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Abstract— Non-contact image photoplethysmography has
gained a lot of attention during the last 5 years. Starting
with the work of Verkruysse et al. [1], various methods for
estimation of the human pulse rate from video sequences of the
face under ambient illumination have been presented. Applied
on a mobile service robot aimed to motivate elderly users for
physical exercises, the pulse rate can be a valuable information
in order to adapt to the users conditions. For this paper, a
typical processing pipeline was implemented on a mobile robot,
and a detailed comparison of methods for face segmentation
was conducted, which is the key factor for robust pulse rate
extraction even, if the subject is moving. A benchmark data
set is introduced focusing on the amount of motion of the head
during the measurement.

I. INTRODUCTION

In the scope of the research group SERROGA (SERvice
RObotics for health (Gesundheits) Assistance) [2], robotic
applications in the context of prevention and assistance
for elderly people living alone in their home environ-
ment are developed. With this in mind, the SERROGA
project directly continues the CompanionAble project that
was running from 2008 to 2012 [3], [4]. Important func-
tionality of such robots is the motivation and guiding of
the users to do physical and cognitive exercises, as well
as offering the explicit measurement of vital parameters.
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Fig. 1: Scitos-G3 robot
used in the SERROGA
project.

Fig. 1 shows the robot plat-
form used for our research. It
is equipped with interaction de-
vices, mainly a touch-display,
as well as a couple of ad-
ditional sensors enabling au-
tonomous navigation and percep-
tion of people and obstacles in
the robots environment.

Focusing on the vital signals
and parameters, in this work, the
camera in center of the robot’s
face was used to capture a video
stream of the user’s face while
sitting in front of the system.

The robot fulfills several tasks
during which the user does sit
relatively still in front of the
robot focusing its screen (e.g. when checking mails or
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appointments, doing video conferencing, or during the ex-
planation of physical exercises). These periods of time are
supposed to be ideal for remote pulse rate measuring. There-
fore, the user does not have to wear intrusive devices, and
the pulse rate can be measured spread over the whole day
without discomfort.

A lot of different approaches to measure the cardiac
pulse rate are known from literature with electrocardiography
(ECG) methods as the so called gold standard. However,
ECG-based methods are very intrusive, since they require
electrodes placed on the body, and the devices are expensive.
Alternative approaches are covered by the term photoplethys-
mography and are measuring the cardio-vascular pulse wave
traveling through the body by evaluating the blood volume
changes in the microvascular bed of tissue. Since light is
absorbed stronger by blood than by the surrounding tissue,
the reflectance of the human skin changes over time [1].

One example of the class of contact-based photoplethys-
mographie is the pulse oximeter that can be traced back to
the work of Goldberger at al. in 1987 [5]. Worn on a fingertip
or earlobe, these devices are illuminating the tissue with a
dedicated light source to monitor blood O2 saturation and
pulse rate.

Initial attempts to remote measurements of pulse rate
have been presented in the first decade of this century
using special cameras and active red and infrared lighting
[6], [7]. These attempts are still being researched [8], [9]
but are not suited for mobile robots due to the special
lighting requirements. We want to point out, that there are
developments in that community to separate noise and pulse
rate and to detect false pulse signals from inanimate objects
[10]. However, these methods are out of the scope of this
paper.

The first attempt to remote measurement of pulse rate with
ambient light have been made by Verkruysse et al. [1] in
2008. Since that time, the work done by [11], [12], [13] have
had major influence and lead to mobile phone applications
mostly based upon the same methods, e.g. [14].

Remote measurement of the pulse rate is usually based on
the face region of the subject since this region is unusual
to be occluded. Since tracking of different body parts lies
beyond the scope of this paper, we are focusing on the pulse
rate extraction from the human head.

Although, the negative effects of head movements during
measurements have been noted by different authors, we
have found significantly less work dealing with a systematic
analysis of how and to which extend different movements
disturb the measurements. The most detailed analysis of head
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Fig. 2: Processing pipeline for pulse rate extraction from video sequence. The whole pipeline can be divided into
preprocessing, signal extraction and postprocessing.

movements and approaches to overcome artifacts introduced
by them is given by Sahindrakar in [15].

Therefore, in the following we want to work out the cir-
cumstances under which pulse measurements can be obtained
on a mobile robot. Furthermore, we will give a comparison of
different methods known from literature to increase motion
robustness of non-contact photoplethysmography. Carrying
on with the state-of-the-art, we introduce an approach to
further increase motion robustness and computational com-
plexity, which is crucial on a mobile robot that has to run a
bunch of algorithms with limited resources.

At first in Sec. II, we give a short overview of the prin-
ciples involved in measuring pulse rate from images using
ambient light. Different Region of Interest (ROI) extraction
methods and our proposed method are explained in Sec.
III. In Sec. IV, we introduce our database to evaluate the
influence of different types and strength of head motion. The
comparison of the different methods is given in Sec. V. In
the last section we discuss our findings and give an outlook
to future work.

II. EXTRACTING PULSE RATE FROM FACE IMAGES

As already explained, the variation of blood amount in
the skin tissue during a pulse rate wave leads to a change
of the reflected light, which can be recorded with a standard
RGB camera. Because pulse rate is a very slow signal (60 -
100 pulsations per minute for an adult during rest and 220−
Age at a max), the sampling rate of the camera is of minor
influence to the results. Sun et al. [9] verified that fact, thus
a usual frame rate of 15 to 30 per second is sufficient for
our purposes.

Unfortunately, the amount of color change due to the pulse
rate wave is very small compared to global shading effects,
such that the signal is in the range of the pixel noise. To
gain a useful signal, despite that bad conditions, averaging
a couple of pixels is necessary, which reduces the influence
of pixel noise compared to the signal. The quality of the
raw signal mainly depends on the selection of the pixels
used and can be contaminated by artifacts due to motion
of the subject or changing illumination of the skin. Even,
if the sampled area of skin is too large, the signal might
be blurred since the pulse wave has different phase shifts
in different parts of the body. Before further processing,
therefore, a robust segmentation of the skin region –mostly
used is the face– is an essential part of the algorithm, that is

in focus of that paper. Fig. 2 gives an overview of the whole
processing chain used in our approach. Various methods
for preprocessing of the images have been suggested in
literature starting with fixed boxes in the image, where the
subject has to place her/his face inside. This was improved by
rectangular face detection and later skin color segmentation
inside the region of interest. More sophisticated methods try
to compensate effects of changing projection of the face
during head movements by tracking individual patches in
the face [15]. We suggest to further improve the head pose
invariant extraction of color signals by means of a face model
that tracks the head over time and projects the shape of
the face to a standard shape independent on the actual head
orientation. In Sec. III, these preprocessing alternatives are
discussed in more detail.

Having a mask of pixels to be evaluated, the next step in
the processing chain is the signal extraction. This is done
by averaging the pixel values inside and combining the RGB
channels in order to get a one-dimensional signal over time to
be further processed. For that combination a simple selection
of the green channel G or a normalization of intensity g =
G/(R+B+G) is common in literature. The normalization
approach reduces global illumination changes and increases
the influence of the color hue. Therefore, the normalization
showed a tremendous improvement of the accuracy and
thus is favored for the further discussion. In a real time
application, the resulting values for each frame are pushed in
a buffer, where a sliding time window of several seconds in
length is used for frequency analysis in the postprocessing.
On the buffer of all three available input channels, source
separation techniques by means of Independent Component
Analysis (ICA) or Principal Component Analysis (PCA) can
be applied in order to remove artifacts in the combined
signal. However, the use of ICA for that purpose seams to
be questionable. On one hand, it requires measurements over
30 seconds to be robust [15] and on the another hand, it is
computationally complex and can corrupt the data, if head
motion is present [15], [16], thus we omit that step.

Based on the 1-D time signal, there are two possible
ways for further analysis. The first one is peak detection
in time domain, which is rather complicated with a signal of
such poor quality. From the peak distances, several authors
compute a pulse rate, which has the advantage of fast results
compared to the second alternative, which is the analysis in
the frequency domain by means of a Fourier Transform. In
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Fig. 3: Overview of different ROI extraction algorithms.

that approach, also applied by us, the reachable frequency
resolution ∆f = 1

T is proportional to the inverse duration T
of the available signal, causing the usage of a 15 sec window
in our case.

The signal values are re-sampled equidistantly using cubic
spline interpolation. To enable proper analysis of the non-
periodic signal part, a window function is applied in order
to suppress side lobe responses in the frequency domain
before transformation into a power spectrum is performed.
In the resulting spectrum, the periodic pulse wave should
show a significant peak, which can be found by a simple
maximum search. Since the frequency resolution is limited
by the sampling frequency, a quadratic interpolation between
the maximum and its neighbor values is applied to find
the maximum position with higher accuracy. To prevent
from false classification of artifacts in implausible frequency
ranges, the spectrum is multiplied with a band pass filter in
before.

Result of the described procedure is a sequence of pulse
rate values, one for each window processed. In order to
use this for further decisions in an application, it would be
reasonable to have a quantification of the signal quality and
thus of the reliability of the values. This information can
be extracted from the power spectrum as well. The signal
to noise ratio (SNR) is useful here and has been evaluated
for the different preprocessing alternatives in the experiments
presented in Sec. V.

III. FACE SEGMENTATION METHODS

After the basic processing chain has been introduced in
that section, several methods for preprocessing of the image
have to be discussed. In the experiments conducted, these
alternatives have been evaluated with respect to robustness
against head motion and facial movements induced by talking
and interaction.

A. Fixed Region in the Image

The most simple way to extract the raw signal is to
integrate the pixel values of a fixed rectangle of the image.
Therefore, the signal from all pixels (mainly containing skin
area) are averaged reducing the pixel noise. However, a
rich variety of artifacts in the background of the image

are reducing signal quality. Furthermore, problems arise
if multiple subjects are present in the image, and head
movements change the average pixel values. Different parts
of the background become visible, when the head is moving
in front of non-uniform background.

B. Face Tracking

To reduce influence of background, most methods from
literature rely on some form of face detection and tracking.
During previous tests we found out, that simple face de-
tection, e.g. using the well known Viola-Jones face detector
[17], can lead to bad pulse rate estimates, since the face ROIs
are bound to discrete scales and therefore jump when the
subject moves the head. We suggest to use the Viola-Jones
for initialization only and apply feature tracking afterwards.
For feature tracking we have used the tracker described in
[25] that tracks a sparse template-based feature point set and
can track in plane object movements. We decided to use this
tracker since it delivers state-of-the-art tracking performance,
can run at hyper-real-time and, therefore, is suitable to be
utilized on a mobile robot. Similar to [11], [12] the bounding
box from the tracker is reduced to 60% of the original width
to avoid the border of the face, where background might be
contained, while the vertical elongation of the ROI is used
completely (see Fig. 3). With this procedure, the raw signal
for further processing is extracted by averaging the pixel
values of the ROI in the input image.

C. Model-free Segmentation Based on Skin Color

Based on the face tracking, it is possible to improve
segmentation accuracy by taking into account the color
features of the skin regions of interest. For our evaluation,
a processing stack for the face ROI has been implemented
relying on a powerful segmentation method called grabcut
[19]. The grabcut algorithm has to be initialized with a
region in the image that is labeled as foreground (the face)
and a region known to be background. We suggest to use
skin color segmentation to perform this step as described in
the following paragraph. From that, in an iterative process
the remaining pixels are assigned to one of the two classes
based on the color histogram of both classes. The resulting
foreground labeled pixels after two iterations of the algorithm
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are taken as improved face mask. To avoid artifacts from the
border of the face, a geometric erosion is applied on the
mask before all pixel values inside the mask are averaged to
gain the raw signal for further processing. (Fig. 3)

The quality of the grabcut segmentation mainly depends
on the quality of the initial mask fed into the grabcut
algorithm. The ROI provided by the face tracking approach
also contains parts of the hair and sometimes background.
Therefore, it cannot serve as a mask for grabut. A segmenta-
tion based only on skin color followed by some morphologic
processing does not deliver perfect face tracking. Hower, it
yields a sufficient initial mask for crabcut.

In detail, first the image is converted to intensity normal-
ized rg-color space, and a histogram of the pixels in the
face tracker ROI is derived containing 64 bins for each of
the r and g channels. We assume that the maximum peak in
that histogram refers to skin color, thus next step is marking
all pixels falling into that maximum bin or into the directly
neighboring ones as foreground. Noise, resulting in single
pixels marked as foreground, is removed by means of a mor-
phologic opening (erosion followed by a dilation). To include
inner face features in the initial foreground mask, like the
eyes and shadows beneath the nose, a morphologic closing
operation is performed afterward on the preliminary mask.
The initial foreground mask for grabcut now results from
eroding the preliminary mask by 5%, while the background
follows from dilating the preliminary mask by 10%. This
yields a undefined border region that has to be classified by
the grabcut algorithm.

Even if this procedure is executed consecutively on every
frame and yields a perfect mask of all skin pixels of the head,
the signal extracted from that region might be problematic
due to the spatial variation of the pulse rate wave. The
signal might be blurred compared to signals extracted from
smaller local regions, but on the other hand a large area
reduces pixel noise in the signal sufficiently. The model free
segmentation also does not take self occlusion of rotated
heads into account. This kind of artifacts can be compensated
only by means of more complex methods as described in the
following.

D. Model-based Approach

The methods presented up to now do not use an explicit
representation of the exact shape of the face. Therefore,
the pixel regions included in the ROI can vary over time,
especially if the head is moving. To reduce these noise
artifacts, we suggest application of a deformable model
fitting approach for face extraction. One of the approaches
providing reliable and accurate fitting results under varying
illumination is the Deformable Model Fitting by Regular-
ized Landmark Mean-Shift (RLMS) approach introduced by
Saragih et al. in [20]. The approach tracks a number of
landmarks located at different face locations by local op-
timization and enforcement of a global joint motion prior.
Since detailed explanation lies above the scope of this paper,
the interested reader is referred to [20]. The tracking code
is based on the code provided by Saragih [21] and does use
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Fig. 4: Setup for recording the benchmarking video se-
quences of controlled head motion: display with translating
target, head direction targets for rotation sequences (l1, l2, t1
for small elongation angles of 20°and l2, r2, t2 for medium
elongation of 35°.)

the default model provided by Saragih. This model delivers
descent face tracking results with changing illumination.
However, the tracking results do defer from person to person.
The landmarks used by the tracker are located at fixed
locations of the face and are connected by a triangulation.
Therefore, a piecewise affine warp can be used to project
model instances in a single frame onto the mean face
obtained during model training. (see Fig. 3)

E. Model-based approach using the forehead region

The deformable model provides compensation of overall
head movement, but it may be unable to cope with inner
facial movements (e.g. moving eyes and mouth while talk-
ing). By extraction of pulse rate based on ROI placed on the
forehead of the subject only, the moving parts of the face
can be avoided. According to [22], we locate the forehead
region based on the position and distance of the eyes. Since
we already do have precise model of the face provided by
the RLMS algorithm, we decided to use the eye position
estimated by RLMS. As proposed by Lewandowska [22], we
extract the forehead region as shown in Fig. 3.

IV. DATABASE

To compare the different approaches and to examine the
artifacts introduced by head motion in more detail, we have
recorded a benchmarking database. Head movements were
performed under controlled and well defined parameters. The
database comprises 10 persons (8 male, 2 female) that were
recorded in 6 different setups resulting in a total number of
60 sequences of 1 minute each.

The videos were captured with a eco274CVGE camera by
SVS-Vistek GmbH at a frame rate of 30 Hz with a cropped
resolution of 640x480 pixels and a 4.8mm lens. Reference
data have been captured in parallel using a finger clip pulse
oximeter (pulox CMS50E) that delivers pulse rate wave and
SpO2 readings with a sampling rate of 60 Hz.

The test subjects were placed in front of the camera with
an average distance of 1.1 meters. Lighting condition was
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daylight trough a large window frontal to the face with clouds
changing illumination conditions slightly over time.

Further details on the recorded data can by found at [23].
The database is available upon request and can be used
for evaluation. To our knowledge, there is no free database
available for ambient light image photoplethysmography so
far. Therefore, we encourage other researchers to use this
database as a reference benchmark for their own algorithms.

The six different setups were as follows:
i) Steady (S); The subject was sitting still and looks

directly into the camera avoiding head motion.
ii) Talking (T); Simulated video sequence, where the

subjects were asked to talk while avoiding additional head
motion. This setup equals a video conference situation in a
real robot application.

iii) Slow translation (ST); These sequences comprise
head movements parallel to the camera plane. Therefore, the
images recorded by the camera were displayed on screen
and shown to the subjects. A moving rectangle of the size
of the face was added to the image, and the subjects were
asked to keep their face inside. The rectangle was moving
horizontally at a controlled speed and with a predefined
pattern, thus the sequences of all individuals are repeatable.
The average speed was 7% of the face height per second,
where the average face height was 100 pixels.

iv) Fast translation (FT); This dataset has the same setup
as slow translation, except twice the speed of the moving
target.

v) Small rotation (SR); This setup comprises different
targets that were placed at 35 cm around the camera. The
subjects were told to look at these targets in a predefined
sequence. They were asked to move not only there eyes
but orient their head. See Fig. 4 for an impression of the
setup. The one minute sequence of the targets is shown
in the little clock in the figure. Random times ensure that
the motion artifacts are not periodically. Depending on the
distance between the camera and the subject, that roughly
varies between 1 m and 1.3 m, the head rotation angles are
round about 20°.

vi) Medium rotation (MR); This sequences had the
same setup as for small rotation, but with targets placed 70
cm around the camera resulting in average head angle of 35°.

The pulse rate of the test persons varies slightly between
and during sequences that do have a length of 1 Minute
each. Minimum pulse rate measured using the oximeter is
at 42 BPM and the maximum rate was 148 BPM. Although,
we have had very high pulse rates from one subject, all
recording were taken during rest.

V. EXPERIMENTS

For our experiments, we extracted the pulse rate from all
sequences using the method described in Sec. II and using
the face segmentation methods described in Sec. III. We
used 512 equidistant supporting points for the cubic spline
resampling, which is close to the framerate of the camera, if
a window length of 15 seconds was used. These 512 samples
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Fig. 5: (a) Comparison of different color spaces. RMSE over
all sequences and all algorithms. Results are similar for the
different algorithms and the different sequences.
(b) Comparison of window sizes used for FFT. RMSE values
on normalized green channel sampled with 512 points.

also provide sufficient resolution for the FFT. The α parame-
ter of the Kaiser-Besser window is of minor influence in our
setup and was set to 18. Furthermore, we applied a bandpass
that allows values from 0.67 to 3.3 Hz, which corresponds
to a pulse rate of 40 to 200 beats per minute (BPM). For
comparison, we used the photoplethysmogram (changes of
the skin color reflectance over time) obtained from the pulse
oximeter. Therefore, the same signal extraction and post-
processing steps were applied on the reference signal. The
actual evaluation was executed on the interval from second 5
to 60 for every sequence to give the methods some time for
initialization. Further details on the parameters used for the
different face segmentation methods can by found at [23].

1) Signal Extraction: As already noted by other authors,
the hemoglobin absorptivity differs across the spectral range
recorded by the camera [11]. Therefore, different color
channels are suited to a different extend. The green channel
is the one used most often for pulse rate extraction, if no
component analysis is applied. As shown in Fig. 5a, we can
confirm that the green channel performs best if all methods
and sequences are averaged, whereas the normalized color
channels (See Sec. II) do perform significantly better. This
significant boost of the performance is caused by changing
shadows on the face due to head movements changing the
intensity. The hue changes of the skin color is affected less
on the other side.

2) FFT Window Size: The window size used for the FFT
is a trade-off between accuracy, time resolution, and noise
robustness. Fig. 5b shows the accuracy for window sizes
between 5 and 30 seconds. It becomes obvious that pulse rate
measurements get more reliable with an increasing window
size. Nevertheless, we find window length between 15 and
20 seconds to be most robust. With more than 20 seconds,
measurements can get unreliable due to the non-stationary
nature of the pulse rate, which is visible in the plot of the
talking sequences (Fig. 5b). Therefore, a FFT window length
of 15 seconds has been used for the following experiments.

3) Comparing Different Sequence Types: Since the root
mean square error (RMSE) is not a good measure, if the
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errors can become arbitrary large, we have analyzed the
signal-to-noise ratios (SNR) (Fig. 6) of the computed power
spectrograms as proposed in [15]:

SNR =

∑B
n=A spect(n)∑MaxPulseBin

n=MinPulseBin spect(n) −
∑B

n=A spect(n)
(1)

A is the bin of the power spectrum at the reference pulse
rate with an offset of -12 BPM and B is the bin with an
offset of +12 BPM.

As a second measure of quality, we present histograms of
the pulse rate deviation compared to the oximeter reference
on the individual sequences. As expected and shown in Fig.
7a, measuring pulse rate on the Steady sequences could be
performed robust and led to almost perfect measurements for
all ROI extraction methods.

In plane head translation can be handled well by all the
different head tracking methods with an slight advantage for
RLMS and Forehead, that do deliver results close to the
Steady case. Although, the skin detection produces decent
segmentation results on a single image, the pixels classified
as foreground vary over time, which introduces noise and
does make the results a bit unpredictable.

The small rotation sequences delivered somewhat surpris-
ing results, since the face tracking method did perform better
than the RLMS approach (Fig. 7e). The medium rotation
sequences (Fig. 7f) are even harder, since greater rotations
do have a stronger effect on shadows in the face leading
to mediocre signal noise ratios (Fig. 6). Having a closer
look at the face tracking generated by the RLMS approach,
it becomes obvious that the outline of the face is not always
tracked accurate if larger face rotation comes into play.
Therefore, we suggest to interrupt pulse rate measurements,
if stronger head rotations do occur, which can be detected if
the rotation parameters of the RLMS model exceed a certain
treshold.

The Talking sequences are the ones most challenging in
our dataset (Fig. 7b). Pulse rate histograms as well as SNR
are bad for these sequences and for all presented methods.
However, on a real robot RLMS can be favored, if it is
coupled with a talking classifier, which can be trained on
the shape parameters of the model. By means of that, the
unreliable time intervals, during which the subject is talking,
can be left out.

It has to be mentioned that real head motions, in contrast
to our motions predefined for measuring motion robustness,
are a combination of translation and rotation.

4) Computational Complexity: Computational complexity
is very important for a service robot system since it hast to
fulfill different tasks (e.g. navigation and people tracking)
at the same time with limited resources. The robot used is
equipped with an Intel Core i7-2640m 2.8 GHz ( 2 Cores
), where only one core was used for our runtime evaluation.
The results are presented in Table I. It is obvious that the skin
segmentation has the highest computational complexity. The
other approaches (if implemented in the suggested way) are
running at a very high speed leaving enough CPU resources
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Fig. 6: SNR of the different extraction methods on the
different sequences.

to perform additional HRI tasks on the robot.

VI. CONCLUSION

The experiments presented here showed that all methods
are able to measure the pulse rate reliably, if no motion is
present. However, the sensitivity to motion artifacts does
differ. Since the Skin segmentation approach is computa-
tionally complex and does not deliver leading results in the
comparison ranking of the different approaches, we do not
recommend it for usage on a mobile robot. The Forehead
approach seems promising but becomes unreliable if parts
of the forehead are covered with hair. The two methods
that are suited best to be applied on a mobile robot are the
RLMS and Face tracking approaches. With both methods
the pulse rate can be measured in an unobtrusive manner,
if the user of the robot is sitting relatively still, e.g. when
checking mails, appointments or doing video conferencing.
Nevertheless, we do favour the RLMS approach since it
enables the detection of different types of head motions using
the model parameters. Therefore, critical head motions or
talking can be detected easily and the pulse rate evaluation
can be limited to time intervals with in plane translation or
small rotation head motion. It should be possible to deliver
good results even on Talking sequences since 50% of the
measurements obtained are very good (Fig. 7b). Moreover, it
is possible to adapt the time-window length used for analysis
based on this motion information in order to maximize
frequency resolution.

For this study, furthermore, a test dataset with pulse rate
reference signal data has been recorded, which is available
for other researchers on request.

VII. OUTLOOK

Next step in our work will be to focus on the region
used for signal extraction in more detail. First attempts of
extracting single triangles from the RLMS mesh (see Fig.
3, top left) and performing pulse rate extraction for these

TABLE I: Runtime comparison
[ms] FullImage Face Skin Forehead RLMS

ROI Extr. 0 10.4 10.4+57.4 12.9+0 12.9
Postproc. 0.5 0.5 0.5 0.5 0.5
Max FPS 2000 91.7 14.6 74.6 74.6
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Fig. 7: Plot of the pulse measurement error for the different approaches and sequences.
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individually have shown to be less reliable. Even the best
triangle performs far worse than the combination of all tri-
angles. Nevertheless, we are confident that a combination of
different triangles (which can also be dynamically selected)
can be found that can further reduce the error rates of the
already well performing complete RLMS approach.

Another point for improvement is the face model itself.
The RLMS tracker is based on a set of classifiers trained
on an universal set of faces, not covering any individual
properties of the subject of interest. Using the RLMS model
for initialization of a face template, which is used for tracking
afterward similar to [24], can make the face model fit more
robust to the face of the current user during head motion.
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