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Abstract— People detection in 2D laser range data is a popu-
lar cue for person tracking in mobile robotics. Many approaches
are designed to detect pairs of legs. These approaches perform
well in many public environments. However, we are working
on an assistance robot for stroke patients in a rehabilitation
center, where most of the people need walking aids. These tools
occlude or touch the legs of the patients. Thereby, approaches
based on pure leg detection fail. The essential contribution of
this paper are generic distance-invariant range scan features for
people detection in 2D laser range data and the distinction of
their walking aids. With these features we trained classifiers for
detecting people without walking aids (or with crutches), people
with walkers, and people in wheelchairs. Using this approach
for people detection, we achieve an F1 score of 0.99 for people
with and without walking aids, and 86% of detections are
classified correctly regarding their walking aid. For comparison,
using state-of-the-art features of Arras et al. on the same data
results in an F1 score of 0.86 and 57% correct discrimination of
walking aids. The proposed detection algorithm takes around
2.5% of the resources of a 2.8 GHz CPU core to process 270◦

laser range data at an update rate of 10 Hz.

I. INTRODUCTION

People detection and position tracking are important re-
quirements to improve human-robot interaction (HRI), e.g.
for the realization of socially compliant navigation of mobile
assistance robots in populated public environments. Further-
more, a distinction of people’s walking aids allows specific
adaption of the robot behavior. Since many mobile robots are
equipped with 2D laser range scanners, this sensor is often
used for on-board people detection.

The advantages of laser-based person detection are the
sensors’ large field of view and the low uncertainties of the
hypotheses regarding the distance between person and laser
scanner. Still, due to the relatively low amount of data, the
computing demand of most laser-based detectors is low as
well. This enables high update rates.

However, the information content of laser scans is com-
paratively low. Most laser scanners perceive just one layer
at low altitude above the ground, where objects in the
environment are sometimes indistinguishable from persons,
resulting in false positive detections. Therefore, people
tracking is rarely based solely on laser-based detections.
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Fig. 1: Range scan details of persons (with walking aids). The
individual scan segments, which are reflected by the persons
(or aids) are highlighted alternating in green and red.

Instead, these detections are often complemented by person
hypotheses based on other sensors, like cameras.

Due to the geometrical position of the scanning plane,
most detectors are actually leg detectors. However, the oper-
ational area of our robot is a rehabilitation center for stroke
patients [1]. Many patients need aids for locomotion, like
walkers, wheelchairs, or crutches. These tools occlude or
touch the legs very often. Therefore, we need a detector
which also detects legs in combination with these walking
aids. Hence, there are particularly consequences for the
features. For instance, features which describe the parameters
of circular segments [2] are no longer sufficient. Instead, the
feature vectors have to be able to describe more complex
object shapes. The features proposed in this paper are not
designed for the detection of object-specific shapes. Instead,
the features are tailored to the characteristics of laser scans.
Therefore, we defined two requirements for the features:

1) invariant to the distance between laser scanner and
perceived object

2) unspecific to the objects to be classified, by maintain-
ing as much information of the laser scan as possible

In the following, it is described, why these requirements
conflict, and how this conflict is handled by the proposed
features. For most sensors, the resolution of a certain object’s
perception reduces with the object’s distance to the sensor.
Many detection approaches utilize down-scaling of the sensor
data to enable distance-invariant feature extraction. The goal
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is to obtain the same feature vector when a certain view of
an object is perceived, independent of the distance between
sensor and object. For example, many approaches for visual
person detection in monocular camera images use Gaussian
pyramids to detect potential objects at a-priori unknown
distance to the sensor. However, this kind of down-scaling
reduces the high-frequency information content within the
images.

A great advantage of laser range data is the explicitly
given distance of a sub-segment (for segmentation see Sec.
III-A). Therewith, the known real-world object size and
the measured distance can directly be used to determine
the perceived size of a potential object to be detected. In
the approach proposed here, this is used to perform down-
scaling and feature extraction efficiently in one processing
step. Furthermore, during this processing step both low-
frequency content and higher-frequency content is extracted
by the features. The features are designed such that the
lower-frequency features are independent of the object’s dis-
tance, and additional information is available in the higher-
frequency features for closer objects (while these contain no
significant information for distant objects).

The missing specificity of the features to a certain object
requires a powerful classifier. Furthermore, due to the high
dimensionality of the feature space (including possibly irrele-
vant dimensions), the training of the classifier should employ
feature selection techniques to avoid over-specialization to
the training data.

The next section reviews state-of-the-art work, which is
related to people detection in 2D laser range data. Thereafter,
Sec. III presents our approach, whose innovation are the
generic distance-invariant features (GDIF). Sec. IV demon-
strates the advantages of the GDIF by detailed experiments.

II. RELATED WORK

There are various approaches for person detection in 2D
laser range data, which work on multiple stationary laser
scanners [3]. However, for our application only approaches
based on laser range scanners on mobile robots are relevant.
In [2] approaches for leg detection are classified regarding
their usage of motion or geometry features. Since approaches
based on motion features (like [4]), are not able to detect
standing or sitting people, these approaches are not sufficient
for our application as patients in rehabilitation centers are
slowed down in their movements and pause often. While
those patients need to rest, they are even more vulnerable by
a mobile assistance robot due to their limited motion abilities.
To show compliant behavior towards these patients, the robot
has to robustly detect standing people.

These people are detectable by approaches which are
based on geometrical features. In [5], a set of thresholds
is used to classify sub-segments of range scan data as
leg or non-leg. The focus of [5] is on person tracking,
wherefore laser-based detection is just one cue. In contrast,
[6] is directly focused on leg detection. The range data is
segmented based on jump distances (see Sec. III-A), and
each segment is classified based on thresholds of geometrical

features. However, the features are selected by the developer,
and the classification thresholds have to be set manually.

In [2], the set of geometrical features is extended to 14
geometrical features, which are presumably suitable for leg
detection. Then, AdaBoost [7] is used for feature selection
and classifier training. Since this approach was designed for
the detection of legs, these features are relatively specific to
legs (circularity, convexity). Therefore, these features are not
sufficient for detecting more complex objects, as for example
wheelchairs or walkers.

In contrast, the generic distance-invariant features pro-
posed in this paper are not designed for the detection of
object-specific shapes. Instead, the features are tailored to
the characteristics of laser scans. Furthermore, in contrast to
[2], legs are not detected individually. Instead, our classifier
is able to detect (partially occluded or merged) pairs of legs.
Thus, the grouping of two individually classified legs to one
person hypothesis is unnecessary.

Based on the work of Arras et al., different approaches
for multiple 2D range scanners at different height [8], [9] or
3D range scanners [10], [11] have been proposed in recent
years. However, on our mobile robot only the range data
of one height level is perceived. Nevertheless, the approach
presented here could be easily extended to multiple layers,
as well.

III. PEOPLE DETECTION BASED ON
GENERIC DISTANCE-INVARIANT FEATURES

The input for the people detection approach is a laser range
scan R = {B1, B2, ..., Bb}, which consists of a set of b
beams, where each beam Bi corresponds to a tuple (φi, δi)
of the beam’s angle φi and its measured distance δi.

Some of the beams Bi are reflected by persons G =
{P1, P2, ..., Pp}. Each person Pi corresponds to a triplet
(xi, yi, ai) of the person’s center position xi, yi relative to
the laser’s coordinate system and the type of his/her walking
aid ai ∈ {legs, walker, wheelchair}. Goal of our approach
is to detect all people positions G and estimate the correct
walking aid.

Segmentation

Feature Extraction

c2

c1
c3

Classification

Hypotheses Generation & Covariance Intersection

wheelchair,
no person

legs,
walker

walkerlegs no personwheelchair

Fig. 2: Processing steps of the proposed approach

A. Segmentation of 2D Range Data

Like in [2], in our approach the beams in the scan R are
split into subsets of beams (see Fig. 3). Therefore, the jump
distance is applied. The first beam’s B1 index is inserted
in a new segment S1. Iterating over the range scan R from
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Fig. 3: Schematic illustration showing a range scan of a
small room with two persons at different distances from the
laser. The jump distance, the decision criterion for defining
an new segment, between beam B41 and its former beam is
exemplarily shown in red. The first beam BSj ,1 of each found
segment Sj is highlighted as a colored dot. Although each of
these beams is used as origin point for the subsequent feature
extraction, only these feature extraction areas are shown here
in green and orange, whose feature vectors shall be classified
as person.

beam B2 to beam Bb, a new subset is initialized with the
beam index i if the difference of the measurements |δi −
δi−1| of beam Bi to its former beam Bi−1 is above a certain
threshold ∆. Otherwise, the beam index i is added to the
current subset. The output of the partitioning procedure is
an ordered sequence P = {S1, S2, ..., Ss} of segments such
that

⋃
i

Si = {1, ..., b}.
However, in contrast to [2], the feature extraction is not

limited to the beams of the individual segments Si. Instead,
the aim is to extract features of the complete object, even if
the object is over-segmented into several adjacent segments.

Assuming, that the jump distance between background and
a person is above the threshold ∆, the first beam BSj ,1

of each segment Sj is used as point of origin for the
feature extraction. As shown in the next section, the area
considered in the feature extraction is based on these points
and the objects’ maximal Euclidean width, independent of
the segments’ size.

In [2] the jump distance threshold ∆ influences the size
of the range scan details to be classified, possibly leading to
over-segmentation. To counter this effect, in [12] Delaunay
triangulation is used to generally merge segments whose
centers are close. Note, that in the proposed approach only
the positions for reference points are determined by ∆, while
the range is predefined according to the real-world size of
the interesting objects (e.g. persons or aids). Thus, reducing
∆ just increases the number of classifications and therewith
the calculation effort, without risking over-segmentation of
objects.
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Fig. 4: Visualization of range scan details of Fig. 3, which
show the feature extraction areas of a person standing nearby
the robot (a) and a more distant person (b). Exemplary, the
extracted average distances to the base line for n = 8 line
segments are visualized as bar histogram (c),(d).

B. Feature Extraction

After segmentation, each remaining origin point BSj ,1 is
used as starting point for a baseline lj of fixed width w,
which is orthogonal to the line between the baseline’s center
Cj and the sensor (Fig. 3 and Fig. 4). This baseline lj
is divided into n line segments of equal length. Each line
segment covers a certain range of the laser beams. Simple
features fj are extracted from all these beams based on
their distances between the beams’ actual reflection points
and their intersections with the baseline. Note, that these
distances are clipped to a fixed range of [−d2 ,

d
2 ] before

the features are extracted. This clipping is performed to
reduce the influence of the distance between the objects to be
detected and the background. Therewith, the extraction areas
result from the origin points BSj ,1, the fixed width w and the
fixed depth d. Consequently, the extraction area parameters
w and d

2 should be above the maximum extension of the
objects to detect. So far, as features we use the average
distance, the minimum distance, and the maximum distance.
Further features, like variance etc., may be supplemented in
future. The number of beams per line segment depends on
the baseline’s distance to the sensor. If there is less than one
beam per line segment, the adjacent beams are interpolated.
Note, that features like the minimum, maximum, variance
etc. do not add any significant information to the average
distance, if only one beam is covered by a line segment.
These proposed features are characterized by low computing
effort.
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C. Classification

The dimensionality of the feature space F is determined
by the product of line segments n and the number of
extracted features. For classification of the feature space F
a binary decision tree is used. Each decision is made by
discrete AdaBoost classifiers [7], where the weak classifiers
are binary decision trees [13]. Fig. 2 shows how each feature
vector fj is classified by application of two of the three
binary classifiers. The resulting classification function is
h : F → {legs,walker,wheelchair, no person}.

D. Hypotheses Generation with Covariance Intersection

After a feature vector is classified as one of the person
classes, the center of the base line Cj is used as 2D position
for the person hypotheses. This results in a set of 2D
person hypotheses G′ = {(Cj , h(fj)) |h(fj) 6= no person}.
Additionally, the estimated variance of the pose hypotheses
is represented by a covariance matrix. Since the adjacent
feature extraction areas usually overlap, one actual person
often is detected several times. To prevent generation of
multiple hypotheses for the same person, hypotheses are
fused using covariance intersection [14] if their Mahalanobis
distance is below a threshold. The merged hypothesis’ label
is determined by majority decision.

Although beyond the scope of this paper, it should be
pointed out that these labels are utilized to create hypotheses
in 3D space by adding estimates of the heads’ vertical
positions to the 2D detections Cj . The mean head hight
significantly differs between people sitting in wheelchairs
and people walking. However, since the head height is
not directly observable by the laser scanner, we assign a
relatively large variance to the vertical component of the
3D hypotheses. Nevertheless, estimation of the head height
supports merging the resulting hypotheses with those from
other detectors in a multi-modal person tracker framework
presented in [15].

IV. EXPERIMENTS

A. Data Sets

To benchmark the proposed approach, our algorithm and
selected reference methods have been evaluated on three data
sets:

1) SPINELLO: The data set of [12]1 is used to evaluate
the proposed approach on a publicly available bench-
mark data set.

2) HOME: We captured the HOME data set within
apartments of an assisted living facility of the AWO -
Arbeiterwohlfahrt Bundesverband e.V. (German Work-
ers’ Welfare Federal Association).

3) REHA: We captured the REHA data set in the corri-
dors of a rehabilitation center for stroke patients.

All data has been captured by laser range scanners (SICK
S300) with an angular resolution of 0.5◦. A substantial

1http://www.informatik.uni-freiburg.de/˜spinello/
people2D.html

difference of SPINELLO to our own data sets2 is, that
the SPINELLO data is recorded by a static laser scanner.
Thereby, there is only little variance in the background and
the background of training and test data is the same. In
contrast, the background of the HOME data set is diversely
structured, and different rooms are used for the training and
testing data set. Furthermore, the recording of background
data in the HOME and REHA environment was paused,
when the robot stopped. Thereby, no background view is
recorded several times. The challenge of the REHA data set
is, that it contains people with walking aids, whose detection
was the motivation for this work.

For clarification of the detection task, Fig. 1 shows six
range scan details from the REHA data set. The scan details
in the top row show three different segmentation cases of
pairs of legs. Regarding the segmentation, a pair of legs
can result in two different segments, which allows a good
description of the segments by circle features. However, one
leg can be occluded by the other leg, and legs can even
be merged to one segment. The bottom row shows different
views of a person with a crutch, a wheelchair, and walker.

A summary of the essential characteristics of the data sets
is shown in Tab. I. This table shows the proportion of merged
and occluded legs as well. Note, that a smaller robot is used
in the HOME environment. This is why the HOME data set
is recorded by a laser range scanner in a height of 23 cm
above the ground and the REHA data set in a height of 40
cm. The proportion of merged or occluded legs increases
with the height of the laser scanner above the floor, because
when people take a step, the distance of the legs decreases
from the feet to the hip. The test data set of the HOME
environment covers 1,250 range scans without persons and
1,250 range scans with legs. The REHA test data comprises
5,000 range scans, because additionally 1,250 range scans
with walkers and 1,250 range scans with wheelchairs are
included. Pictures showing typical scenes of the HOME and
REHA environments are depicted in Fig. 5.

B. Detectors

To evaluate our proposed approach, we tested our features
against two alternative feature spaces in combination with
three different kinds of classifiers at the nodes of the class
decision tree shown in Fig. 2, resulting in nine different
approaches overall. The tested feature extractors are:

1) ARRAS: Our own re-implementation of the features
of [2].

2) SPINELLO: The open source implementation1 of
features of [12].

3) GDIF: The new generic distance-invariant features
proposed here.

The classifiers at the nodes of the class decision tree are:
1) 10-1: An AdaBoost classifier, which combines 10

weak classifiers. Each weak classifier is a stump.
2) 50-1: Like 10-1, but combining 50 weak classifiers.

2https://www.tu-ilmenau.de/neurob/data-sets/
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TABLE I: Data sets

SPINELLO HOME REHA
Laser range finder

field of view 180◦ 270◦ 270◦

Laser range finder
angular resolution 0.5◦ 0.5◦ 0.5◦

Laser range finder
height above ground ? 23cm 40cm

Recorded range
scans 38,994 24,249 30,582

Test data range
scans

19,497
(50%)

2,500 (∼10%) 5,000 (∼16%)

Persons without
walking aids

just beams
labeled 18,022 13,503

Clearly separated
legs ? 10,570 (59%) 4,790 (35%)

Occluded legs ? 3,092 (17%) 3,769 (28%)
Merged legs ? 4,360 (24%) 4,944 (37%)
Persons with
wheelchairs 0 0 5,093

Persons with
walkers 0 0 4,219

3) 50-10: An AdaBoost classifier, which combines 50
weak classifiers, where each classifier is a decision tree
with a maximal depth of ten.

In the following, the combination of feature extractor and
classifier are named by concatenation of both specifiers.
Accordingly, ARRAS-10-1 specifies the approach in [2],
SPINELLO-50-1 is similar to the approach in [12], and
GDIF-50-10 is the proposed approach of this work.

For all the detectors the same jump distance ∆ = 0.1 m
is used. For the proposed features (GDIF) the baselines lj
have a width of w = 1.0 m and the clipping distance is
set to d = 3.0 m. The baselines are divided into n = 15
line segments of approx. 6.7 cm each. Since the data sets
were captured with laser scanners at different height above
the ground (see Tab. I), the appearance of people differs
slightly between these data sets. Therefore, we decided to
train separate classifier trees for each of the data sets.

C. Detection Quality

In the first experiment, we tested the benchmark ap-
proaches on the SPINELLO data set. For evaluation of
this data set, we used the same evaluation measure like
in [12]. In the ground truth data, each beam is labeled as
person or background, depending on what reflected the beam.
Therefore, after the segments are classified as person or
non-person, the actual evaluation is based on the individual
beams, which belong to these segments. Furthermore, there
is no walker and no wheelchair class, meaning that only
one classifier c1 for classification of legs and no person is
necessary.

The precision-recall curves, generated by variation of the
AdaBoost classification threshold θ, are shown in Fig. 6. As
stated by Spinello et al., this data set is relatively simple, and
the background does not change. This is the reason, why
the classifier 50-10 is able to classify this data set almost
perfectly, independent of the applied feature extractor, and
therefore these curves are not plotted. The plotted curves

(a) HOME environment

(b) REHA environment

Fig. 5: Views of the operating environments where the
HOME and REHA laser range data sets were captured.

confirm, that with simple AdaBoost weak classifiers, the
ARRAS and SPINELLO features show similar performance,
and the GDIF outperform both of them. Furthermore, the use
of 50 weak classifiers increases the detection rate compared
to the use of ten weak classifiers.

The next experiment was performed on the HOME data
set. In contrast to the first data set, we were not interested
in the classification of beams, but in the detection of per-
sons. Therefore, the evaluation is based on actual person
detections. For the ARRAS and SPINELLO approaches, a
grouping of individually detected legs to pairs of legs is
necessary. If two positively classified segment centers are
closer than 0.8 m, this results in one person hypothesis at
the central point between the segments’ centers. If a segment
is classified positively without a second positively classified
segment nearby, the segment’s center point is directly treated
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Fig. 6: Precision-recall curve for different combinations of
feature extractors and classifiers for laser beam classification
on SPINELLO data set.

.

as person hypothesis. If a positively classified segment can
be assigned to multiple positively classified segments, the
assignment of segments is optimized applying the Hungarian
method [16]. The GDIF approaches do not detect individual
legs, but person hypotheses and therefore the detected center
positions Cj can be used directly.

In order to decide whether a detection corresponds to a true
person, the distance to the closest person is evaluated. If the
distance is below 0.7 m and no other detection is closer to
the person, the hypothesis is regarded as successful detection.
All other hypotheses are treated as false positive detections.
Like for the SPINELLO data set, only one classifier c1 is
trained to distinguish legs from no person.

The precision-recall curves of this experiment are shown in
Fig. 7. They illustrate, that the GDIF outperform the ARRAS
and SPINELLO features again. To provide a single measure
of quality of a detector D, we use the maximum F1 score
over the detector’s AdaBoost threshold θ:

max
θ
F1 = max

θ
2 · precision (Dθ) · recall (Dθ)

precision (Dθ) + recall (Dθ)
(1)

The best F1 score for the ARRAS features is 0.90, while it
is 0.97 for the GDIF.
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Fig. 7: Precision-recall curve for different combinations of
feature extractors and classifiers for detection of persons
without walking aids on our HOME data set.

The next three experiments are performed on the REHA
data set. Here, additionally the quality of classification re-
garding the walking aid is evaluated, by taking the correct-
ness of the label aj into account. Fig. 8 confirms, that the
performance of the GDIF is better than the performance of
the ARRAS or SPINELLO features for the separation of
legs and walkers from wheelchairs and no person (classifier
c1) on REHA data set. The best F1 score for the ARRAS
features on the REHA data set is 0.84, and for the GDIF it
is 0.98.
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Fig. 8: Precision-recall curve for different combinations of
feature extractors and classifiers for separation of legs and
walker from wheelchair and no person (classifier c1).

Fig. 9 shows the performance for separation of people with
walkers from people without walking aid (classifier c2). The
best F1 score for the ARRAS features is 0.84, and for the
GDIF it is 0.92.
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Fig. 9: Precision-recall curve for different combinations of
feature extractors and classifiers for separation of legs from
walker (classifier c2) on REHA data set.

The classification performance of c3 for classification of
wheelchair and no person is shown in Fig. 10. The best F1

score for the ARRAS features is 0.82 and for the GDIF it is
0.98.

In the following, the complete decision tree with all three
classifiers at their best F1 scores is evaluated. The resulting
confusion matrix for GDIF-50-10 and ARRAS-50-10 is
shown in Fig. 11, with the values for GDIF highlighted in
bold. The higher values in the principal diagonal and lower
values in the no person row show, that the GDIF outperform
the ARRAS features.
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Fig. 10: Precision-recall curve for different combinations of
feature extractors and classifiers for separation of wheelchair
from no person (classifier c3) on REHA data set.

Legs Walker Wheelchair No person
Legs 1154 1057 84 54 1 26 11 113

Walker 163 262 1023 681 59 149 5 158
Wheelchair 36 86 58 117 1137 873 19 174
No person 28 392 18 71 26 206

Fig. 11: Confusion matrix of GDIF-50-10 (boldface) and
ARRAS-50-10 on the REHA data set

The table shows, that using GDIF-50-10 an F1 score of
0.99 is achieved for detection of people with and without
walking aids, and 86 % of the detections are classified
correctly regarding their walking aid. For comparison, using
ARRAS-50-10 results in an F1 score of 0.86, and 57 %
correct discrimination of walking aids.

D. Computing Effort

Next to the detection quality of the features in combination
with the classifiers, the computing effort is relevant for
mobile robotic application. The average number of CPU
cycles of our reimplementation for the extraction of the
ARRAS features is 180·103 (the open source implementation
of the SPINELLO features is even slower), and for the GDIF
it is 65 · 103. Thus, the extraction of the proposed features
takes just 36% of the time. The complete person detection on
a 270◦ laser range scan according to the proposed approach
using a decision tree with three GDIF-50-10 classifiers takes
7.075 · 103 cycles on average which are 2.5 ms on a 2.8
GHz CPU. This corresponds to a maximum detection rate
of almost 400 Hz on a machine doing person detection only.
Accordingly, for a laser range scanner with 10 Hz update
rate, the proposed detection algorithm takes less than 2.5%
of one 2.8 GHz CPU core.

V. CONCLUSIONS AND FUTURE WORK

This work presents an approach for detecting people in
range scan data even when they use walking aids which
occlude their legs. Therefore, generic distance-invariant fea-
tures are proposed. These features are unspecific to the
objects to be detected, and the features’ extraction area
is not dependent on any segmentation algorithm. A jump
distance-based segmentation of the range scan is just applied

to identify origin points for feature extraction. The length
of the extraction area is based on the proportion of the
objects to be detected. Using these features, the person
detection quality increased from an F1 score of 0.86 to
0.99 compared to the features of [2]. Since the features
are really easy to extract, the computational effort for the
feature extraction is lower compared to [2], and overall this
approach is able to detect people in laser scans in realtime
with no significant computational load on a contemporary
CPU. Furthermore, the proposed generic distance-invariant
features (GDIF) allow to classify 86 % of the detections
correctly regarding their walking aid compared to only 57
% of correct classifications when using the features of [2].

In future, we will investigate whether a replacement of
the manually designed decision tree by a data-driven tree
structure improves the classification quality or even enables
to perform view point estimation based on laser range data
similar to [17] on image data.
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