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Abstract— Rehabilitative follow-up care is important for
stroke patients to regain their motor and cognitive skills. We
aim to develop a robotic rehabilitation assistant for walking
exercises in late stages of rehabilitation. The robotic rehab
assistant is to accompany inpatients during their self-training,
practicing both mobility and spatial orientation skills. To hold
contact to the patient, even after temporally full occlusions,
robust user re-identification is essential. Therefore, we imple-
mented a person re-identification module that continuously re-
identifies the patient, using only few amount of the robot’s
processing resources. It is robust to varying illumination and
occlusions. State-of-the-art performance is confirmed on a
standard benchmark dataset, as well as on a recorded scenario-
specific dataset. Additionally, the benefit of using a visual re-
identification component is verified by live-tests with the robot
in a stroke rehab clinic.

I. INTRODUCTION

About 2-5% of all health related costs in the western

developed nations originate from stroke disease patterns. Due

to demographic change, the rate of stroke occurrences is

expected to increase, while at the same time family struc-

tures are changing and cohabitation of different generations,

providing possibilities for informal care, is receding. In

effect, demand for rehabilitative follow-up care for stroke

patients is increasing. As motor and cognitive learning are

not passive processes, patients recovering from a stroke

must play an active role in the rehabilitation process if

improvement is to occur [1]. Against this background, a

new trend in rehabilitation care is promising vast medical as

well as economic potential – the so-called self-training. This

finding is the context and the motivation for the research

project ROREAS [8], which aims at developing a robotic

rehabilitation assistant for walking and orientation exercising

in self-training during clinical stroke follow-up care. The

robotic rehab assistant is to accompany inpatients during

their walking and orientation exercises, practicing both mo-

bility and spatial orientation skills. It shall also address the

patients insecurity and anxiety (”Am I able to do that?”,

”Will I find my way back?”) which are possible reasons for

not performing or neglecting self-training.

The task of the robot is to follow patients during their

walking exercises and, if necessary, guide them back to their

room. This self-training is performed in the corridor of the

rehab clinic. Therefore, many other people are present in the

*This work has received funding from the German Federal Ministry
of Education and Research as part of the ROREAS project under grant
agreement no. 16SV6133.

M. Eisenbach, A. Vorndran, S. Sorge, and H.-M. Gross are with Neuroin-
formatics and Cognitive Robotics Lab, Ilmenau University of Technology,
98694 Ilmenau, Germany. markus.eisenbach@tu-ilmenau.de

Fig. 1. Person following in a clinical environment needs a re-identification
component to succeed during rush-hour times.

surroundings of the robot. To hold contact with the user, the

robot must continuously track him. Furthermore, in cases of

temporally full occlusions or in the case of ambiguities in

tracking, the robot must be able to re-identify the user by its

visual appearance.

II. REQUIREMENTS AND CHALLENGES OF PERSON

RE-IDENTIFICATION ON A MOBILE ROBOT

Re-Identification of a person by a mobile robot is very

challenging. This is due the need for a good user recogni-

tion in real-time while using only few computing capacity,

leaving enough time for security related tasks, like collision

avoidance, and computationally expensive tasks, like path

planning. While meeting these real-time requirements is hard

for visual algorithms, the task of re-identification becomes

even more complicated due to lots of motion of the robot,

which blurs the images, a very dynamical environment with

many different lighting, and many objects, that trick state-

of-the-art visual person detectors to false detections (e.g.

wand lamps between two doors). Person detection is also

complicated by many people using walking aids in our

scenario. The narrow corridors of the building often lead to

partially and temporal fully occlusions of the user by other

people. The user may also be only partially visible, if he

is near the robot due to the robot’s head mounted camera.

Additionally, the size of the image regions containing the

user (and thus the resolution) varies a lot with the distance

to the robot. Therefore, the person re-identification module

has to be robust to image blur, varying resolution and

illumination, occlusions, people with walking aids, and false

detections.

Summarized, to be suitable for daily use, the person re-

identification module has to satisfy the following require-
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Fig. 2. Processing chain for fast person re-identification on a mobile robot.

ments: It has to start immediately when the user logs in (max-

imum 100ms for model training) and must then frequently

compare each of the observed persons with the user model

twice a second, using a maximum of ten milliseconds per

person and 10% CPU at most. Despite the challenges listed

above, the user should be recognized in at least 95% of all

cases where re-identification is necessary. When a decision

between two nearby hypotheses is hard to make, the robot

should stop and ask the user to make itself felt. The robot

should also stop when it loses contact to the user and cannot

re-detect him or her.

III. SUB-MODULES FOR USER RE-IDENTIFICATION

To meet the requirements described in the previous sec-

tion, we have chosen a re-identification workflow that is

optimized regarding processing speed, but does not decrease

recognition accuracy. Fig. 2 shows all sub-modules: First, all

persons in the image have to be detected and tracked. Then,

we describe their appearance by multiple complementary

features. The current user is represented by a multi-modal

template composed of features observed in the enrollment

phase1. To reduce the size of the template, similar appear-

ances are removed by clustering. To accurately compare

persons in the scene with the user template, a distance metric

that has been trained on a scenario-specific dataset is applied.

To compose the matching results for the different features,

score-level fusion is performed. Afterwards, the follow or

guide hypothesis is chosen by a track-based decision con-

sidering multiple observations over time. Additionally, if

the person can be identified securely during tracking as the

current user, the template is updated.

A. Pre-Processing
Pre-Processing in terms of person re-identification is ev-

erything needed to get person-centered cropped sub-images

from the camera output. This includes modules for person

detection and tracking. For person detection, we implement

two modalities: A laser-based leg detector (10 Hz) and a

visual upper body detector (2 Hz). As laser-based method,

we implemented the GDIF detector [17], which finds pairs

of legs in the 2D range scan to robustly detect persons,

1The enrollment phase begins with the login and lasts as long as the
current user can be tracked securely.

even in situations where they use walking aids, like in our

scenario. As visual detector we chose an orientation-based

decision tree of upper body HOGs [16]. We decided in favor

of an upper body detector, since the users are often close

to the robot to interact via the touch-screen, and therefore,

only their upper body is visible in the head-mounted camera.

Since visual person detection is computationally very expen-

sive, it is executed on a second on-board PC, with an energy

saving CPU and only at 2 Hz. For data exchange between

the two on-board PCs, we use the robotics middleware

MIRA [3]. The results of both detectors are merged by a

person tracker [15] based on Covariance Intersection and

Kalman-filters for temporal tracking. New detections are

checked to be valid hypotheses by being either detected by

both modalities, or by one modality and moving through the

scene (no-static criterion). Additionally, a global occupancy

map is used to verify that the hypotheses are visible by the

robot. All valid person hypotheses with visual reference are

then passed to the re-identification module twice a second.

This includes situations where the user may not be visually

detected but still be tracked by the laser. Therefore, the

re-identification module also needs to consider older visual

observations for its (track-based) decision.

B. Feature Extraction
After all persons have been detected and tracked, the

user can be identified. Therefore, we follow the idea of

our previous work [10] and trust the person tracker to

securely recognize the user as long as no ambiguous sit-

uations (e.g. low spatial distance to other persons) appear.

Whenever ambiguities occur, the re-identification module

has to decide which tracks should be connected to share

the same person ID. Because the trackers’ decisions are

based on spatio-temporal proximity, the decision of the re-

identification module has to apply a complementary modality

to resolve ambiguities. Therefore, we use a visual approach

to compare the appearance of people in the scene. Fig. 3

shows a listing of potential visual features to describe a

person. The features used in our approach are highlighted.

Since persons are often observed in low resolution due to a

greater distance to the robot, or the user can only be observed

from behind (in the user following mode), we cannot use

biometric features, like face, iris or ear, for re-identification.
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Fig. 3. Systematization of visual features for person re-identification.
Features used in the proposed approach are highlighted.

Using gait recognition would be possible, but is computation-

ally expensive and performs worse than appearance-based

approaches (see [4] for an evaluation). The robust extraction

of soft-biometric features and semantic attributes is also time

consuming and may not be discriminatively enough (only

in combination). Therefore, we decided in favor of features

describing the color and texture of the clothes, that are fast

to extract with low computationally cost. Additionally, we

use spatio-temporal information of all persons to be seen in

the scene as a kind of contextual information.

To describe the clothes’ color, we utilize a weighted

HSV-color-histogram (wHSV) and Maximum Stable Color

Regions (MSCR), both components of the SDALF ap-

proach [6]. The wHSV features describe the appearance of

upper and lower body by a histogram in HSV color space,

where the weight of a single pixel is defined by a Gaussian

kernel centered at symmetry lines found in the upper and

lower body. MSCR describes the appearance of a person with

stable color blobs in CIEL*a*b* color space. To describe the

clothes’ texture, we explored the widely used histogram of

local binary patterns (LBP) [13]. The uniform LBP encode

darker and lighter pixels around a center point, which is

shifted to every possible position in the source image. Non-

uniform LBP are represented by an extra histogram bin.

However, we found, that in our scenario texture does not

help to describe a person’s appearance, since most of the

extracted images are heavily blurred due to ego motion of

the robot, and nearly all patients wear homogeneous colored

clothes. Automatic feature weighting by the score-level fu-

sion module has validated this hypothesis (see Sect. III-D).

Other appearance-based features, that show good re-

identification performance, are BiCov [12], LDFV [11], and

SDC [19]. We did not utilize these features, since none of

them can be extracted in real-time.

The original implementation of the SDALF features (Mat-

Lab) does not fulfill the real-time restrictions described

in Sect. II. Therefore, we implemented these features in

C++ (optimized for fast extraction) and further examined

each processing step for potential performance gains and

improvements of re-identification rate. We found some ap-

proximations that speed up feature extraction and do not

harm re-identification performance: The body partitioning

and symmetry lines of the wHSV feature do not need to

be very accurate and can be static. Also the foreground

mask used by MSCR can be replaced by a static average

person mask. Additionally, we reverted some approximations

of the original implementation to improve recognition rates.

Therefore, we use full tri-linear interpolated histograms for

wHSV instead of marginalized ones. Finally, we performed

cross-validated parameter tuning.

To compare extracted histogram features of two person

hypotheses, we learned a distance metric. MSCR, however,

does not suit metric learning due to its varying descriptor

size. Therefore, we used the improved comparison method

of Cheng et al. [2] for this feature. The features are combined

by score-level fusion.

C. Metric Learning
Beside a good feature representation, we also need a

proper scenario-specific distance metric to compare feature

vectors, allowing for compensation of differences in illu-

mination, image resolution, and other challenges listed in

Sect. II. Therefore, we decided in favor of the kernel-LFDA

method for distance metric learning, as it showed very good

performance on many datasets in the extensive evaluation of

Xiong et al. [18].

To get a proper metric, we do not just apply kernel-LFDA

on the raw scenario-specific training dataset, but pre-process

the data set. This improves the recognition performance

significantly. The pre-processing is done in three steps: (1)

We add an additional dataset with many persons to get a

more generic metric. Therefore, we add half of co-training

data to the scenario-specific training data set and use the

other half as validation dataset. (2) We reduce the number

of samples per person by k-medoid clustering, using only

the cluster centers (k ≈ 5− 8). This is necessary to increase

the inner-class variance by removing very similar samples

that could be matched by any simple metric easily and

would prevent the metric learning approach from spotting

more advanced interrelationships. (3) We balance the training

dataset. Therefore, we apply k-medoid clustering on samples

of all persons and select only the cluster centers (k = 500
achieves best results). This groups similar outfits and thus

reduces overrepresented clothing combinations, like black

jackets with jeans or white outfits of clinical staff that would

otherwise dominate the training dataset.

Done this, we choose the remaining 500 samples as kernel

vectors, transform all samples into kernel space using a χ2−
RBF -kernel, and apply LFDA.

To compare two samples described by the same features,

both feature vectors have to be transformed into kernel space

and then projected to the k-dimensional LFDA-subspace

(evaluations show k = 40 performs best). These projections

can then be compared using the (squared) Euclidean distance,

resulting in a single distance score.

D. Score-Level Fusion
Score-level fusion allows to fuse information at an abstract

level. Therefore, it combines distance scores from different

matched feature vectors. The goal is to get a fused score that

is suitable to calculate a ranking. This is done in three steps:

First, the scores for all features are normalized to make them

comparable. The second step is to calculate the weight for

each feature. In the third step, the fused score is calculated as
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weighted sum. All these steps include only few and simple

calculations. Therefore, score-level fusion can be performed

very fast.

In order to apply score-level fusion, all scores have to

be in the same value domain. This is usually achieved

by normalizing the value range. In [5], we comparatively

evaluated eight state-of-the-art normalization approaches.

Most approaches need a huge amount of training data. This

data must be distinct from the data for metric learning

(see [5]). But to learn an adequate metric, we already used

all of the training data. Thus, we decided in favor of a

simple transformation-based approach, the z-normalization.

Therefore, after normalization, scores have zero mean and

standard variance in relation to the training data.

After all scores have been normalized to the same value

domain, they can be combined. In order to calculate the

fused score as weighted sum, a weight w is computed for

each feature by using a test set of normalized distance

scores. Common ways to calculate the weights are either

weighting all features equally, or calculating weights as

function of a performance measure derived from the genuine-

impostor distribution (see Fig. 4). Re-identification errors

are minimized, when the overlap of the two distributions

decreases.
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Fig. 4. Exemplary genuine-impostor score distribution (MSCR feature [6]
on VIPeR dataset [7]). The highlighted area, where genuine scores (distance
scores for image pairs that represent the same person) and impostor scores
(distance scores for image pairs showing different persons) overlap, will
produce errors (false positives (FP) and false negatives (FN)) when a
threshold is chosen at the intersection point of genuine and impostor scores
as marked.

In [5] we showed, that calculating weights for each feature

separately is suboptimal. In our scenario, all features are ex-

tracted from the same image. Therefore, we have additional

information about joint genuine-impostor distributions. To

make use of this information, we decided to formulate the

computation of weights as a pairwise optimization problem:

The weights w1 and w2 for two features define a vector

on which the scores of two features are projected to get

the fused score. W.l.o.g. these weights can be expressed as

k ·w1 = cos(φ) and k ·w2 = sin(φ), with φ being the angle

between the x-axis and the projection vector (see Fig. 5 for

visualization).

Then the fused genuine and impostor distributions are a

function of the marginal distributions (normalized scores)

and the angle of the projection vector φ. Therefore, finding

good weights is the task to find φ, where the overlap of

Fig. 5. Weighting formulated as optimization problem. The projection
vector (displayed as semi-transparent plane) depends only on φ. Notice,
that marginal probability densities are scaled at z-axis to visually highlight
the relationship to the joint probability density distributions.

the projected genuine-impostor score distribution is mini-

mized. For further details and experimental evaluation of our

method named PROPER (Pairwise optimization of projected

genuine-impostor overlap), we refer to [5].

Using a scenario-specific dataset captured with the robot,

PROPER assigned weights of 0.8657 to wHSV (with learned

metric), 0.1343 to MSCR, and eliminated LPB (with learned

metric) by assigning weight 0.0.

E. Track-based Identification

To decide which of the hypotheses represents the user, we

consider multiple observations. This reduces the amount of

re-identification errors drastically, due to low influence of

outlying low genuine and high imposter scores.

To achieve a multi-sample re-identification, we collect the

latest matching scores for each track and apply a probabilistic

framework to make the decision which track represents the

user. Therefore, we extract several indicators which each vote

with a probability pi that the track should be assigned to the

user and with (pi − 1) that it should not. For each track, we

calculate the probability that the majority of the indicators

vote for the assignment (e.g. for three indicators the track

score would be ptrack = p1 ·p2 · (1−p3)+p1 · (1−p2) ·p3+
(1−p1)·p2·p3+p1·p2·p3, i.e. either two indicators vote for the

assignment and one against it or all three indicators vote for

the assignment). Finally, we assign the user’s person ID to the

track with the highest score, if it is above a threshold. In the

case that this probability-score is near 1.0, we additionally

update the user template to consider changed environmental

conditions (see Fig. 2).

One kind of indicators verifies, if the observed scores are

similar to the user template. Therefore, for each score we

determine the probability that it is a genuine score. The

probability that a score is genuine, and thus represents a

match with the user template, can be calculated by

P (gen|si) = P (si|gen)
P (si|gen) + P (si|imp)

, (1)

where P (si|gen) and P (si|imp) are the probability densities

of the genuine and imposter distribution (see Fig. 4) at si. For

fast calculation, both probability density functions (PDF) are
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Fig. 6. Rank-corrected genuine and impostor PDFs for four sort scores
of a track, calculated from the particular original PDFs (darker, bold). The
four rank-corrected genuine PDFs specify in which value range (from left
to right) the best, 2nd-best, 3rd-best and worst of the four scores would
be expected if they were genuine scores. The four rank-corrected impostor
PDFs specify the value range in which the scores would be expected if they
were impostors. Example: The best of the four scores s1 is marked as blue
line, the others gray. If the PDFs were not corrected, Eq. 1 would suggest
that s1 is genuine with probability p = 0.84

0.84+0.11
= 0.88 (crosses).

However, the knowledge that this score is the best of four observations
changes the expectations. A genuine score will likely be observed within the
range specified by the leftmost genuine PDF and an impostor score by the
range of the leftmost impostor PDF. Therefore, the correct probability that
this score is genuine, calculated by Eq. 1, is only p = 0.275

0.275+0.415
= 0.40

(circles).

computed beforehand on a training dataset. This calculation

assumes each of the observations, and thus the scores, to

be independent, which does not hold for scores of the same

track, since they all belong to the same person. Therefore, for

each track we must consider the order of scores (see Fig. 6

for a descriptive example). To correct the PDFs for the sorted

scores s1, . . . , sk, . . . , sn, we calculate order statistics:

f
(m)
(k) (sk) = n · f (m)(sk) ·

(
n− 1
k − 1

)
· F (m)(sk)

k−1

·(1− F (m)(sk))
n−k, (2)

where f
(m)
(k) (sk) is the corrected probability density P (sk|m)

for the k-th best score sk with m being genuine or impostor,

f (m) is the original PDF, and F (m) is the original cumulative

probability function (CDF). The probability, that a sorted

score is genuine, can then be calculated by Eq. 1 using

the corrected genuine and impostor PDF (Fig. 6 exemplarily

visualizes the procedure for a track with four observations).
Beside the score-related indicators, we also add a rank-

related indicator. The probability that this indicator votes for

an assignment of the track to the user is reduced whenever

a score of this track is not the best match compared to

simultaneously observed scores of other tracks. Therefore,

for each track n score-related indicators and one rank-related

indicator are included in the voting.

IV. EXPERIMENTS

The evaluation of the developed person re-identification

approach is tripartite: First, we report the recognition rate

on a standard benchmark dataset to compare with state-

of-the-art approaches. Second, we evaluate re-identification

performance in the attended domain, by benchmarking on a

dataset that we recorded in a stroke rehab clinic within the

ROREAS project [8]. Last, we report results from live tests

with three probands in a clinic to evaluate the benefit of the

re-identification module for following and guiding users with

a robotic walking coach.

A. Benchmarking on VIPeR Dataset

To evaluate the performance of our approach, we first

examined the performance of all sub-components and then

compared the proposed person re-identification system to

state-of-the-art approaches.

First, we wanted to evaluate the performance of the pro-

posed algorithm on a standard benchmark dataset. Therefore,

we utilized the widely used and very challenging VIPeR

dataset [7]. It consists of 632 persons, with two images each,

taken from disjoint camera views, showing them under very

different angles and lighting conditions (see Fig. 7(a)). The

images are all normalized to a size of 128 × 48 pixels. To

obtain comparable results, we followed the 10-fold cross-

validation protocol of [6]. For each of the ten folds, 316

of the 632 available persons were chosen for testing. The

images of the 316 remaining persons were used for training.

Images of persons in test set from camera A represent the

gallery, while camera B provided the corresponding probe

images.

We made several modifications to the SDALF features

(see Sect. III-B) to speed up feature extraction, increase

recognition rates, and eliminate processing steps that cannot

be implemented on a mobile robot that simple (e.g. back-

ground subtraction). Tab. I shows the effect of evaluated

modifications. The listing shows, that

• the wHSV feature benefits from a partitioning in upper

and lower body as well as a consideration of symmetry.

However, static partitioning and symmetry lines do not

decrease performance significantly.

• a tri-linear interpolated full wHSV-histogram increases

recognition rates.

• the MSCR feature benefits from a foreground mask.

However, a static average person mask is even more

beneficial, because errors during extraction of the mask

that have a large influence on feature extraction, are

avoided.

• parameter tuning as well as metric learning improves

re-identification performance significantly.

TABLE I

EFFECT OF MODIFICATIONS ON FEATURES

modification nAUC (VIPeR)
none (original SDALF) 0.922
w/o partitioning, w/o symmetry (wHSV) 0.808
w/ partitioning, w/o symmetry (wHSV) 0.906
static partitioning and symmetry (wHSV) 0.917
histogram with interpolation (wHSV)

(static partitioning and symmetry) 0.925
no mask (MSCR) 0.921
static mask (MSCR) 0.927
cross-validated parameter tuning

marginal wHSV-histogram + MSCR 0.942
full wHSV-histogram + MSCR 0.944

additional metric learning
(full tri-linear interpolated histogram,
static partitioning, symmetry and mask,
cross-validated parameter tuning) 0.963

nAUC: normalized area under CMC curve

This shows, that the modifications help to improve re-

identification and eliminate the need for a foreground mask,
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TABLE II

COMPUTATION TIME

processing step time∗
one-time offline training

(metric learning) 1.19 s on VIPeR dataset [7]
feature extraction wHSV feature 2.881ms per person
feature extraction MSCR feature 7.775ms per person
matching wHSV 5.382μs per comparison
matching MSCR 62.726μs per comparison
score-level fusion < 1μs per comparison
sum 10 runs on VIPeR

10× training (316 persons) 11.9 s
10× 2× 316 feature extractions 67.3 s
10× 316× 316 matchings 68.0 s

147.2 s
baseline SDALF [6]

10 runs on VIPeR 43min
proposed approach with extended

feature set (48.440 dimensions)
10 runs on VIPeR 25min

∗ CPU: Intel Core i7-620 (2.66GHz)

which is favorably for a mobile robotic application. Addi-

tionally, Tab. II proves that the developed re-identification

module fulfills the real-time requirements listed in Sect. II.

Next, we wanted to compare the proposed method with

state-of-the-art approaches. Tab. III shows the performance

of the proposed method in comparison to state-of-the-art

methods listed in [12], [18], and [19] (for all methods

that were evaluated with different configurations, we only

report the best result). Additionally, Fig. 7(b) and 7(c) show

the Cumulative Match Characteristic (CMC) and Synthetic

Recognition Rate (SRR). It can be seen, that the proposed

real-time capable version of our re-identification algorithm

keeps up with the best state-of-the-art approaches. The SRR

shows, that the user will be identified with 95% probability

for up to six targets (= persons in front of the robot). This

performance suffices for our scenario of following or guiding

users through narrow corridors.

Note, that none of the state-of-the-art approaches achieves

real-time performance as defined in Sect. II. This is due the

feature extraction step. Calculating histograms on multiple

parts of the image in multiple color spaces, and extraction

of some of the textural features is very time consuming. The

performance closest to real-time is achieved by Rχ2 -LFDA,

which approximately needs 20 ms for feature extraction for

each person. This is twice the time our approach needs. The

performance gain of the non real-time capable version of the

proposed approach in comparison to Rχ2 -LFDA and Rχ2 -

MFA comes with full instead of marginal histograms and the

preprocessing of the training data for metric learning (see

Sect. III-C).

B. Benchmarking on a Clinical Dataset

To benchmark the scenario-specific re-identification per-

formance, we recorded a new dataset in the rehab clinic. Dur-

ing rush-hour times of two days, the robot frequently drove

through the corridor where patient’s walking exercises took

place. Images of nearby persons were automatically detected

and saved. Therefore, a total of 22,807 images, showing 207

different people, was collected. We manually eliminated false

and not properly aligned person detections. The remaining

TABLE III

COMPARISON TO STATE OF THE ART (VIPER DATASET)

CMC at rank 1 5 10 20

Proposed + additional features1 34.9 67.4 81.3 91.2
Rχ2 -MFA2 [18] 32.2 66.0 79.7 90.6

Rχ2 -LFDA2 [18] 32.3 65.8 79.7 90.9

SVMML3 [18] 30.1 63.2 77.4 88.1
Proposed (real-time capable)4 27.5 56.7 70.0 82.8
sLDFV5 [12] 26.5 56.4 70.9 84.6
KISSME6 [18] 25.8 56.2 70.1 82.9
Rχ2 -rPCCA2 [18] 22.0 54.8 71.0 85.3

Rχ2 -PCCA2 [18] 19.6 51.5 68.2 82.9

eSDC7 [19] 26.7 50.7 62.4 76.4
LFDA6 [18] 21.4 49.6 65.2 79.5
CPS8 [2] 21.8 45.0 57.2 71.0
eBiCov9 [11] 20.7 42.0 56.2 68.0
MCC10 [20] 15.2 41.8 57.6 73.4
SDALF11 [6] 19.9 38.9 49.4 65.7
PRDC10 [20] 15.7 38.4 53.9 70.1
PRSVM10 [14] 13.0 37.0 51.0 68.0
ITML10 [20] 11.6 31.4 45.8 63.9
ELF10 [7] 12.0 31.0 41.0 58.0
LMNN10 [20] 6.2 19.7 32.6 52.3

Methods sort by rank 5 performance.

Features:
1 full wHSV+RGB+HSV+CIEL*a*b*+YUV+LBP-Hist. on 6 stripes (48,440 D.)
2 marginal RGB+HSV+YUV+LBP-Hist. on 6 stripes (2,580 Dimensions)
3 marginal RGB+HSV+YUV+LBP-Hist. on 75 patches (32,250 Dimensions)
4 full wHSV-Hist. + MSCR (ca. 2,142 Dimensions, σMSCR = 16)
5 wHSV + MSCR + LDFV (ca. 73,894 Dimensions), PCCA metric
6 marginal RGB+HSV+YUV+LBP-Hist. on 341 patches (146,630 Dimensions)
7 wHSV + MSCR + SDC (ca. 201,768 Dimensions, σMSCR = 16)
8 wHSV + MSCR on 6 body parts (ca. 312 Dimensions, σMSCR = 16)
9 wHSV + MSCR + BiCov (ca. 67,002 Dimensions, σMSCR = 16)
10 marginal RGB+YUV+HSV-Hist + Schmidt+Garbor filters on 6 stripes (2,784 D.)
11 wHSV + MSCR + RHSP / LBP (ca. 227 Dimensions, σMSCR = 16)

11,034 samples were semi-manually labeled2. To complicate

re-identification, we eliminated similar appearances for each

person automatically by clustering. Each person, for which

at least two different views were available, was added to the

ROREAS dataset. It consists of 776 images showing 192

different persons with 2–10 views each. The dataset is very

challenging and covers all difficulties described in Sect. II

(see Fig. 7(d)).

Fig. 7(e) and 7(f) show the CMC and SRR curve of

our re-identification system in comparison to the SDALF

approach, that extracts the same features. It is visible, that

the modifications presented in Sect. III-B lead to a significant

improvement of the re-identification rate. However, the SRR

curve of our approach is considerably lower than on VIPeR.

That means, appearance-based person re-identification on a

robot (ROREAS) is far more difficult than re-identification

of pedestrians in multiple static cameras with disjoint views

(VIPeR). The SRR indicates, that recognizing the user within

a group of five people will only succeed in 81% of all cases,

using just a single observation. However, in our scenario,

we can use multiple observations and contextual information

to significantly increase the recognition rate. Therefore, the

2Labeling was assisted by automatic detection and tracking. Therefore,
for each track ID the person ID had to be assigned. This amount of training
data is sufficient to adequately learn distance metrics. This can also be
confirmed for other applications, that most often provide datasets with this
amount of training data. Additional experiments with more data did not
show significant improvements. However, if no dataset is available, labeling
this amount of images is quite labor intensive (approx. 12 hours).
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(a) Samples of VIPeR dataset
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(e) CMC (ROREAS dataset)
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Fig. 7. Re-identification performance on VIPeR (top) and ROREAS dataset (bottom). (a) Sample gallery and probe image pairs for VIPeR dataset [7].
(b, c) CMC and SRR curves for VIPeR dataset. (d) Challenging image samples of ROREAS dataset, which was recorded with a mobile robot driving
through the corridor of a stroke rehab clinic. The dataset is characterized by high inner class variance and small inter class variance for groups of similar
clothed people. (e, f) CMC and SRR curves for ROREAS dataset.

next subsection shall show the performance of the complete

system.

C. Evaluation of Following and Guiding in Live Tests

To evaluate the benefit for the robot to use a re-

identification module to resolve ambiguity in tracking, we

performed live tests in the rehab clinic, where the robot shall

be employed in the future. Over a period of six hours, the

robot followed and guided three probands though the corridor

of one ward of the clinic where later inpatients shall be

coached during their self-training. Fig. 8 shows a map of

the operational environment and the tree probands. Their

appearances cover typical clothing: dark/black, light/gray,

and colored clothes.

In each run, one of the probands was guided and followed

respectively by the robot as shown in Fig. 8 for a distance

of 400m. The probands could freely choose their route and

walking speed, but were instructed to behave like stroke

patients (i.e. no running). The behavior of the robot was

observed and manually corrected via a control tablet when-

ever the robot did not succeed. In these cases, the position

of the user was marked on the control tablet, and the robot

had to continue. We repeated guiding and following until

a pure driving time of one hour was reached in each case.

During this time, the robot guided the probands for an overall

distance of 2 km and followed the probands for 2.4 km.

Fig. 8. Map of operational environment. Center: Exemplary visualization
of re-identification where the three probands are around the robot.

To evaluate, which decision the robot would have made,

if it did not use visual re-identification, a reference approach

ran simultaneously. Whenever the track broke, it chose the

new track by spatial distance to last observation. However,

the robot ignored these decisions and behaved like the re-

identification module suggested.

Tab. IV shows the results for follow and guide. As can be

seen, the proposed person re-identification performed well

and helped the robot to decrease the number of mismatches

with other persons that would require manual correction.

A drawback of visual user recognition is the confusion of
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TABLE IV

RE-IDENTIFICATION PERFORMANCE IN LIVE TESTS IN A CLINIC

FOLLOW

run pers. hyp. stop-t stop-f fp-mm. pers.-mm. ref
1 15 748 2 0 3 (2/1) 1 2
2 13 701 3 1 4 (4/0) 0 3
3 14 262 2 1 0 1 1
4 11 772 1 0 0 0 1
5 8 241 1 0 2 (1/1) 0 3
6 6 275 0 0 0 1 0

sum 67 2999 9 2 9 (7/2) 3 10

GUIDE

run pers. hyp. stop-t stop-f fp-mm. pers.-mm. ref
1 8 386 1 1 1 (0/1) 0 1
2 13 465 0 2 2 (2/0) 0 1
3 10 847 0 0 0 0 0
4 5 247 0 1 0 0 0
5 12 154 0 0 0 0 1

sum 48 2099 1 4 3 (2/1) 0 3

LEGEND: pers: number of nearby persons while following the user for a distance

of 400m along the floor of a rehab clinic. hyp: number of assigned tracking IDs

for new person hypotheses (including valid false positive detections). stop-t: number

of correct stops requested by the re-identification module due to lost user (correct

behavior). stop-f: number of unnecessary stops requested by the re-identification

module (uncritical). fp-mm.: mismatches of user with false positive person detections

(lamps, and the like), in brackets: situation where robot could resolve situation due to

user cooperation (tolerable) and where it could not (critical). pers-mm.: mismatches

of user with other persons (critical). ref: reference method: mismatches of user with

other persons (critical).

the user with false positive detections. Manual intervention

was necessary three times, when the robot followed false

positive detections and could not resolve the situation by

itself. This happens if misaligned images showing walls or

false detections that were assigned to the track of the user did

appear after login in the enrollment phase. Then, the multi-

modal template consists of observations of the user and false

detections, that may match perfectly to later false detections.

Since this happens quiet often, our person detection module

should be improved further. Also, a fast visual tracking

algorithm [9] can help to validate detections over time.

The robot did very well in stopping when the user was

temporally not visible. The few additional stops are accept-

able.

At rush-hour times, where the reference approach fails

clearly, the visual re-identification performed very well. For

example, in the situation shown in Fig. 1, the robot had to

follow the proband on a zigzag course through seven people.

The user was traced almost through all people, but then he

was lost during an evasive maneuver. The robot immediately

stopped as desired (highlighted in green in Tab. IV, run 4).

Real-time requirements were always met, and the re-

identification module used only 3% of the CPU on average.

V. CONCLUSION

We implemented a person re-identification module that

runs on a mobile robot to recognize its user in real-time,

using only few amount of the robot’s processing resources.

It is robust to image blur, varying resolution and illumination,

occlusions, and people with walking aids. State-of-the-art

performance is confirmed on the standard VIPeR benchmark

dataset, as well as on a scenario-specific dataset recorded

at a stroke rehab clinic. Additionally, we tested the re-

identification performance live in the addressed operation

area during regular day-time routines. During the two hours

of following and guiding probands on a track of 4.4 km, the

robot came in close contact with 115 other people. Overall,

the user was mismatched only three times. Even at rush-

hour times, the robot was able to reliably follow and guide

probands through the corridor of the clinic. The current

performance is acceptable for the upcoming first tests with

real patients, when an observer can correct the rare mistakes

via a control tablet. For autonomous operation, however, the

re-identification performance must be improved further.
Therefore, in our future work, we plan to fuse the proposed

visual approach with a non-visual identification, based on

a device carried by the patient that can be located by the

robot via stereo ultrasound. Additionally, we plan to add

more contextual information like predicted walking routes.
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and rotation invariant texture classification with local binary patterns,”
TPAMI, vol. 24, pp. 971–987, 2002.

[14] B. Prosser, W. Zheng, S. Gong, and T. Xiang, “Person re-identification
by support vector ranking,” in BMVC, 2010.

[15] M. Volkhardt, C. Weinrich, and H.-M. Gross, “People tracking on a
mobile companion robot,” in SMC, 2013, pp. 4354–4359.

[16] C. Weinrich, C. Vollmer, and H.-M. Gross, “Estimation of human
upper body orientation for mobile robotics using an svm decision tree
on monocular images,” in IROS, 2012, pp. 2147–2152.

[17] C. Weinrich, T. Wengefeld, C. Schroeter, and H.-M. Gross, “Generic
distance-invariant features for detection of people with walking aid in
2d range data,” in RO-MAN, 2014, pp. 767–773.

[18] F. Xiong, M. Gou, O. Camps et al., “Person re-identification using
kernel-based metric learning methods,” in ECCV, 2014, pp. 1–16.

[19] R. Zhao, W. Ouyang, and X. Wang, “Unsupervised salience learning
for person re-identification,” in CVPR, 2013, pp. 3586–3593.

[20] W. Zheng, S. Gong et al., “Person re-identification by probabilistic
relative distance comparison,” in CVPR, 2011, pp. 649–656.

 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Hamburg, Germany, pp. 3600-3607, 2015




