determined areas using AAMs and combined models.
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5 SUMMARY AND DISCUSSION

In this paper, we presented several aspects that are necessary for the design and
implementation of an automated training platform for patients with facial muscle
dysfuctions. We introduced nine therapeutic exercises, which - in cooperation
with speech language therapists - were determined as beneficial for the planned
application scenario. Additionally, the automated classification of these exercises
was evaluated. The presented approach employs 2.5D depth images and 3D point
clouds and is based on three different feature types: curvature analysis, point
signatures, and line profiles. The features were evaluated with respect to their
discriminative power for exercise classification. Additionally, we examined their
robustness regarding varying locations of feature extraction. This is relevant for
all applications, planned for practical use, where a manual detection of landmarks
is not feasible.

Curvature analysis, in the form we have implemented it, is rather global com-
pared to point signatures and line profiles and showed a relatively robust per-
formance. However, with suitable landmark localizations point signatures and
line profiles outperform curvature analyis. We used two approaches for auto-
mated landmark detection: Active Appearance Models and tree-structured parts
models. The latter lead to the best results. Line profiles showed only weak con-
tribution to the classification process, if the landmark positions are detected
automatically. Nevertheless, the results based on manually defined regions are
promising.
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