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Online Adaptation of Dialog Strategies based on Probabilistic Planning”
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Abstract— In this paper, a dialog modeling approach for long-
term interaction between a service robot and a single user is
presented, which enables a user-adaptive interaction behavior of
the robot. Central element of the dialog system is a probabilistic
model of the user’s reactions to the robot’s behavior, which is
learned online and used for a probabilistic planning process
based on message passing in a dynamic factor graph. The
suggested approach has been applied to implement a complex
application on a mobile service robot, which has been tested
in a 10 day evaluation study with 16 users in order to get a
feedback on usability of the interaction design, adaptation skills,
and feasibility of a rapid application development. Results and
findings of that study are presented here briefly.

I. INTRODUCTION

In our current research project SERROGA (SERvice
RObotics for health (Gesundheits) Assistance) [1], we focus
on developing demonstrators for robotic applications in the
context of accident prevention and assistance for elderly
people living alone in their home environment. In that
context, a long-term interaction behavior of an autonomous
service robot and the human user is subject of our studies,
since this is an essential factor for acceptance of such a
system in the very heterogeneous target group. As a vision,
we see a robot, that is living together with the humans in their
home environment. Furthermore, we expect the development
of an emotional binding of the user to his or her personal
robot over the time, which is reinforced by the ability of the
system to adapt to the user’s needs and preferences.

The robot platform for

our experiments in the tactile sensor
. . - fo!' petting

SERROGA project is a microphone
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That robot was designed as
a hands-off assistant in our
previous project Compan-
ionAble [2]. Meanwhile, it
has been improved by ad-
ditional interaction modal-
ities enabling an intuitive
communication by a multi-
modal user interface con-
sisting of a touchscreen,
touch sensitive cover, and
a touch sensitive patch of fur used for petting the robot.
Current work in progress intends for inclusion of speech
recognition as additional input channel. For output, the robot
can use synthesized voice, its tiltable screen, an artificial face
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Fig. 1. Scitos-G3 robot called Max
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consisting of two eye displays, as well as its motion capa-
bilities. A laser range finder and a Kinect sensor, together
with a differential drive enable autonomous localization and
navigation skills. A fish-eye camera is used for person
detection and tracking, which is a key functionality for a
successful interaction.

Based on that hardware, we implemented a layered soft-
ware architecture using the robot middleware MIRA [3] in
order to enable a modular application concept allowing for
an extensible set of services that are realizable in a rapid
development process. Furthermore, the robot has to appear as
a single conversational subject managing the various services
executed in parallel. Details on our software architecture
can be found in [2] as well. Additionally, adaptation skills
in the dialog behavior which are a prerequisite for long-
term interaction were considered in the implementation. In
this paper, we focus on the dialog manager and dialog
configurations in the individual independent services.

In the remaining part of the paper, the dialog model-
ing concept is introduced based on an example from our
evaluation application. For that, first, some basic ideas and
related work on adaptivity in the human-machine dialog are
discussed, before the details of our evaluation study and the
concept of dialog modeling as well as the probabilistic plan-
ning approach are presented. In the final part, the findings
of our user study and the achieved results are discussed.

II. ADAPTIVITY IN THE DIALOG BEHAVIOR

During a long-term scenario, we expect a prototypical
evolution of an interaction behavior over time. In the first
phase, the user needs to get to know the robot. The system
has to give advice how to use it and has to introduce its
capabilities. The dialog initiative is primarily at the side of
the robot. Later, in a second phase, when the user is more
familiar with the capabilities of the robot, the initiative will
be in the user’s hand, and the robot should learn the user’s
preferences and needs. Specifically, the robot has to learn,
which services are used in which situation and what are the
user’s attitudes towards the various options the robot has
in its dialog behavior. Also preferred selections are learned
by the robot in order to apply that knowledge later. After a
while, a stable phase is reached. The robot now can make
use of the observations in interaction with that specific user.
Thus, it is able to act proactively depending on the current sit-
vation. Then, a mixed initiative dialog should emerge within
the limited domain of the robot’s services. Nevertheless, the
ability to learn and change interaction behavior should not be
limited to the initial phases. Changes of user’s attitudes have
to be tracked continuously and life-long. Thus, it is essential,
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that the interaction policy is adapted online based on passive
observations on user’s reactions to specific behaviors, but
also based on explicit rewards given by the user, e.g. by
means of petting the robot to praise a desirable behavior.
Unfortunately, such a reinforcement-based approach comes
along with the exploration-exploitation dilemma. The system
may behave in the way the user commended, but it also has
to try other possibilities not necessarily liked by the user in
this moment in order to find a better policy and learn the
most favored interaction behaviors.

III. RELATED WORK

In literature, several approaches for dialog modeling can
be found, mainly in the field of natural language generation
and speech-based dialog systems, which also can have ca-
pabilities of adaptation, but are not exactly compatible with
the service robot domain.

A common approach is using Reinforcement Learning
(RL) techniques for optimization of a dialog flow, even when
inputs are uncertain. The Partially Observable Markov De-
cision Process (POMDP) is used here, but this comes along
with high computational effort, which is handled by several
approaches for simplification [4], [5]. These approaches try
to find a policy in order to maximize the discounted future
reward, that is generated according to a system internal
reward function. Therefore, the system designer has to define
in advance the long-term goals during upcoming dialogs.
A drawback of many Reinforcement Learning approaches
is the effort for incorporation of reward given by a user
online. In order to consider these observations immediately,
the complete interaction policy has to be optimized again.
Therefore, in the domain of dialog learning, a complicated
application development scheme has been established, where
in a training phase interaction data is acquired (often with
a mock-up or Wizard of Oz application), and afterwards
the optimization run is applied offline in order to generate
the (non-adaptive) productive dialog system. This is a clear
drawback we want to overcome in our solution.

Pineau et al. [6] applied a POMDP model for learning
an optimal dialog behavior for a service robot called Pearl.
An interesting aspect of that approach is a hierarchical task
decomposition, which is similar to our intended modularity
of services. Although they applied that decomposition of
the general assistance task, the complexity of the realizable
functionality was still very limited. That approach also relies
on a hand-crafted reward function, and the policy was
computed offline before application. Thus, the robot could
not consider individual user’s characteristics discovered at
runtime.

An alternative model for learning a behavior online from
direct user rewards is called TAMER [7]. This approach
explicitly models which feedback a user gives for a certain
state-action pair, and then acts greedily in order to get the
maximum reward for the next action. The argumentation
for this A\ strategy is the idea, that the human supervisor
estimates the utility value of a state-action combination and
represents this in the reward signal already. This might be

correct to a certain degree, but has a clear disadvantage. The
system can only act in order to achieve the user’s goals, but
is not able to incorporate system-internal concurring goals.
One interesting aspect of the TAMER system is the reward
model. This allows to predict the user rewards and apply
them internally, even if the user is not giving feedback for
each action. Thus, this model allows that the user has to get
active by giving feedback only if s/he wants to modify the
behavior, not if s/he is pleased with it.

An alternative dialog system applying probabilistic infer-
ence is presented in [8] and later in [9]. Inference techniques
have been applied to a statistical model of the dialog in
order to reason the goals the user might have in mind and,
therefore, decide which information needs to be asked or
given in the next dialog steps. Unfortunately, this idea is
not directly transferable to our scenario, where the goal of
the dialog is not only determined by the user but also by the
system itself (e.g. a health assistant robot wants to engage the
user in communication or physical activities). Additionally,
the direct reward by the user, which is used to modify the
way things are communicated, is hard to introduce in that
approach.

In our approach, we wanted to combine the idea of the
robot system’s own goals, which e.g. can be a success
in encouraging a user to perform some exercises or only
a fast task completion, with explicit and implicit rewards
given directly by the user during the interaction. To achieve
the capability of online learning/adaptation, we suggest the
substitution of the RL-typical representation of the optimal
policy for the dialog by an online planning mechanism.
This also allows for changing optimization goals as well as
discovering new states of the dialog at runtime, which would
be difficult or even impossible for implicit planning methods.

Today, a variety of highly sophisticated dialog modeling
techniques exists, mostly related to a very complex applica-
tion development process. Our aim is to provide a frame-
work for rapid application development, which is realized
by combining simple frame-based multi-modal dialog with
the capabilities of optional adaptation without introducing
additional configuration effort. A key to a manageable design
effort is the possibility for problem decomposition. Similar
to hierarchical abstract machines [10], that are also used
in the Reinforcement Learning domain for restriction of
the action space, in our approach individual sub-dialogs are
defined as independent modules each restricting the policy
to a reasonable subset and having the ability of calling other
sub-dialogs on demand.

IV. THE OFFICEMATE EVALUATIVE SCENARIO

Before the dialog model and the planning mechanism are
presented, the scenario of our evaluation study is introduced
to serve as an example for the following explanations. To
study the interaction design to be used for our health assistant
robot, we had to find a setup for conducting several long-
term interactions in parallel. Caused by restrictions on access
to the robot as well as the number of test users needed,
an evaluation scenario had been chosen, that involved 16
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members of our lab at ten consecutive workdays in parallel.
The robot acted as an “Office Mate” by visiting each trial
participant once a day beginning at 9:00 a.m. and offering
its services. Further points of interest for our study were the
feasibility of the application development process and the
correct operation of the user adaptation skills.

The evaluation involved two questionnaires the partici-
pants had to answer, which were intended to get a baseline
of the subjects’ prior expectations regarding the robots capa-
bilities, skills and services and to ask for the user experience
afterwards.

Among the participants, there were 4 female and 12 male,
while half of the group had an age between 18 and 29 and the
other half from 30 to 45 years. All participants were familiar
with IT but were not directly involved in the development
of the robot.

From the questionnaires, a set of services had been ex-
tracted that the participants identified as possible function-
ality an office companion robot should have. These services
comprise a greeting with some smalltalk regarding the well-
being of the user, providing the menu for the refectory,
providing weather information and forecast, entertaining
with a set of websites (comics, jokes), informing via a set
of news websites, and reminding of appointments as well
as showing the current date and time. These services were
implemented on our test system. Also the content of the
news and entertainment services was selected based on the
questionnaires and likewise the preferred way of talking to
the user either by formal of informal speech.

The interaction sessions conducted with each participant
once per day had the following structure: First the robot
autonomously moved to the office of the participant. Once
a person was detected at the target point, the robot asked
to confirm the identity and started the greeting dialog. At
that point, the user-specific dialog models were loaded from
file and allowed for the adaptivity in the remaining dialog.
After this, the robot activated a main menu dialog, where
the user could start services or got suggestions on which
services might be useful in that situation. During the dialog,
the user had the possibility to give explicit reward to the robot
at any time by means of a “like” and “dislike” button on
the screen. Also petting the robot served as positive reward
during the interaction. In the dialog session, a turn-based
scheme of interaction was used. When the robot was on turn,
it expressed a message, asked for some information or simply
provided a screen with the requested content to the user.
Each robot action consisted of a spoken text and a respective
screen page offering the input options needed. Then followed
the user’s turn, and the robot waited for some input, which
was communicated by the touch screen. Also internal events
or timeouts could trigger a new turn for the system. The
session was finished when the user did not react anymore
or actively selected the “leave me now” entry on the main
menu.
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subd| subd subd g E .
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i i defined in
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variable [[variable | /212272 iabie 3 4 modules
variable 3—3
dialog manager
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fusion \ suspended rendering
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Fig. 2. Concept of the dialog manager: First, the variables in sub-dialogs are
filled by a multi-modal input interpreter. Then, the top of the stack of active
sub-dialogs in the dialog manager is considered for action selection where
the planning inference is applied to select an action, which is expressed by
output renderer afterwards.

V. ADAPTIVE MODULAR DIALOG SYSTEMS

The implementation of the dialog system is realized in
the control layer of our software architecture [2]. It consists
of a central Dialog Manager which consumes all kinds of
inputs from the graphical interface (GUI) and other input
modalities, updates the dialog state and selects the adequate
action depending on that state. Other robot software compo-
nents for navigation and perception skills realize an interface
to the robot infrastructure for the individual services in the
task layer. In this way, the software realizes a modular design,
where each sub-dialog (greeting, weather info, news, enter-
tainment, etc.) is an independent module defined by a service
in the task layer. Thus, it is easy to add new functionality
and refer to, or combine existing dialog capabilities in new
dialogs, such that the borders of the modules get blurry for
the user.

The modules implement a content specific back-end func-
tionality and define the required sub-dialogs. The configu-
ration for a sub-dialog is mainly a definition of the state
space S (input variables and internal context) and a set of
output actions available A = {ay,...,ax} as well as a
default policy. To get an impression of that principle, the
main menu sub-dialog of our Office Mate is described in
more detail. Aims of the main menu dialog corresponding
to respective system actions are a; asking for the next service
a user wants to use, as suggesting new services not used so
far, and offering services proactively in situations, where the
system has observed that the user often started a specific
service function. For that last function, the system is able to
predict user’s selections (see Sec. V-C) but it has to ask for
confirmation of the choice, if the prediction is ambiguous,
which is a further possible action as. In order to introduce
the user to the robot’s way to interact, all these actions
a1 — ag are available in a second version a4 — ag with a
supplementary verbal and written advice. Besides these user
centered actions, also system internal actions are available,
which comprise the activation of a sub-dialog for the selected
service ay or leaving the main menu dialog, when the user
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is not responding anymore as. Therefore, expected user
inputs are the selected service or the positive or negative
confirmation of the the robot’s suggestions. These inputs
directly correspond to two of the state variables v; and vs
of the sub-dialog. Further state variables are representing
the situational context and the history of the conversation.
In detail we have a variable v3 holding the number of
appointments scheduled for today and a further variable v,
counting the services executed during the session, which is
necessary to predict a sequence of selections correctly. All
variables can have either real-valued or discrete domains.
Additionally, the state vector .S also contains a certainty value
Cq,...,C, for each variable representing the reliability
of the acquired knowledge. This is necessary to represent
uncertainty of inputs, e.g. from speech recognition. Also
predictions of user’s inputs are uncertain and can be handled
that way (see Sec. V-C). As a third part of the dialog’s state
space, we hold a counter Hj for each action aj available,
keeping track of the history of executed system actions. By
means of these counters, it is possible to change system’s
reactions after a couple of repetitions of certain actions.

Hence, the state representation for one sub-dialog is a
vector:

S=0V,...,Vn,C1,...,Cn,Hy,...,Hg) (1)

Based on the current value of that state S, the dialog
manager has to select an action each time the system is
on turn. In order to reduce the necessity for exploration in
an unordered set of actions and in order to prevent from
selection of irrational action sequences that might frustrate
the user, it is necessary to limit the set of selectable actions
in each state S. In our system, this is done by a manually
designed decision tree over the state variables (see Fig.
2 upper part), which is more flexible compared to finite
state machines regarding the aim for a mixed initiative
dialog. Each node in the decision tree decides between two
alternative branches in the tree based on a condition on the
state .S, while in each leave of the decision tree there is one or
a set of possible actions. These sets of actions allow to define
options the dialog manager has to chose from, based on the
rewards and observed transitions. System internal goals are
realized by means of labeling states as desirable goal states
when a respective action is selected. For instance, in the main
menu example the “leave me now” selection followed by the
action that finishes the sub-dialog is the goal. Other services
like the entertaining website provider define a goal when the
user has left to the main menu and at least one website has
been visited. In the entertain as well as in the news service,
the user first has to select from a list of available sites and
then gets shown the respective content. Again the system has
the ability to suggest websites the user did not select so far or
start a website directly based on an internal prediction of the
selection to be expected. It also may ask for confirmation,
if this prediction yields ambiguous results. Like in the main
menu, for all services, actions communicating to the user
are available in two versions: with and without additional
explanation.
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Fig. 3. Workflow in the dialog manager

A. Control flow in the dialog

Having defined the structure of a sub-dialog, now the
coordination of user inputs, multiple active sub-dialogs, and
the system output generation are explained. In general, a
turn-based control flow is realized, where user input turns
and system turns alternate.

The dialog manager holds a stack of active sub-dialogs,
where the top most is that one, which is evaluated each
time a system action is necessary (start of a system turn).
The dialog manager evaluates the decision tree of the top
most sub-dialog in the stack using its current state S =
so in order to get the possible action set for the current
situation (see Fig. 3). If only one action is available, this
one is executed by the output renderer directly. Here, mainly
screen and speech outputs are generated which may refer to
values of the variables in the sub-dialogs and communicate
content suitable for the current situation (asking questions,
confirming inputs or giving answers). Also special actions,
like activation of other sub-dialogs or canceling an active
sub-dialog, are possible. If a new sub-dialog is activated,
the former top most in the stack gets suspended. When the
interrupting sub-dialog is finished, the suspended one returns
to the top of the stack and gets resumed.

If multiple actions are allowed by the decision tree, the
probabilistic planning process is triggered. This planning
yields a probability distribution on the actions Py (A4),
representing the maximum probability of reaching a system
internal goal state while maximizing the expected user re-
wards on the intermediate states on the way for a given action
A.

Since the system does not know neither the user’s rewards
and the possible transitions in the dialog states nor the goal
states that are defined by the actions in these states, there is a
need for exploration additionally to the aim for exploitation
of the knowledge already acquired (known as exploration-
exploitation dilemma in Reinforcement Learning). Further-
more, the progress in the phase model of the long-time
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interaction, introduced in section II, also has to be considered
during action selection. Thus, two additional probability
distributions are combined with the planning result before
the executed action is drawn from the resulting distribution.
The first one represents the number of executions of each
available action P, (A) to enforce that all possible actions
are tried out equally often during exploration. The second
distribution P,,;,(A) allows for consideration of a priority
that is depending on the progress in the long-time interaction.
In this way, in the beginning phase, more actions with
explanations for the user are selected, and in the stable phase
only straight actions without additional help messages as well
as proactive actions are recommended.

After the system action is executed, the dialog manager is
in the user’s turn and waits for any state change by an internal
event, by user inputs and rewards, or just by a timeout.
All multi-modal user inputs are asynchronously processed
in parallel by the input interpreter and will update the dialog
state of the respective sub-dialog they belong to. Special
inputs or internal events may activate a sub-dialog, which
is raised on the stack of active sub-dialogs suspending the
old top element. Before starting the new system turn, the
probabilistic models used for planning are updated at runtime
with the observed state transition and rewards induced by the
user’s reactions.

B. Modeling of Interactions and Planning

For the planning and adaptation, the system needs to
represent knowledge on the history of interactions with the
user. This is done by means of several probabilistic models,
which are sketched here in the following and are described
in detail in [11]. The dialog manager first builds up a
persistent probabilistic transition model at runtime, that is
representing the probability of reaching a certain state S’
given a predecessor state S and the executed action A. Here,
user specific decisions and reactions, as well as the internal
restrictions on the state sequences are learned, such that the
planning system does not need to be configured with that
knowledge beforehand. The representation of that model is
a sum of samples s; = (5’, S, A); each of them equipped
with a weight w;. Remembering the various components of
the state vector S, it is obvious, that these samples have a
very high dimensionality and therefore, it is very unlikely
that exactly the same states appear very often. To generalize
consequences among similar states, a similarity function
5(8a,8p) : R x R = [0, 1] defines a neighborhood among
samples s, € R and s, € R¢ . By this means, the set of
samples defines a continuous probability function over the
space of possible transitions.

P(S], S, Ap) o<y w;d(s, s5) 2
j

For realizing a goal directed planning of action sequences,
additionally a model of goal states P(G|S) and a model of
rewards P(R|S) gained in a certain state are defined simi-
larly as weighted set of samples. The goal state probability
represents the system internal interaction targets, while the

P(R)

PRIS) [==®) |~
‘ * l 1 0 AR
@%P(S'|S,A) P(G|S') |—
: initialization
with goal re
________ nexttmestep | states —

Fig. 4. Dynamic factor graph used for planning of a most promising
action A, given the current state S and a goal state distribution (blue/dashed
message for initial step). Inference with Max-Product algorithm is executed
in a loop following the black message passing arrows looking for n time
steps in the future. Once a matching state S could be reached, the actual
action A is inferred following the red/bold arrows.

rewards stand for the user internal targets. Our planning
algorithm is able to take both parts into account properly.
The rewards are only recorded, if positive or negative reward
events took place. By ignoring zero rewards and using the
former average in that state instead, the policy remains stable,
even if the user is pleased with dialog course and does not
reward every action individually.

Initially, these three user-specific models for each sub-
dialog are empty and have to be filled during the interactions
by observing and counting the real transitions, rewards,
and occurrence of goal labels. Fig. 4 shows the structure
of the dynamic factor graph that is used for inference of
the most promising action by means of a message passing
algorithm called Max-Product algorithm [12]. The Max-
Product algorithm can find the maximum probability in the
probabilistic model belonging to the factor graph, that is
reachable with a given set of fixed or observed variables. In
[11], we explained in detail, how the algorithm is realized
for the special kind of model representation we use. In our
setting, we search for the maximum probability for each
possible action to reach a goal and get maximum rewards
on intermediate states, while the number of steps needed to
reach a goal is unknown. That yields a distribution P4y, (A).
To overcome that drawback of the unknown number of steps
needed, we can benefit from the structure of the problem,
which is asking for the first action in the chain only. The
inference of possible predecessor states, therefore, can be
done in a loop until we find a state, that matches our current
dialog state. Thus, for each intermediate time step in the
planning horizon, we can infer the probability for the actions,
and by searching for the maximum probability for each
action over all time steps we gain the desired Py (A).

C. Prediction of user preferences

In many situations in a repeatedly conducted dialog be-
tween the robot and the user, the annoying questions for
options (e.g. which website should be shown) can be omit-
ted, when using the former choices in a similar simulative
context. The transition model we built from the dialog history
exactly contains this information.

Thus, instead of asking the user for the information, the
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robot can try to infer the desired value, which is changing
the state S of the sub-dialog similarly without any inputs
from the user. Depending on the outcome of that, the dialog
can continue either with a confirmation of that fact or with a
question for specification of the information, if the inference
did not yield a significant probability. By means of that, also
the proactive situation-dependent offer of services can be
realized easily by integration of prediction in the main menu
sub-dialog.

D. Results From the OfficeMate Experiment

number of users

Lunch menu
News

sequence

Fig. 5. Individual patterns in the order of application usage evolving for the
participants of our evaluation study; This shows the ability for adaptation
to individual preferences of the users.

Evaluation of the second questionnaire in our user study
showed that all participants who had more than four inter-
actions (not all users were available all the days) did notice
that the robot learned their preferences and also changed its
behavior over time. By analysis of the system logs of service
activation, we found several patterns in the order of service
usage by the users (see Fig.5). The robot also managed to
suggest these services proactively in these cases. For three
of the users the number of interaction sessions was not
sufficient, or they canceled the sessions without consuming
any service at all. Thus, for these participants no pattern
could be found in the log data. Besides the prediction of
services to be selected, also the rewarding mechanism was
used successfully to prevent from getting the tutorial at the
beginning of a session. This was possible because the tutorial
was a completely independent branch in the possible dialog
flow, which can be liked or not. In other cases giving explicit
reward was not intuitive, when only modifications of the
expressions should be distinguished. For example, the earlier
mentioned main menu actions with and without additional
help have not been noticed as alternatives and thus did not
get rewarded accordingly.

Users also mentioned that they were a bit confused by the
option of rewarding the robot with only a positive or negative
button. They wanted to reward explicitly special aspects of
the complex behavior, like volume of speech, but it was not
transparent to them, which options the system had to select
from. Thus, for a real comfortable adaptation, reinforcement
based learning has to be combined with direct teaching of
required behavior or the possibility for changing properties
of the behavior manually. This means combining skills of
adaptivity and adaptability.

Furthermore, the difficulties in using the like or dislike
buttons, are an indication for using more implicit rewards in
the future. These rewards can be deduced from observations
on the user’s reactions as well as system-internal events and
therefore, they are not necessarily conscious to the user.

Also important is a better observability of the exploration
of alternative actions. In some situations, although it had
already been rewarded negatively for a behavior, the robot
acted again in an unwanted way due to the exploration
strategy which involves some random selection of possible
actions. In these situations, users get frustrated as they
expected that the robot persistently keeps a behavior they
are pleased with even if that special behavior results from a
random sequence. Therefore, in future work, the exploration
strategy has to be reworked completely. It would be possible
to apply a more greedy action selection strategy as proposed
in the TAMER system [7] to reduce unexpected repetitions
of actions that result from these exploration steps. Unfortu-
nately, this would conflict with the ability to find an action
sequence that reaches system internal goals.

VI. CONCLUSION

We could show in an experimental setup, that a dialog
manager using an online learning transition model for plan-
ning of action sequences, based on a high dimensional state
space, succeeded in adapting to different users in a longer
period of interaction. With this ability, we already use the
system for realizing the prototype of our health assistance
robot in the SERROGA project. In the future, the capabilities
regarding generalization in the planning process are in the
focus of development in order to enable a faster adaptation
and less exploration effort combined with a more significant
state space (situational context).
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