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Abstract— This work introduces the IRON keypoint detector
and the IRON descriptor which enable high-speed and high-
accuracy alignment of 3D depth maps. Instead of using raw
point values for storing 3D-scenes, all algorithms were designed
to operate on Normal Distribution Transforms (NDT), since
NDT-maps provide a highly memory-efficient representation
of depth data. By taking into account surface curvature and
object shape within NDT-maps, patches with strong surface
variability can be recognized and described precisely. In this
paper, the whole feature extraction process, as well as descriptor
matching, outlier detection, and the final transform calculation
between NDT-maps is elaborated. The presented technique is
particularly insensitive to an initial offset between both maps,
has a high robustness, and it achieves more than 75 NDT-map
alignments per second (including complete memory allocation
each time as well) in two large publicly available depth datasets
while using only a single core of a modern Intel i7 CPU.
Even though the main focus of this work was placed on the
proposed IRON registration algorithm, two specific applications
of this NDT-matching approach are outlined in the second
part, namely robot pose tracking and NDT-one-shot localization
within densely furnished domestic environments.

I. INTRODUCTION

Localizing itself within the environment is – besides map

building and path planning – one of the most important

capabilities of a mobile robot. It therefore has been exten-

sively studied, and the Adaptive Monte Carlo Localization

(AMCL1)[1] in combination with 2D laser range finders

evolved to the de facto standard. However, in real-world

applications there are still accuracy issues that arise in certain

locations, such as densely furnished domestic environments.

In these places, localization can greatly benefit from 3D

information obtained by depth cameras, which provide much

more information about the structure of local surroundings.

However, since 3D depth sensors produce a huge amount

of data, an appropriate representation is needed for pro-

cessing this quantity efficiently. Therefore, we use Normal-

Distribution-Transform (NDT) maps as they provide a com-

pact representation of 3D structure by storing the probability

of observing a surface at a certain point in space [2].

As shown in [3], NDT-maps achieve a significantly higher

accuracy than voxel maps when the same cell resolution is

used.

In this paper, we present a novel Interest point descriptor for
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Fig. 1: Two NDT-maps (blue and green) from a corridor scene were
registered using the IRON-algorithm. Note that only a small overlap is
available for matching.

RObust NDT-map matching (IRON) that allows to recognize

and describe normal distribution patterns within one map, to

find their counterparts inside a different map, and to match

them accordingly. This enables fast and accurate NDT-map

registration (see Fig. 1), and we show that our technique

is therefore well suited for robot localization using 3D

sensors. Basically, two major variants of robot localization

are distinguished: global localization and pose tracking.

Global localization is considered the task of finding the pose

of the robot without any prior knowledge except a given

global map. Once this pose has been found, localization

becomes the objective of maintaining an estimate of the

pose, which is referred to as pose tracking [4]. To perform

global localization, the robot would normally explore its

environment by driving around. This, however, poses the risk

of moving into areas where it is not allowed to go. Therefore,

we introduce a challenging variant of global localization here

that we name NDT-one-shot localization. It is the task of

finding the robot’s pose using only a single sensor reading

which is obtained while the robot is standing still or rotates

in place.

This paper is organized as follows: The next section out-

lines the current state-of-the-art in terms of 3D point cloud

registration, NDT-map registration, and localization based

on NDT-maps. In sections III-V, we describe our keypoint

detector, the descriptor, and the map matching technique in

detail. To show potential applications, a pose tracking and

a one-shot localization method are described in section VI.

In section VII, we show several results and analyses of the

presented approaches and finally conclude with an outlook

for future work.

II. STATE-OF-THE-ART IN 3D-MAP REGISTRATION

The task of 3D point cloud registration has already been

addressed in multiple publications, such as the ones about
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NARF-, SURE-, ISS-, FPHF-, 3DSC- and SHOT-features

[5][6][7][8][9][10]. However, a major reason for the use of

NDT-maps is their efficient resource utilization while at the

same time much of the structural information available from

the scene is preserved[2][3]. This special 3D representation,

in turn, needs matching techniques that can handle the

contained multivariate normal distributions. It was suggested

by Stoyanov et al., to use a strategy similar to Iterative

Closest Point (ICP) for NDT-map registration, with the

distance metric chosen to be the L2-norm between Gaussian

Mixture Models [11]. This approach yields good results, but

was mainly tested with Velodyne LIDAR devices in large

scale environments. Since the Velodyne has a viewing range

of 360◦, successive NDT-maps have a wide overlap available

for matching.

Saarinen et al. successfully combined this ICP-based match-

ing principle with the well established Monte Carlo Local-

ization (MCL) to form a localization technique that was used

within warehouses [12].

Our work, however, is focussed on robots for home en-

vironments, equipped with sensors (Microsoft Kinect, Asus

Xtion) with a much smaller viewing angle and shorter visi-

bility range, respectively. Also, due to our robot’s small di-

mensions [13][14], major changes in the sensor’s orientation

are to be expected within short time frames. This implies,

that a registration algorithm – processing depth data from

small scale environments – must be particularly insensitive

to a large initial displacement and rotation between two

successively captured 3D maps. A high processing speed is

especially helpful as well, since small rooms and the Kinect

sensor’s limited viewing range require short update intervals.

Therefore, it was of utmost importance for us to design

a fast registration system while maintaining state-of-the-art

registration accuracy and a high robustness.

Apart from the used data structure (point clouds vs. NDT-

maps), IRON has some major conceptual differences com-

pared to current point-based methods. Most of them (ISS,

SURE, SHOT, FPFH, 3DSC to some extend) build a local

frame of reference around each keypoint in order to find

distinct feature descriptors. This, in turn, requires the direc-

tion (positive or negative sign) of surface normal vectors

to be known beforehand. A common approach is to flip all

normals into the direction of the depth sensor. If, however,

a depth scene was captured from two different locations,

normal directions will be different as well; and so will the

descriptors they form. To avoid this potential source of error,

IRON does not rely on the correct sign of surface normals,

it will give equal results no matter where the scene was

captured from.

A similarity to SURE can be seen in the way salient regions

are identified. Both IRON and SURE utilize entropy compu-

tations within their keypoint detectors [6][15], however, the

way this is done is quite different. SURE searches for spikes

in the local surface entropy, while, for efficiency reasons,

IRON takes a part of the descriptor itself and computes the

normalized histogram entropy for this part (see Sec. III),

which is then used to mark whole patches within the NDT-

map as keypoints.

Regarding one-shot localization, research has mainly fo-

cussed on vision-based strategies [16] which, however, are

computationally expensive. NDT-maps might provide a fast

alternative for this challenge.

III. KEYPOINT DETECTOR

In order to align two NDT-maps, we propose a technique

that detects local regions of salient surface curvature and

characterizes those areas with high distinction. Once all

keypoints and their corresponding descriptors have been

created separately for each map, they will be matched and

subsequently searched for outliers.

NDT-maps are composed of spatially disjoint NDT-cells,

where every NDT-cell contains a three dimensional multi-

variate normal distribution N (µ,Σ) parameterized by its

mean vector µ and covariance matrix Σ, representing the

probability p(x) to observe a surface for any given point x

within that cell. Therefore, if the distribution is flat but not

needle-shaped, the eigenvector corresponding to the smallest

of the three eigenvalues of Σ gives a good approximation of

the local surface normal.

The proposed keypoint detector computes these surface

normals and ignores cells with a high ratio λmin/λmed

between the smallest eigenvalue and the medium eigenvalue,

to reject spherically shaped NDT-components. Additionally,

cells are only permitted if they have a high ratio λmed/λmax,

to suppress needle-shaped distributions.

After the surface normals for every suitable NDT-cell

have been computed, the keypoint detector marks those

cells, whose surrounding volume within a radius ǫ implies

a high amount of structural information, as expressed by

strongly varying surface normal orientations. The intention

is to speed up the following descriptor matching process by

only focussing on parts of the map that carry most of its

curvature information. At the same time, this favors keypoint

descriptors that represent very distinct features within the

scene and reduces their overall ambiguity, which, in turn,

improves the matching quality later on. Any cell at the center

of a flat wall, for instance, will be almost impossible to

detect inside other NDT-maps, as there is no way to reliably

differentiate between flat surfaces without color information.

To detect keypoints, the following algorithm is repeated

for each NDT-cell Ni within the NDT-map. This currently

processed cell Ni is called base cell in the following:

• Create a matrix A with m rows, n columns, and

initialize all elements to zero.

• Find all neighboring NDT-components Nk ∈ K within

radius ǫ around the base cell Ni. This can be efficiently

implemented by means of a k-d-tree data structure.

• For each neighbor Nk, compute the Euclidean distance

d = ||µk−µi||2 between its mean vector µk and µi of

the base cell and determine the smallest angle δ among

the normal vectors of Nk and Ni, as outlined in Fig. 2.

• For each pair (d, δ), increment the matrix element ap,q
of matrix A. The indices p, q are computed as given in

Eq.(1) and Eq.(2).
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• After all Nk ∈ K have been processed, every single row

p, as well as the matrix A itself, must be normalized.

• Finally, the entropy H is calculated and normalized as

shown in Eq.(3). If the result exceeds a certain thresh-

old, the base cell is classified as keypoint accordingly.

The reasoning behind this procedure is described in detail

below. Matrix A can be seen as a two-dimensional histogram

that separates the sphere with radius ǫ around the base cell

into spherical shells, each one identified by the row number

p, (1 ≤ p ≤ m). All neighboring cells with a similar distance

d to the base will therefore reside in the same matrix row.

The index q, (1 ≤ q ≤ n), however, is a discrete measure of

the angle δ between the normal vectors of Ni and Nk.

Fig. 2: Computation of a (d, δ)-tuple between the base NDT-cell and a
neighbor cell Nk ∈ K

It is important to note that the sign of an eigenvector

is random. Hence, from a local point of view, it cannot

efficiently be determined whether the computed NDT-cell’s

normal vector is pointing up or down. Also, for efficiency

reasons, we do not create a local reference frame for each

descriptor, like it is done in most point-based methods (e.g.

FPFH [8]). The value δ is therefore defined as the smallest

possible angle between two NDT-normals, thereby limiting

its range to: 0 ≤ δ ≤ 0.5π rad. In order to assign every (d, δ)-
pair to a certain location inside matrix A, a discretization

step follows:

p = 1 + ⌊m · d2/(ǫ2 + c)⌋, c = 0.000001 (1)

q = 1 + ⌊n · δ/(0.5π + c)⌋, c = 0.000001 (2)

Variable c only prevents overflowing the matrix indices

and should be as small as possible. Using the squared

distance d2 in Eq. (1) for discretization gives spherical shells

a larger volume if they are close to the base. This ensures

that the corresponding first matrix rows will not be sparsely

populated. After all Nk ∈ K neighbors have been processed,

each row p is divided, firstly, by the amount of (d, δ)-tuples

it contains and, secondly, by the number of non-empty rows

inside A, thereby confining all matrix elements to the range

0 ≤ ap,q ≤ 1. At this point, A gives a good impression of

the local surface curvature around its base. The following

example (m = 3, n = 4) shows its appearance, assuming Ni

is located at a flat wall:

A =







0.33 0 0 0
0.33 0 0 0
0.33 0 0 0







← distance range 1

← distance range 2

← distance range 3

As expected, all angles are close to zero. However, for

base cells at curved surfaces, A will be filled more evenly.

To distinguish between those cases, we compute the entropy

over all matrix elements and presume, they are different

symbols zp,q from a memoryless information source Z with

a certain probability of occurrence denoted by entry ap,q .

H = −
m
∑

p=1

n
∑

q=1

sp,q with sp,q =

{

0 : ap,q = 0

ap,q log2 ap,q : ap,q > 0

(3)

Hmax = log2(mn) (4)

The maximally possible entropy Hmax is limited by the

number of places inside matrix A. This way, the ratio

H/Hmax becomes 1 if all (d, δ)-tuples are uniformly dis-

tributed. Whenever the normalized entropy for a given NDT-

base exceeds a certain threshold, the cell is classified as

keypoint accordingly. An example is shown in Fig. 3.

Fig. 3: NDT-map (blue) of a corridor scene. Cells, identified as keypoints,
are highlighted in green. The radius ǫ was set to 0.2 m. It is clearly visible
that NDT-cells inside curved surface areas are more likely to be classified
as keypoints.

IV. KEYPOINT DESCRIPTOR

After the keypoints have been extracted, they need to

be described precisely in order to identify corresponding

keypoints within different NDT-maps. One can show that

the previously constructed matrix A is invariant to rotation,

as it encodes its close environment in terms of the centrally

located base cell. This is an important prerequisite for com-

paring maps later on that have been captured from different

locations. Owing to this property, matrix A already forms

the first part of the final keypoint descriptor. This is also a

computationally efficient strategy, since existing data can be

reused without modification. In order to store information

about the shape of the scene around the base cell Ni, a

different matrix S is generated. A and S are formed in

a similar fashion, moreover their dimensions are identical.

However, while δA is determined as smallest positive angle

between the surface normals, δS will rather be computed

using the normal vector of the base and the direction vector

from µi to µk, where µk denotes the mean vector of a

neighboring distribution Nk within radius ǫ around Ni, as

shown in Fig. 4.

Again, each Nk ∈ K around Ni will produce a (d, δ)-pair

that becomes discretized accordingly and finally increments

matrix element sp,q . Afterwards, matrix S is normalized the
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Fig. 4: Computation of a (d, δ)-tuple to be inserted into shape matrix S

same way it was previously done with matrix A, thereby

giving all distance rows equal weight and ensuring all matrix

elements sum up to 1. The complete descriptor D now

encodes the local surface curvature and the shape of the

scene around a keypoint as well as the base-cell’s mean

vector µi and the number of incorporated neighbors k:

D = {A,S,µi, k}. It should be noted that whenever the

location of a descriptor is mentioned below, this refers to

the mean vector µi of its base NDT-cell Ni.

V. DESCRIPTOR MATCHING AND OUTLIER DETECTION

Matching of the descriptor lists from two different NDT-

maps is realized via approximate nearest neighbor search

inside the (m × 2n)-dimensional feature space using the

L2-norm metric. In particular, the matching algorithm com-

putes crosswise distances between all descriptors of both

maps and finally selects pairs that fit best (see [7], Sec.

3.2. for a detailed explanation). The result is a set M =
{(Da1, Db1), (Da2, Db2), ..., (Dan, Dbn)} that combines de-

scriptors from two different maps as tuples, which all sepa-

rately form a hypothesis about how both NDT-maps may fit

together. Due to similarities between different parts of the

scene, it is likely that some of the matches inside M are

erroneous. Actually, depending on the chosen NDT-cell size,

the conversion from point clouds into NDT-maps inevitably

leads to low-pass filtering the data. This, in turn, puts a

limit on the expressiveness a single descriptor can have.

Hence, before the final map-transform can be computed, an

outlier detection step is mandatory. For this purpose, we

implemented the RANSAC algorithm using six degrees of

freedom (x, y, z, roll, pitch, yaw). After a fixed number of

RANSAC-iterations, the result is an outlier-free descriptor

set, which can be used to compute the correct transform be-

tween both NDT-maps, e.g. via Gauss-Newton optimization.

Examples are shown in Fig. 5 and 6.

VI. APPLICATION TO LOCALIZATION

Due to the keypoint detection stage that filters unnecessary

NDT-cells, recycling of matrix A, k-d-tree data structures

and the possibility to cache previously computed descriptors,

the proposed algorithm has a high processing speed (Sec.

VII-C). Therefore, it is well suited for a Monte Carlo

Localization approach with short update intervals.

A. IRON-MCL

The Monte Carlo Localization (MCL) is a technique

to track the pose of a mobile robot while it moves and

Fig. 5: Corresponding descriptors from both NDT-maps have been connected
by red lines. The 3D scene shows parts of a couch.

Fig. 6: Based on the outlier-free tuple set M , the final map transform was
obtained as best fit in the least-squares sense.

continuously senses its environment [17]. It is realized by

means of recursive Bayesian estimation and uses a set of

particles St =
{

(x
[i]
t , w

[i]
t )|i = 1, 2, ..., N

}

and a reference

map of the scene to assign each pose-hypothesis xt an

importance weight wt based on sensor measurements; in

case of the suggested IRON-MCL, particle verification is

implemented through feature-based NDT-map matching.

As a first step, the global reference map has to be created.

This can be achieved by manually navigating the robot inside

the area of interest and at the same time running an NDT-

SLAM-framework [18] that gradually inserts new NDT-maps

and odometry data and finally delivers a global NDT-map of

the environment. The actual pose tracking is consistent with

the original (A)MCL algorithm [1]. We start by spreading

particles normally distributed at the presumed start position

of the robot within the map. The following steps are repeated

afterwards:

• The robot moves a specific distance or rotates a certain

angle, after which an update step is triggered.

• All particles are then handled by the motion model to

take into account the robot motion since last update.

• At this point, a fresh NDT-map is captured and its

keypoint descriptors are computed.

• With the estimated posterior distribution of the particles,

it is possible to guess the current pose of the robot,

thereby moving the new NDT-map to its assumed

position in world coordinates.

• Now, precomputed descriptors from the global NDT-

map are selected if they are within a certain radius

around the current local map.

• Descriptor lists from both NDT-maps are then matched

and subsequently searched for outliers.

• The importance weight w
[i]
t of each particle is deter-

mined by placing the current NDT-map according to
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pose hypothesis x
[i]
t and computing a fitness score c

(Eq.5); this value can be considered an approximate

probability from the observation model and is assigned

to w
[i]
t accordingly.

Score c for two NDT-maps is found by iterating all de-

scriptor tuples (Dai, Dbi) ∈M and computing the Euclidean

distance between them. Parameter ρ affects, how eagerly the

MCL-particles converge:

c =
1

|M |

|M |
∑

i=1

exp−ρ||µai − µbi||2 (5)

B. One-Shot-Localization

A special challenge emerges if the current robot pose

is completely unknown. This can simply be the case after

switching the machine on, or due to severe localization

errors. However, as the robot’s position is uncertain, ob-

stacle avoidance is strongly impaired. Therefore, the robot

shouldn’t have to move in order to identify its real location.

We propose a technique, based on the previously explained

feature-based NDT-matching that can determine the sensor

pose inside a given global NDT-map based on a single NDT-

snapshot. The algorithm is as follows:

• An NDT-map from the current (unknown) pose of the

robot is captured and keypoint descriptors are computed

accordingly.

• The global NDT-map is split into fragments, which will

then be independently matched with the current local

NDT-map; the RANSAC outlier detection is executed

each time as well.

• Subsequently, a special normalized inlier ratio r is

computed for all pairings (see Eq. 6) and evaluated

afterwards.

r =
|M |

max(|DA|, |DB |)
(6)

Here, |M | denotes the number of inliers after RANSAC

has finished. |DA| and |DB | represent the unfiltered amounts

of keypoints found in map A and B, respectively. The

reasoning behind this equation is as follows: If both maps

would fit perfectly together, they would have a lot of key-

points in common as well as many correct matches. Hence,

the inlier set would constitute a large proportion of the

maximally possible amount of matches. Maps with little

correspondence, however, will have a rather small inlier set

compared to max(|DA|, |DB |), and the ratio r will be low.

The best fitting global NDT-fragment will be selected as the

one with the highest value r that is larger than an absolute

threshold α and larger than the second best score times β.

This way, the algorithm can find out if the local NDT-map

has a clear favorite or whether all fragments fit equally well.

If no distinct winner can be found, the robot should rotate a

bit and try it again.

VII. RESULTS

A. Comparison with State-of-the-Art

In order to provide objective reference regarding

registration quality and performance of the proposed IRON

registration algorithm, we used publicly available datasets

for this benchmark [19]. In particular we used the datasets

“fr2/pioneer slam” and “fr2/pioneer slam2”, as they both

show a realistic robot drive through a scene with a variety

of different shapes and objects and sufficient overlap between

successive depth images (taken with a Kinect depth camera).

Considering that accurate ground truth poses for the depth

sensor are also given, the datasets are perfectly suited for a

comparison of different registration methods.

In preparation, all depth images were converted into NDT-

maps and point cloud files (see Fig. 7) and associated with

their corresponding ground truth sensor poses.

Fig. 7: NDT-map and point cloud, both extracted from the same depth image.

The registration benchmark was implemented as follows:

Each NDT-map/point cloud is registered with a map which

is t steps ahead of time. The parameter t directly influences

the overlap that is available for matching. Therefore, the

strongest overlap as well as the best registration scores are

to be expected if t equals 1. This way, every map would be

matched with its direct temporal successor.

One of both registration partners is now randomly displaced

up to 4m away from its ground truth position and assigned

a random orientation as well. The registration algorithm,

which is currently tested, tries to realign both maps and

the resulting transform is compared with the original ground

truth pose of the displaced map. We defined an alignment

to be successful, if the final translational error was below

5 cm and the rotational error around each axis below 5◦.

This process is then repeated 9 times for each pair of

NDT-maps/point clouds. The following methods have been

compared:

• Method A: IRON with keypoint detection enabled.

• Method B: IRON without keypoint detection (all IRON-

descriptors will be available for matching).

• Method C: Iterative Closest Point, since it is one of the

most widely used algorithms for point set registration.

• Method D: FPFH without keypoint detection. According

to [20], the Fast Point Feature Histograms (FPFH)-

descriptor has a very good registration quality and a

relatively fast processing speed.

• Method E: FPFH with ISS keypoint detection. The In-

trinsic Shape Signatures (ISS)-keypoint detector yields

keypoints with high repeatability and was the fastest in

a comparative evaluation of 3D keypoint detectors [21].

• Method F: FPFH without keypoint detection. Applied

to point clouds that were down-sampled to resemble the

size of NDT-cells.
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• Method G: 3DSC with ISS-keypoint detection. 3DSC

was chosen, since it does not create a unique frame of

reference [9], which is also the case for IRON.

• Method H: 3DSC without keypoint detection. Applied

to point clouds that were down-sampled to resemble the

size of NDT-cells.

Except for the proposed IRON-registration, all other

matching techniques were implemented by means of the pop-

ular point cloud library [22], and all search operations within

point clouds were performed via k-d-tree data structures. The

parameters were tuned in order to get the best registration

quality for this benchmark, they are as follows:

• Down-sampling of the input point clouds to contain no

more than one point per cell within a 0.01m×0.01m×
0.01m voxel grid (C, D, E, G), or 0.1 m×0.1 m×0.1 m
(F, H).

• Computation of surface normals for every point from

both clouds, considering its 10 nearest neighbors.

• ISS-keypoint computation (radius for non maximum

suppression: 0.04 m, radius for salient regions: 0.08 m)

(E, G).

• Descriptor computation (D, E, F, G, H) (feature radius

for D, E, G: 0.08 m, feature radius for F, H: 0.5 m)

• Descriptor matching is done via approximate nearest

neighbor search inside the descriptor space.

• A RANSAC-based outlier rejection technique is applied

(threshold: 0.05 m), the number of iterations for E, G

is set to 1 000 and for D, F, H to 10 000, as the latter

cases will potentially need to handle a larger proportion

of outliers.

• The final transform for map alignment is computed from

the remaining set of correspondences.

3DSC was not tested on resolution of 0.01m without

keypoint detector, due to excessive computation time. ICP

is simply applied to the down-sampled point clouds until

convergence. Parameters for the IRON-registration algorithm

were chosen in a similar fashion whenever possible; they are

summarized hereafter:

• The NDT-cell size is set to 0.1 m× 0.1 m× 0.1 m.

• The radius of the spherical support region around a base

cell is set to ǫ = 0.5m (Sec. III).

• Matrices A and S each have 3 rows and 3 columns,

therefore the descriptor D consists of m × 2n = 18
float elements (Sec. IV).

• The RANSAC-based outlier detection stage performs

1 000 iterations and the inlier threshold is set to 0.05 m.

• For Method A the entropy threshold for classifying

keypoints is set to 0.6, for Method B it is 0.0, hence, all

NDT-cells are considered keypoints and will be used for

descriptor computation and matching accordingly (Sec.

III).

Interestingly, the selection of the IRON feature radius

as well as the sizes of A and S (within sensible limits),

had only minor impact on registration quality. We found

the following parameters to provide an especially beneficial

trade-off between registration accuracy and processing time:

(m = 3, n = 3, ǫ = 0.5m/0.6m), (m = 6, n = 6,

ǫ = 0.5m/0.6m). Nevertheless, there is a wide range of

parameters for IRON that give good results.

In Fig. 8, benchmark scores are now plotted depending on

parameter t, with ∆t = 1 corresponding to about 50ms
delay between consecutive depth images from the given

dataset. The larger t, the less overlap on average was avail-

able for matching. The vertical axis shows the percentage of

successful map alignments that were achieved using a certain

registration method.

Fig. 8: Registration success rates in percent. High values correspond to a
high amount of successful registrations. The best results (Method A and
B) in both benchmark datasets were achieved using the IRON-registration
algorithm.

For each method, 99 300 registrations were executed. The

proposed IRON-registration algorithm achieved a success

rate of more than 65% in both datasets when t was 5, and it

exhibited good registration performance when the available

map overlap was gradually reduced. It should be noted that

most of the maps for which the IRON-registration failed,

showed the ground or other flat surfaces, making it impossi-

ble to extract unique descriptors. When the IRON-keypoint

detection was enabled, map matching was more than three

times faster (Sec. VII-C), but registration quality was only

slightly impaired. This shows that the detected NDT-interest

points captured most of the obtainable information from the

scene. Registration quality was worst for ICP, which can be

attributed to the severe displacement between map pairs. The

tested descriptor-based alignment techniques, however, were

not susceptible to an initial offset or rotation and, hence,
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are better suited for the matching of depth data from Kinect

sensors with a small viewing range.

B. Further registration examples with high difficulty

Obviously, less NDT-map overlap leads to fewer matches

and potentially more outliers. To visualize registration perfor-

mance in borderline cases, three NDT-map pairs with strik-

ingly small overlap were registered, yet the IRON algorithm

achieved correct alignment for all of them (see Fig. 9).

C. Registration Speed

The whole algorithmic design was kept as simple as pos-

sible and directed towards speed. Besides the assessment of

registration quality in section VII-A, the average processing

time of all methods was measured. This includes complete

memory allocation and complete initialization from scratch

for every single map registration procedure. All tests were

done on a single core of an Intel i7-4770 CPU. See the

following table (Tab. I) for average matching times of a sin-

gle map-pair and the corresponding amount of registrations

that could be performed within one second. Each algorithm

executed 99 300 registrations for this evaluation using the

benchmark datasets discussed in section VII-A.

TABLE I: Average registration times for all evaluated methods. IRON was
by far the fasted of the tested algorithms.

Algorithm One registration[ms] Matches per second[s−1]
A) IRON w. kp. 13 76.9

B) IRON no kp. 45 22.2

C) ICP 2544 0.4
D) FPFH no kp. 10558 0.1
E) FPFH w. kp. 5417 0.2
F) FPFH 0.1 m. 226 4.4
G) 3DSC w. kp 4661 0.2
H) 3DSC 0.1 m 2173 0.5

D. Accuracy Estimation of the IRON-MCL

As this work is primarily built around the IRON-

registration itself, an exhaustive evaluation of the proposed

localization algorithms would be beyond the scope of this

paper. However, to give an estimate of the localization

accuracy to expect, we used an NDT-SLAM-framework to

create a global reference NDT-map of a large living room

and to obtain the robot trajectory as perceived by SLAM.

This trajectory is consistent with the created reference map

and can therefore be used to evaluate the MCL algorithm.

Figure 10 now shows the position error as Euclidean distance

between the SLAM-trajectory and the IRON-MCL prediction

at equal time steps.

E. Estimated Performance of the One-Shot Localization

In order to confirm proper functioning of the one-shot

localization, a large living room was mapped and used as

reference. Twentyfive random NDT-maps captured within the

same scene (but from different locations) were then used for

global localization (see Fig. 12). It was also noted whether

the algorithm itself accepted a certain map as positive match

(Tab. II); parameters were set to: α = 0.12, β = 2.0. When

the same 25 samples were tried to be fit into a reference map

from an unknown living room, the algorithm automatically

Fig. 10: Position error between SLAM-trajectory, and IRON-MCL-trajectory
based on sensor recordings from a drive through a living area. A single time
step corresponds to about 2 cm driven distance.

Fig. 11: This time, the robot was manually displaced 1m at time step 140
and had to recover from this induced localization error.

rejected every single local map, in spite of the similarity

between both environments.

TABLE II: Evaluation of the NDT-one-shot localization. In a large living
area, twentyfive randomly captured NDT-maps were localized inside the
global reference NDT-map.

Successful matches 16
Matches discarded autonomously 9

False positive matches 0

Fig. 12: A small NDT-map (red) was seamlessly aligned with the global
reference (blue) using the proposed one-shot localization algorithm.

VIII. CONCLUSIONS AND FUTURE DEVELOPMENT

This paper introduced the IRON interest point detector and

the IRON descriptor and illustrated how they can be used to

align NDT-maps with high accuracy and speed. Contrary to

Iterative Closest Point-based approaches, the initial offset

between the maps had no effect on registration quality, as

was confirmed in section VII-A. Moreover, using publicly

available depth-datasets we compared IRON to state-of-

the-art methods for point cloud registration and found its

success rate to be constantly higher than the success rates

of all other tested algorithms, even when the available map

overlap for matching was severely reduced. We attribute this

result mainly to the fact that IRON descriptors always have
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(a) (b) (c)

Fig. 9: Accurately registered NDT-map pairs, in spite of very little overlap.

the same appearance, independently of the sign of surface

normal vectors (Sec. III). The other tested algorithms build

local reference frames, and this makes a normal disam-

biguation step mandatory, which must be consistent among

different maps. Additionally, due to the spatio-temporal low-

pass filtering that happens when point values are converted

into NDT-cells of discrete size, IRON is very resistant to

clutter.

Due to several optimizations and design considerations with

an eye towards processing speed, an average map registration

with complete memory allocation only took 13ms (Sec. VII-

C). This makes IRON well suited for real-time applications.

One reason is, that the resolution of NDT-maps is typically

quite coarse, hence, few elements have to be processed.

Furthermore, IRON reuses the keypoint data structure as part

of the descriptor, and no local reference frames need to be

computed during the description process.

Altogether, for the tested realistic depth datasets, which are

composed of more than 9 900 depth images, the proposed

IRON-registration algorithm showed superior registration

quality and a processing speed, which is several orders of

magnitude faster than current state-of-the-art point cloud

registration algorithms.

Later in this work, it was shown how feature-based NDT-

matching can be used for pose tracking, with an approximate

position error below 5 cm, once the MCL-particles have

converged (Sec. VII-D). Additionally, this method displayed

good ability to recover from (induced) localization errors, as

was shown in Fig. 11. In order to obtain the robot’s pose

inside a known map but without any prior knowledge of its

actual position and orientation, a technique was elaborated

that registers the current NDT-map from the robot’s field of

view with a global reference in one shot. In the following

test, using NDT-data from two different living areas, its basic

functionality was confirmed. In addition, it could be seen that

the algorithm either returned an exact match or automatically

discarded the current NDT-sample if no distinct counterpart

could be found. Hence, we did not detect any false positives

(Sec. VII-E).

Future work must be dedicated to comparing the proposed

localization techniques with the current state-of-the-art in

terms of localization accuracy and speed on different publicly

available benchmark datasets. Also, IRON is going to be

implemented in an NDT-SLAM-framework, which will be

evaluated as well.

The C++ source code of the IRON keypoint detector and

the IRON descriptor, together with the complete regis-

tration algorithm can be downloaded at: http://www.

tu-ilmenau.de/neurob/data-sets-code/ .
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