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Abstract—Robust appearance-based person re-identification
can only be achieved by combining multiple diverse features de-
scribing the subject. Since individual features perform different,
it is not trivial to combine them. Often this problem is bypassed
by concatenating all feature vectors and learning a distance
metric for the combined feature vector. However, to perform well,
metric learning approaches need many training samples which
are not available in most real-world applications. In contrast,
in our approach we perform score-level fusion to combine the
matching scores of different features. To evaluate which score-
level fusion techniques perform best for appearance-based person
re-identification, we examine several score normalization and
feature weighting approaches employing the the widely used
and very challenging VIPeR dataset. Experiments show that
in fusing a large ensemble of features, the proposed score-level
fusion approach outperforms linear metric learning approaches
which fuse at feature-level. Furthermore, a combination of linear
metric learning and score-level fusion even outperforms the cur-
rently best non-linear kernel-based metric learning approaches,
regarding both accuracy and computation time.

I. INTRODUCTION AND RELATED WORK

In the past years, the need for automated person re-

identification has significantly increased. Biometric features

like fingerprint or iris are very robust and therefore commonly

used to identify a person. Nevertheless, these features require

close interaction and are therefore not applicable for fre-

quent or large distance re-identification scenarios, like tracking

persons in multiple non overlapping cameras [1] or service

robotic applications [2]. In these or similar cases, appearance-

based person re-identification can be used to re-identify a

person in a set of gallery images. Compensating differences

in location, view, resolution, lighting, and pose of persons

using non-biometric features, like color, textures, and style

of clothing, makes this a very hard problem. Usually only a

combination of multiple diverse features performs well on this

task. Because the individual re-identification performance is

different for each features, the fusion of the features becomes a

hard task, too. Often this problem is bypassed by concatenating

all feature vectors and learning a distance metric for the

combined feature vector (e.g. [3], [4], [5], [6], [7]). This

has a great disadvantage since some powerful features (e.g.

MSCR [8]) cannot be fused, due to varying feature sizes for

different input images. Furthermore, learning an appropriate

distance metric on a high dimensional concatenated feature

vector requires many samples, which are not available in

Multi 
Feature 

Extraction 

Feature 
Matching 

distance score       distance score       

Score 
Normalization 

normalized score           normalized score           

Weighted 
Summation 

fused score 

Feature M
 

Feature M
 

Input 

�
�

��
M

m

norm
mm

fus sws
1

norms1
norm
Ms

Ms1s

1w Mw

... 

... 

Feature 1 

Feature 1 

2s

... ... 

Feature 2 

Feature 2 

G
allery 

Probe 

fuss

Fig. 1. Workflow for Score-Level-Fusion.

common datasets. Additionally, combining the features at this

level is very computational expensive in the training as well

as in the matching phase. These problems can be bypassed

by fusing the features at score-level. Score-level fusion has

the advantage to perform well and fast on high-dimensional

varying feature vectors sizes, even if only few samples are

available. Additionally, the feature set can be easily extended,

e.g. by biometric features. Therefore, in this paper we will

compare different score-level fusion techniques and provide

an answer which methods perform best for appearance-based

person re-identification. Additionally, we will compare score-

level fusion with feature-level fusion techniques (i.e. feature

concatenation and distance metric learning) and provide a

framework with publicly available source code1 for further

comparison.

1http://www.tu-ilmenau.de/neurob/data-sets-code/score-level-fusion/
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II. SCORE-LEVEL FUSION

Score-level fusion aims to fuse information at an abstract

level. Therefore, it combines distance scores from matched

feature vectors (see Fig. 1). The goal is to get a fused score that

is suitable to calculate a ranking. This is done in three steps:

First, the scores for all features are normalized to make them

comparable. Additionally, (non-linear) normalization helps to

increase the separability between genuine scores (distance

scores for image pairs that represent the same person) and

impostor scores (distance scores for image pairs showing

different persons). The second step is to calculate the weights

for each feature. Finally, in the third step, the fused score

is calculated as weighted sum. All these steps include only

few and simple calculations. Therefore, score-level fusion

can be performed much faster than feature-level fusion (e.g.

concatenation in combination with metric-learning).

A. Score Normalization
In order to apply score-level fusion, all scores have to be in

the same value domain. This is usually achieved by normaliz-

ing the value range. Fig. 2 shows a combined systematization

of score-level fusion approaches, as described in Maltoni et
al. [9], Ross et al. [10], and Ulery et al. [11]. These methods

can be categorized in three overall categories: Density-based,

Transformation-based, and Classifier-based. The last one can

only be used for verification (not identification), since it does

not calculate a fused score, but formulates the fusion as a

binary decision problem. Therefore, it is not closer examined.

In the following, we will describe approaches for performing

normalization based on probability density functions or trans-

formations.
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Fig. 2. Categorization of Score-Level Fusion approaches.

Density-based approaches model the genuine (gen) and
impostor (imp) score distributions (see Fig. 3). The fused
score is defined as the probability of observing a genuine
score sfus = P (gen|s) using joint scores s = s1 . . . sM for
M features and given score distributions. Using the Bayes
theorem, an ”a posteriori probability can be expressed in terms
of the joint probability densities” [9], as follows

P (gen|s) = P (s|gen)P (gen)

P (s|gen)P (gen) + P (s|imp)P (imp)
. (1)

Assuming P (gen) and P (imp) are equal, Eq. 1 can be

simplified to

P (gen|s) = P (s|gen)
P (s|gen) + P (s|imp)

, (2)
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Fig. 3. Exemplary genuine impostor score distribution (MSCR feature [8]
on VIPeR dataset [12]). Scores in highlighted area will produce errors (false
positives (FP) and false negatives (FN)) when threshold is chosen at the
intersection point of genuine and impostor scores as marked. The Non-
Confidence Width (NCW) measures the width of this critical overlap area.

where the remaining probabilities P (s|gen) and P (s|imp) can

be determined from the modeled distributions.

Modeling joint probability distributions with only few train-

ing samples is nearly impossible in a high-dimensional space.

Therefore, the joint distributions are usually approximated as

product of its M marginals

P (s|k) =
M∏

m=1

P (sm|k), (3)

where k is either gen or imp. This approximation assumes

statistical independence of the features. This is not the case

in our scenario, since all features are extracted from the same

images and belong to the same objects. However, evaluations

of Nandakumar et al. [13] showed that correlation of features

”does not adversely affect the performance of the LR fusion

scheme, especially when the individuals matchers are accurate

and the difference between genuine and impostor correlation

is not high.” We verified, that the latter condition holds for

appearance-based features. Also the first condition is true for

most used features. Only the matching accuracy for some

texture features may cause problems.
Using this simplification, the Likelihood Ratio normaliza-

tion is done by modeling the marginal genuine and impostor
score distributions for each feature separately. Modeling is
done by Kernel Density Estimation (KDE) with variable
bandwidth kernels as in [11]. The density function is therefore

P (si|k) = 1√
2π · hs(k)

· 1

N
·

N∑
j=1

exp

(
(s

(k)
i − s

(k)
j )2

2h2
s(k)

)
, (4)

with k as gen or imp, N the number of genuine/impostor

samples in the training set, training samples s(k) =

s
(k)
1 . . . s

(k)
N , si a sample of test set, and the variable bandwidth

h of the kernel is chosen by the formula of Silverman [14]

hs(k) = σs(k)

(
4

3

) 1
5

N
− 1

5

s(k)w(s(k)), (5)

where σ is the distribution’s standard deviation, and w ≥ 1 is

chosen such that the kernels’ width increases in the boundary
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areas of the distribution. Optimization criteria for w are

smoothness of both distributions and a monotonic decreasing

likelihood ratio. The resulting Likelihood Ratio normalization

rule is

snormLR
i = P (gen|si) = P (si|gen)

P (si|gen) + P (si|imp)
. (6)

Since frequent KDE calculations (Eq. 4) are very time consum-

ing and contrary to our real-time condition, the transformation

is calculated only once on the training data set and stored as

lookup table for the execution phase.

The biggest problem of the Likelihood Ratio method is the

need for modeling the genuine distribution accurately, since

genuine training samples (image-pairs of same persons under

varying environmental conditions) are rare in most datasets,

as well as in real-world applications. Logistic Regression

bypasses this problem. It does not try to accurately model the

distributions, but models the ratio of genuine and impostor

distributions instead. Therefore, a rough approximation of

both distributions (KDE with fixed bandwidth) is calculated

to estimate the logarithmic ratio of genuine and impostor

score distribution (see Fig. 4 top). In a trust region, where
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Fig. 4. Normalization by Logistic Regression. Top: Approximated genuine
(solid green) and impostor (dashed red) plots. Center: Probability P (gen|si)
modeled by ratio of distributions (solid blue line) and by logistic regression
(dashed magenta line). Bottom: Ratio of genuine and impostor score distri-
bution in log space, where line is fitted.

approximation errors are rare, the log-likelihood is fitted by a

polynomial of low degree [11] (Fig. 4 bottom). We evaluated

polynomials of degree 1 to 9. A simple line (degree 1)

showed the best normalization results. This is expected, since

most features showed nearly a line in the log likelihood plot

(as it is also the case in Fig. 4 for wHSV feature [8]).

However, it should be mentioned, that the log-likelihood-plot

for some features showed more complex functions. These

features are probably not well suited for logistic regression

normalization. When using a fitted line, the approximated

probability, representing the normalized score, is calculated

by

s
normreg

i = P̃ (gen|si) = exp (m · si + n)

1 + exp (m · si + n)
, (7)

where m and n are the slope and y-intercept of the fitted line

in log-space (The dashed magenta line in Fig. 4 (center) shows

the approximated probability P̃ (gen|si)).
Another way to bypass the need for modeling the genuine

distribution is to formulate the normalization as a probability

related to only impostor scores. Commonly, this is done by

using the probability of accepting an impostor score [15],

which equals the False Acceptance Rate (FAR) for a threshold

τ = si. Thus the normalization is

snormFAR
i = FAR(si). (8)

Since frequent calculations of FAR are time consuming, the

transformation is approximated by a lookup table.
Probability-density-based normalization is known to gener-

ally perform very well. However, it may lead to errors when

score distributions are not modeled accurately. Therefore, often

much simpler transformation-based normalization approaches

are applied.
Transformation-based approaches can be subdivided into

linear and non-linear methods (see Fig. 2). Linear approaches

only normalize the range of scores for each feature without

changing the shape of the score distributions. This can be done

by using the minimum and maximum of all scores s for image-

pairs i = 1 . . . N in training set and scale the scores to range

[0, 1] by

snormmm
i =

si −min(s)
max(s)−min(s)

, (9)

or by using the mean μ and standard deviation σ of all scores

and calculate the z-normalization as

snormz
i =

si − μs

σs
, (10)

to get zero mean and standard deviation.
Non-linear normalization methods do not only scale the

scores, but also change the shape of genuine and impostor

distributions. A well suited method to normalize exponentially

distributed scores is Decimal Scaling. To apply this method,

we first transform the scores to a logarithmic scale

s(Log) = log10(1 + s), (11)

and then normalize the logarithmic scores to range [0, 1] with

snormdec
i =

s
(Log)
i

10n
, (12)

where n = log10 max(s(Log)) [10].
Capelli et al. [16] introduced the Double Sigmoid normal-

ization defined as

snormDS
i =

⎧⎨
⎩

1

1+exp
(
−2

(
si−τ

α1

)) if si < τ

1

1+exp
(
−2

(
si−τ

α2

)) otherwise
, (13)
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where τ is the operation point where one sigmoid function

fades into the other, and α1 respectively α2 defines the

steepness of the functions. We derive the parameters from the

genuine-impostor distributions. Therefore, we choose τ as the

intersection point of genuine and impostor score distribution

s.t. P (genuine|τ) = 0.5, α1 as left border of the overlap

s.t. P (genuine|α1) = 1 − β, and α2 as right border of

the overlap s.t. P (genuine|α2) = β, with potential outliers

excluded, controlled by parameter β. Evaluations show that

setting β = 0.05 leads to best normalization results.
Hampel et al. [17] introduced the tanh-estimators, which

did show good fusion results in biometric context. The nor-
malization is given as

s
normtanh
i =

1

2

{
tanh

[
0.01

(
si − μ

(ψ)

s(gen)

σ
(ψ)

s(gen)

)]
+ 1

}
, (14)

where μ and σ are the estimated mean and standard deviation

of the genuine score distribution using a Hampel estimator ψ
with weights

wHa(ui) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 |ui| ≤ a
a

|ui| a < |ui| ≤ b

a
|ui| ·

(
c−|ui|
c−b

)
b < |ui| ≤ c

0 |ui| > c

, (15)

where ui = si−median(s(gen)). We parametrized the Hampel

estimator as Jain et al. [18] with a = quantile0.7(|u|), b =
quantile0.85(|u|), and c = quantile0.95(|u|).

B. Feature Weighting

After all scores are normalized to the same value domain,

they can be combined. In order to calculate the fused score

as weighted sum, a weight w is computed for each feature by

using a test set of normalized distance scores snorm (in case

the normalization leads to similarity scores ssim, we transfer

them to distance scores sdist = 1 − ssim). Thus, the fused

scores are calculated by

sfusi =

M∑
m=1

wmsnormi,m , (16)

where i is the index of the image-pair’s distance score s, m
is the index of the feature, and M is the number of features

to be fused.

A common way to calculate the weights is weighting all

features equally. In this case, each weight is calculated by

w(equ)
m =

1

M
. (17)

To achieve varying weights, a performance measure func-

tion derived from the genuine-impostor-plot is often used.

Hereby, the weights are gathered by computing a performance

measure on scores for image-pairs of a training set.

A common performance measures for computation of

weights is the equal error rate (EER). EER is defined as point

in the ROC curve where false acceptance rate (FAR) and false

rejection rate (FRR) are equal. The weight for feature m is

calculated as

w(EER)
m =

1
EERm∑M
k=1

1
EERk

. (18)

Instead of using only genuine and impostor scores, an

additional ranking can be computed from the training set in

person re-identification. Therefore, we evaluated weights as

function of rank 1, or rank 10 statistics of the CMC curve,

and as function of the area under this curve (nAUC). In this

case the weight for feature m can be computed as

w(Perf)
m =

Perfm∑M
k=1 Perfk

, (19)

where Perf stands for the performance measure and can

either be replaced by rank 1, rank 10, or nAUC.

Another way of computing the weights is related to the

genuine-impostor score distribution. Methods of this category

try to measure how well genuine and impostor scores are

separated, since a large overlap of genuine and impostor

scores indicates a large amount of false decisions in the re-

identification system (see Fig. 3).

A statistical approach to measure the separation is D-

Prime [19]

dm =
μ
(imp)
m − μ

(gen)
m√(

σ
(imp)
m

)2

+
(
σ
(gen)
m

)2
, (20)

where μ
(imp)
m and μ

(gen)
m are the impostor’s and genuine’s

mean and σ
(imp)
m and σ

(gen)
m are their standard deviations. The

weights are therefore:

w(DP )
m =

dm∑K
k=1 dk

. (21)

This measure assumes normal distributions for both genuine

and impostor score distributions. We examined all matching

score distributions for appearance-based features used in our

experiments and found that the assumption holds for only few

impostor distributions and none of the genuine distributions.

To avoid the assumption of normal distributions, Chia et
al. [19] suggest to measure the width of the overlap region,

named non-confidence width (NCW). An examplary visual-

ization of this measure can be seen in Fig. 3. As done for the

other measures, the weights are a direct function of the NCW

w(NCW )
m =

1
NCWm∑K
k=1

1
NCWk

. (22)

All methods above compute the weights directly from a

quality measure for each feature separately. Therefore, these

methods do not calculate the optimal weights to minimize the

overall re-identification error. That is because these methods

were suggested for biometric context, where joint scores for

multiple features (e.g. finger prints and face templates) are

often not available. Since in our scenario all features are

related to the same images, we have additional information
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about joint genuine-impostor distributions. To make use of

this information, we recommend to formulate the computation

of weights as a pairwise optimization problem: The weights

w1 and w2 for two features define a vector on which the

scores of two features are projected to get the fused score.

W.l.o.g. these weights can be expressed as k · w1 = cos(φ)
and k ·w2 = sin(φ), with φ being the angle between the x-axis

and the projection vector (see Fig. 5 for visualization). Then

Fig. 5. Weighting formulated as optimization problem. The projection vector
(displayed as semi-transparent plane) depends only on φ. Notice, that marginal
probability densities are scaled at z-axis to visually highlight the relationship
to the joint probability density distributions.

the fused genuine and impostor distributions are a function of

the marginal distributions (normalized scores) and the angle

of the projection vector φ. Therefore, finding good weights is

the task to find φ, where an error measure is minimized. We

evaluated the NCW and the overlap of genuine and impostor

distribution. NCW leads to a bumpy error landscape. This is a

bad condition for an optimization algorithm, since often only

local minimums are found. The overlap however, produces

a smooth error curve. Therefore we decided in favor of the

overlap as error function. The optimization function is thus

φbest = argmin
π
2

φ=0overlap
(

s(gen)fus , s(imp)
fus

)
, (23)

with

s(gen)fus = cos(φ)s(gen)m1
+ sin(φ)s(gen)m2

, (24)

and

s(imp)
fus = cos(φ)s(imp)

m1
+ sin(φ)s(imp)

m2
. (25)

Since we estimate the genuine and impostor distributions by
KDE, the overlap calculates as

overlap
(

s(gen), s(imp)
)
=

∫ t(φ)

−∞
KDE

(
s(imp,w)

)

+

∫ ∞

t(φ)

KDE
(

s(gen,w)
)

, (26)

with t(φ) being the interception point of genuine and impostor
distribution in the projection and the integral over the KDE

defined as

∫ b

a

KDE (s) = 1

N

N∑
i=1

[
1

2

(
1 + erf

(
a− si√

2h

))

−1

2

(
1 + erf

(
b− si√

2h

))]
, (27)

where the kernel bandwidth h is calculated by the formula

of Silverman [14] (Eq. 5). Because the error curve of the

optimization problem appears to be very smooth with a single

optimum for every feature combination, we have chosen

the fast logarithmic search algorithm for finding the global

minimum, while other heuristic optimization algorithms could

have been used, too. Due to the commutative property of

the summands in the calculation of the fused score (Eq. 16),

pairwise weight computation is no restraint. In the experiments

we will refer to this weighting method as PROPER (pairwise

optimization of projected genuine-impostor overlap).

C. Combination with Feature-Level Fusion

Since score-level fusion only needs a relatively small

amount of training data, it is a powerful tool to fuse large

ensembles of features (experiments in Sec. III confirm this the-

sis). However, for small feature ensembles score-level fusion

performs only moderately. In contrast, feature-level fusion,

which concatenates feature vectors and applies distance metric

learning, performs well on small and medium-size feature

vectors2. In this subsection, we briefly discuss how to combine

these two approaches to improve fusion performance.

To apply metric learning in combination with score-level fu-

sion, first the high-dimensional feature vector must be divided

into smaller parts (A). Then for each part a distance metric

is learned (B). Finally, the matching scores for each feature

vector part are combined by score-level fusion (C).

(A) To divide the feature vector, which is a combination of

different features, into several medium-size parts, we use the

underlying structure of the feature set3 (see Sect. III-B for used

features), i.e. we group feature vectors of the same feature

type extracted from different body parts. We do not group

different feature types. (B) For each group, we concatenate

the feature vectors and learn an adequate distance measure

for comparison of concatenated feature vectors. Therefore,

we apply the best performing methods evaluated in [7]. (C)

To combine the matching scores of all groups, we apply the

methods of Sect. II-A and II-B.

Since all of the three processing steps are supervised,

information is only lost in a controlled way, which leads to a

notable increase in fusion performance. This can be seen in

the next section.

2Metric learning can also be applied to large feature vectors. But often
therefore a dimensionality reduction is needed as preprocessing step. Usually
this is done by PCA, which is unsupervised, and thus potentially important
information may get lost.

3We found, that partitioning has a large influence on the fusion performance,
but we do not further examine this aspect in this paper. However, automatic
partitioning will be the focus of our future work.
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III. EXPERIMENTS

To evaluate the performance of the methods presented in

the previous section, we first examine the performance of all

sub-components and then compare the proposed score-level

fusion method to state-of-the-art feature-level fusion and to a

combination of both fusion schemes.

A. Dataset

We evaluate our methods on the widely used and very chal-

lenging VIPeR dataset [12]. It consists of 632 persons, with

two images each, taken from disjoint camera views, showing

them under very different angles and lighting conditions (see

Fig. 6). The images are all normalized to a size of 128 × 48
pixels. To obtain comparable results we follow the 10-fold

cross-validation protocol of [8]. For each of the ten folds, 316

of the 632 available persons are chosen for testing. The images

of the 316 remaining persons are used for training. Images of

persons in test set from camera A represent the gallery, while

camera B provides the corresponding probe images.

Fig. 6. Sample image pairs of VIPeR dataset [12]. Top: Gallery images
(cam A). Bottom: Corresponding probe images of the same subjects (cam B).

B. Feature Set

Appearance-Based Features 

Color Texture Combination 

Histogram Blobs Point Clouds 

• Local Binary Pattern 
   (LBP) 
• Maximum Response 
   (MR8) 

• Ensemble of Localized 
   Features (ELF) 
• Salient Dense 
   Correspondence 
   (SDC) 

• Black Value Tint 
   (BVT) 
• Lightness Color 
   Opponent (Lab) 
• weighted Hue Satu- 
   ration Value (wHSV) 

• Maximum Stable Color 
   Regions (MSCR) 

• Point Clouds of 
   Homogeneous Regions 
   (PCHR) 

Fig. 7. Categorization of appearance-based features for person re-
identification included in experiments.

In our experiments, we use nine different features, which

represent the human appearance, namely by color and texture

in different, complementary ways. We aim to use widely

known and evaluated descriptors [3], [20], [8], [21], [22],

which are known to be suitable for person re-identification. For

the feature extraction processes the authors’ implementations

were used. Those were either publicly available or made

available by the authors on request.

The used features can be categorized as shown in Fig. 7.

The first category are features that rely completely on color

histograms. Similar to Figueira et al. [3], we extracted a color

histogram of the image in the Lab color space with ten non-

uniform bins4 per channel. Following the procedure of [3]

a Black Value Tint histogram (BVT) [20] was extracted for

each image. BVT histograms are formed in the HSV color

space and handle dark and unsaturated pixels in a separate

gray value histogram. This minimizes their influence on the

color histogram. Other than the plain HSV histogram in [3],

we decided to use the widely-used weighted color histogram

in HSV color space as introduced by Farenzena et al. [8]. For

these histograms, the weight of a single pixel is defined by a

Gaussian kernel centered at symmetry lines found in the upper

and lower body. We refer to them as weighted HSV histograms
(wHSV).

Additionally, we extracted Maximally Stable Color Regions
(MSCR) [20], [8] and Point Clouds of Homogeneous Regions
(PCHR) [24] that were developed for fast object tracking. In

contrast to the methods above, MSCR does not form a fixed

length feature vector and PCHR templates can not be directly

compared due to the position variability in the point clouds.

This means, both features do not suit for feature-level fusion
and can only be fused with other features at score-level.

Another category of features we use is based on texture

(see Fig. 7). Therefore, Local Binary Pattern (LBP) [25] and

Maximum Response filter (MR8) [26] are utilized. Uniform

LBP encode texture as a histogram of binary patterns. These

binary patterns encode darker and lighter pixel around a center

point, which is shifted to every possible position in the source

image. The representation formed by MR8 is generated by a

filter bank consisting of two anisotropic filters (edge and bar

filters), each of them at six orientations and three scales, as

well as two rotation invariant filters (Gaussian and Laplacian

of Gaussian). Only eight filter responses are used by taking

the maximal response of the anisotropic filters across all

orientations at each scale. Similar to Figueira et al. [3], we

applied a histogram computation with non-uniform binning

with ten bins per response to reduce the dimension of this

representation even more.

We also extracted more complex features which combine

color and texture descriptors such as Ensemble of Localized
Features (ELF) [21], [22] and Salient Dense Correspondence
(SDC) [28]. ELF is a combination of eight color histograms

(RGB, HS, YCbCr) with 16 bins per channel and the filter

responses of 21 texture filters (13 Gabor filters [29] and eight

Schmid filters [30]). All the histograms are concatenated into

a 464 dimensional feature vector. For each single histogram,

we apply non-uniform binning using the same procedure as

for the Lab histograms. SDC extracts SIFT features, encoding

texture, and color histograms (32 uniform bins per channel) in

Lab color space, densely sampled using overlapping patches.

4The limits specifying the bin ranges were chosen, such that the average
histogram would resemble a uniform distribution. This was done using the
INRIA dataset [23], normally used as benchmark and training dataset for
person detection algorithms.
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(c) Combination with Metric Learning

Fig. 8. Re-identification performance on VIPeR dataset. Images in the probe set are compared with gallery images and a ranking is computed based on the
similarity of the pictured subjects. The Cumulative Matching Characteristic (CMC) curve shows how often the correct match appears within the the first n
ranks (n = 1 . . . 316). Normalized area under CMC curve (nAUC) is given in squared brackets. (a) Score-level fusion with presented score normalization
approaches (weighting is done by best performing method PROPER). Single feature performances is shown as gray lines. (b) Score-level fusion with presented
feature weighting methods (score normalization is done by best performing Likelihood Ratio). (c) Combination of score-level fusion and linear metric learning
(KISSME [27]) outperforms currently best state-of-the-art non-linear metric learning approach (kLFDA [7]).

Using the masks of a part detector [20], we extracted BVT,

LBP, MR8, Lab and wHSV histograms as well as ELF features

for each body part. ELF features are additionally extracted on

six stripes as introduced by Prosser et al. [22]. We denote

them as SELF. In addition to the part-based wHSV, we also

used the wHSV histograms as used by Farenzena et al. [8].

The masks of the part detector were also used for MSCR as

designed by Cheng et al. [20]. In contrast, the PCHR features

were extracted using an average person mask as in [24].

Summarized, our feature set is composed of 84 feature vectors,

with an accumulated dimensionality of 242,109 on average

(MSCR varies, σ = 16).

C. Score Normalization

To evaluate the best configuration for score-level fusion, we

benchmarked all 64 combinations of score normalization and

feature weighting methods. The best recognition performance

was observed for likelihood ratio (LR) score normalization

with the proposed PROPER feature weighting. Fig. 8(a) shows

the Cumulative Matching Characteristic (CMC) curves for the

score normalization methods in combination with the best

performing feature weighting method PROPER. It can be seen,

that all score normalization methods are capable to improve

the recognition percentage in comparison to the performance

of every single feature (gray lines). As known from biometrics

(e.g. [11]), LR normalization performed slightly better than the

other score normalization methods.

D. Feature Weighting

Fig. 8(b) shows the CMC curves for feature weight-

ing methods in combination with the best performing LR

score normalization. The figure shows, that the proposed

PROPER feature weighting (normalized area under CMC

curve nAUC = 0.942) clearly outperforms all state-of-the-art

weighting methods by a significant margin. The second best

performance for feature weighting w/o PROPER was observed

with the non confidence width (NCW) criterion in combination

with LR normalization (nAUC = 93.2). The expected rank

(ER) for PROPER is 19.23, which means, that the correct

match can be found on rank 19 on average (out of 316;

σRank = 29.65). This is more than three ranks better than

NCW (ER = 22.41; σRank = 31.85). It becomes apparent,

that using additional information with PROPER increases the

re-identification rate considerably.

E. Score-Level vs. Feature-Level Fusion

Obviously, score-level fusion is a powerful tool to combine

multiple features. However, state-of-the-art approaches usually

fuse at feature-level by concatenating all feature vectors and

applying distance metric learning. Therefore, the performance

of these two fusion techniques, as well as a combination, is

evaluated in the following.

In Fig. 8(c) the performance of the score-level fusion with

LR and PROPER is shown as dashed green line. The state-

of-the-art linear metric learning method KISSME [27] (solid

blue line) performs worse on the concatenated features due

to a unsupervised PCA preprocessing step. However, on a

subset of features (solid light blue lines), KISSME is able to

perform better than score-level fusion (less information get lost

by PCA). This shows, that the performance of metric learning

methods drops for high dimensional feature vectors. Therefore,

we decided to run KISSME on multiple subsets of features and

fuse them at score-level. The performance of the combined

feature- and score-level fusion is visualized as dash-dotted blue

line. This combination even outperforms the best non-linear

metric learning method, the Kernel Local Fisher Discriminant

Analysis [7] (kLFDA), on the concatenated feature vector (red

line) and on any subset of features (not shown for clarity

reasons), while being much faster in the execution phase,

since no kernel computation is necessary. Including additional
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features to the score-level fusion, that are not suited for

feature-level fusion (see Sect. III-B), improves the recognition

rate further (solid green line; nAUC = 0.972). The influence

of each feature on the overall performance is shown in Fig. 9.

Using kLFDA (instead of KISSME) for metric learning on

feature subsets and apply score-level fusion resulted in a only

slightly better performance (nAUC = 0.973), but is not worth

the complexer calculation when real-time constraints have to

be respected. Therefore, when a large ensemble of features for

person re-identification has to be fused, we recommend to use

KISSME in combination with the proposed score-level fusion.
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Fig. 9. Learned weights to fuse features at score-level, when metric learning
is applied per feature, show the influence of each feature for the overall
performance (see Fig. 8(c) for CMC curve).

IV. CONCLUSION

We evaluated score-level fusion techniques for appearance-

based person re-identification features. As known from bio-

metrics, score normalizing with the likelihood ratio method

performed best. For weighting the features, we proposed the

pairwise optimization scheme PROPER, which outperforms

state-of-the approaches. When fusing a large ensemble of

features, score-level fusion with likelihood ratio score normal-

ization and pairwise weight optimization outperforms linear

metric learning approaches, that fuse at feature-level. How-

ever, a combination of linear metric learning and score-level

fusion reaches even better results and slightly outperforms

the currently best non-linear kernel-based metric learning

approach. Furthermore, our approach is significantly faster in

the execution phase. Score-level fusion is thus a powerful tool

to fuse large feature sets, especially in combination with linear

metric learning.
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