
R2D2 Reloaded:
Dynamic Video Projection
on a Mobile Service Robot

Ronny Stricker, Steffen Müller, Horst-Michael Gross
Neuroinformatics and Cognitive Robotics Lab,

Technische Universität Ilmenau,
98693 Ilmenau, Germany

http://www.tu-ilmenau.de/neurob

Abstract—In this paper, we present a holistic approach to en-
able mobile robots using video projection in a situation aware and
dynamic way. Therefore, we show how to autonomously detect
wall segments that are suitable to be used as projection target in
a dynamic environment. We derive several quality measures to
score the wall segments found in the local environment and show
how these scores can be used by a particle swarm optimization
to find the best local projection position for the mobile robot.
Furthermore, it is demonstrated how the presented approach
can be used to display directions in an orientation training task
for stroke patients while the robot is following them.

I. INTRODUCTION

User interaction plays a very important role for mobile
service robots. It should be possible to use them easily and to
get a real benefit from the offered service. However, current
generations of these robots do have some shortcomings in
presenting information in an appropriate and easily understand-
able manner. The idea of using video presenters on a mobile
robot states back to the first Star Wars films and can help to
improve the intelligibility of the information provided by the
robot [1]. This is especially true for our tour robots Konrad
and Suse that are used to tour people around in our multi-story
faculty building [2]. In order to increase the acceptance of the
tour guide scenario, the robots should not only talk to the user
and give information on the on-board display, but also make
use of walls next to the exhibit to display information. Since
the exhibits can change over time, it will be beneficial if the
robot can optimize its position and the wall used for projection
depending on the local surroundings and the location of the
current audience.

Another field of application addresses our research project
ROREAS (Robotic Rehabilitation Assistant for Stroke Pa-
tients) [3], which aims at developing a robotic rehabilita-
tion assistant for walking and orientation exercising in self-
training during clinical stroke follow-up care. The robotic
rehab assistant is to accompany patients during their walking
and orientation exercises, practicing both mobility and spatial
orientation skills. In one of the more advanced stages of
the orientation training, the patient should walk around the
building on its own while the robot follows, observes and only
intervenes if the patient fails to find the right way to a given
destination. However, instead of just talking to the patient, the
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Fig. 1: Robot platform with mounted LED video projector and
deflection mirror.

robot can use its video projector to display arrows on the walls
in front of the patient to guide him once he had lost orientation.

Fig. 1 shows the experimental platform used for our re-
search. It is equipped with interaction devices, mainly a touch-
display, as well as a couple of additional sensors enabling
autonomous navigation and perception of people and obstacles
in the robots environment. In addition to this regular setup, the
test platform has been equipped with a LED video projector
(ViewSonic PLED-W500). The projector is mounted together
with a deflection mirror in a vertical position below the robot
head to guarantee minimum space requirements. It does deliver
500 lumens of brightness at a maximum power consumption of
120 W, which is of course questionable for the desired field of
application. However, current generations of small LED based
projectors have already doubled or tripled brightness and can
easily replace our projector used for demonstration purposes.

To deal with the different problems arising from the dy-
namic projector position optimization the paper is structured
as follows: After a brief overview of related work and the
presentation of the prerequisites of our work we give a
detailed overview of our proposed method and the involved
score functions in Sec. IV. Afterwards, we show how the
motion planning of the robot can be extended to prefer motion
trajectories with good projection properties in Sec. V. After
that, experimental results are presented in Sec. VI.978-1-4673-9163-4/15/$31.00 c© 2015 IEEE
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II. RELATED WORK

Several methods can be found, that are dealing with aspects
of the problem we have described above. The largest group
has been emerged during the last few years and tries to
integrate a video projector onto a guide robot. One example
is given in [4]. The authors are using a pan and tiltable video
projector to display addition information of exhibits onto the
wall. Furthermore, the projector is used to create buttons on
the ground, that can be activated by means of the user’s feet.
In [5] a guide robot is used to augment a guiding tour by
projecting directly onto various exhibits in order to highlight
the parts explained but also to simulate ancient computer
models by projecting directly onto a switched off monitor. The
authors of [6] are using the humanoid robot NAO to project
information on walls in a home environment. However, the
robot position as well as the projection surface are predefined
in this approach. Two examples of methods that do combine
video projection with gesture detection are given in [7], [8].

Since the surfaces used for projection are predefined in all
the methods stated above, none of these tries to find an optimal
projection surface in the local environment dynamically. Most
of the methods do even rely on fixed and predefined robot
positions that are aligned perpendicular to the wall.

A closely related research field is the optimal observation
pose problem, since it can be regarded as the inverse problem.
The authors in [9] try to find an optimal position for the
unobtrusive observation of a user. Although the optimization
criteria used are different, the optimization is very similar
and is also performed using a particle swarm. A survey of
approaches to the view finding problem can be found in [10].

The aspect of projecting images while driving has gained
even less attention. One method that deals with that problem is
explained in [11]. However, it also relies on predefined markers
on the projection surface and uses visual servoing.

Current methods for camera based projection calibration
rely on predefined patterns that are displayed during an ini-
tialization phase [12], [13]. Since the robot changes its pose
relative to the projection surface once it is moving, a closed
loop algorithm, as used by other methods for projection,
correction cannot be applied in our scenarios.

III. PREREQUISITES

In order to build and explain the projector position opti-
mization, we rely on different components that are not in the
scope of this paper.

First, we are using MIRA [14] as software framework
in order to combine all the different modules in an easy
and efficient way. The integrated transformation framework of
MIRA enables stepping back and forth between the various
coordinate frames (robot frame, map frame, person frame)
easily.

Second, we also need to take the user position, view,
and walking direction into account. To reliably track people
in the local environment of the robot, we are using the
probabilistic multi-hypotheses people detection and tracking
system developed in our lab over the last eight years [15]. It
is based on a 7D Kalman filter that tracks the position, velocity,

and upper body orientation of the respective persons assuming
an uncertain random acceleration. The tracker processes the
detections of different, asynchronous observation modules -
namely a 2D laser-based leg detector, a face detector, a motion
detector, and an upper-body shape detector. The leg detector in
its initial version is based on the boosted classifier approach of
[16]. The face detection system utilizes the well-known face
detector of Viola & Jones [17]. Finally, we apply an upper body
shape detector based on Histograms of Oriented Gradients
(HOG) [18]. A detailed description of the person detector and
tracker and the tracking results of comparing evaluation studies
on different data sets with increasing difficulty is given in [15].

Third, we utilize mapping and localization algorithms
proven to work robust during several years [3]. These algo-
rithms include the generation of a local map (8x8 meters in
our application) covering the local surroundings seen by the
robot so far.

IV. FINDING OPTIMAL PROJECTION SURFACE AND
POSITION

The problem of finding an optimal projection position can
be divided into two tasks. First, the detection of walls in the
local surrounding that are candidates for a projection target.
Second, we need to take the user and the robot position into
account to score the wall candidates in order to obtain the
best projection surface. Three aspects are of importance during
scoring. The wall needs to be visible to the user and should
show an appropriate distance and view angle. Furthermore, it
should be possible to project onto the wall. Therefore, it should
show a suitable brightness and color and should not have
any dominant structure (no signs or posters should cover the
wall). Moreover, the wall should be in range of the projector,
which again sets requirements on the distance and angle of the
wall. The person visibility and wall structure related demands
do not depend on the current robot position, therefore, we
refer to these requirements as robot position independent score
functions in the remainder of this paper. In turn the other
requirements are robot position dependent.

Walls in the local surrounding can be very long, the
suitability is likely to fluctuate heavily at different positions.
Therefore, we break the walls apart by dividing them into
segments, that are scored independently. It would be possible
to use a real 3d segmentation for this step. However, it would
increase the computational complexity a lot and cause only a
slight benefit in our scenario since we are not able to pan or
tilt the projector. Therefore, we are using wall segment with
fixed width (30 cm in our application as a trade of between
computational complexity and spatial resolution) and a fixed
height of 1.2 meter (covering the area from 1 meter to 2.2
meter above the ground) during the segmentation phase. A
closer look at the requirements and at the application scenario
reveals that the overall problem is twofold. The first task is
to find the best suited wall segment(s) for a given position of
the robot regarding the user’s gaze. The second task is more
general and comprises of finding the best robot position, so
that the best wall segment(s) in the local surrounding can be
used for projection (Fig. 2). The second task involves the first
one, since we need to evaluate the maximum score for different
robot locations and orientations. Since evaluating all possible
robot poses in the local neighborhood is way to expensive,
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Fig. 2: Overview of process to find the best wall segment
(red) and robot position (blue). The robot position independent
scores need to be computed only once and can be stored with
the segment. The robot position dependent scores need to be
recomputed every time the robot pose changes. The image at
the bottom right shows the result of a PSO with 200 particles
with the best particle colored in red.

we apply a particle swarm optimization (PSO) [19] to find the
optimal projection position. Therefore, every particle returns
the score of the best segment(s) for projection from this single
position.

The two tasks can be applied directly to our two application
scenarios. In the guide scenario the PSO approach can be
used to find the best location for augmenting the exhibit
presentation. In the ROREAS scenario, we are using the
extraction of the best wall segment only since the position
of the robot is defined by the motion planner of the robot.

The projected image gets distorted if the projector is not
aligned perpendicular to the projection wall. Fortunately, the
distortion correction is comparably easy for straight walls if
the angle between the projector and the wall is known. Since
the position and orientation of the wall segment used for
projection is known from the optimization, we can compute
a homography for image rectification by means of vector
geometry. However, the position of the user is also known, and
can be used to rectify the image perpendicular to the axis of
the users view alternatively. The two rectification methods and
the results of a user study of the acceptance and the suitability
for displaying directions are given in [20].

In the remainder of this section the wall extraction and the
different score functions are explained in more detail.

A. Wall segment extraction

Since our application scenarios are in public environments,
they are dominated by vertical and planar walls. Fortunately,
this type of wall is also visible for the laser scanner and we
can use simple but efficient 2D methods for extracting wall
segments, and filter out false positives with the help of a
projection suitability cost function. Although, 3D-based plane
fitting methods can also be executed in real time, they are much
more expensive. Nevertheless, their benefit might be justified
in more cluttered home environments. For wall extraction we
do not rely on a pre-build map, since the clinic environment
is likely to change so that walls can be covered by trolleys or

hospital beds. Therefore, we are using the local map containing
the local surroundings seen by the robot so far.

A line fitting is performed using a Random Sample Consen-
sus (RANSAC) [21] based algorithm on all the points marked
as obstacle in the local map. The algorithm searches and
returns the line hypothesis with the most points supporting
the hypothesis. Removing the supporting points (that also
determine the start and endpoint of the line) and repeating
the process as long as lines with a specified support can be
found, results in the extraction of the best n lines for the local
surrounding. These lines are split into smaller line segments
with a fixed length (30 cm in our application).

B. Robot position independent cost functions

The first set of cost functions to be discussed are inde-
pendent of the robot’s position and need to be computed only
once for every run of the PSO. Please note that we try to
use a Gaussian score function whenever possible to help the
PSO particles to find a gradient if they are far away from the
optimum.

1) User dependent segment visibility: To check if a seg-
ment is visible to the user. The line of sight between the
user (defined by its position pu and its orientation normal
np) and the segment i (defined by its position pli and
orientation normal nli ) is free of obstacles. Therefore, we
trace the local map between the points pu and pli and set
the obstacle score sO to zero if we found an obstacle and
to 1 otherwise. For performance reasons we only check the
visibility of the center of the segment since we do only use
segments lengths of 30 cm. However, if segments are longer
or if higher accuracy is required the whole view triangle can
be checked for obstacles. Furthermore, we need to take the
visual field of the user into account. Therefore, we compute
the angle between the line of sight and the person orientation
normal as αSegment = acos((pu − pli)·np). Assuming that
the visual field of a human is almost 180◦ with a central field
of 90◦ we are using a parted Gaussian function sV F (li) =
gsp(αSegment,−π/4, π/4, 0.35, 0.35) that returns 1 for the
central field and drops of almost reaching zero at 90◦ on each
side.

gsp(x, lo, up, s1, s2) =


exp(− (x−lo)2

2s21
), x < lo

exp(− (x−up)2
2s22

), x > up

1, lo ≤ x ≤ up

(1)

The last of the tree sub scores, is the distance score. We
suggest preferring segments with a distance between 1.5 m
and 4 m using the parted Gaussian sD(li) = gsp(||pu −
pli ||2, 1.5, 4.0, 1.0, 1.7). Therefore, the resulting score of the
user dependent segment visibility sU becomes: sU (li) =
sO(li) · sV F (li) · sD(li).

2) Projection suitability: It is important that the wall seg-
ments used for projection purpose are of a bright and uniform
color and are clear of obstacles.

Using a calibrated camera we can extract the image regions
associated with the single segments and analyze them in terms
of color and structure. We project the 3D-world position of the
segment edges into the image space and extract the gray-scale
image region (Fig. 3a). Afterwards, the average image value
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Fig. 3: (a) Results of the different score functions for an exemplary situation. The line segments are color coded according to
the result of the score functions with blue being the lowest score. Please note that the line segments do vary slightly since the
images were recorded consecutively and the RANSAC algorithm varies due to its random nature. (b) Example image for the
wall segment extraction and projection rectification.

is derived. This value should not be too close to white, as
ceiling light might outshine the projected image, nor should
it be to dark or have any extreme color cast. Therefore, we
are using a Gaussian function aiming at an average gray
value of 2/3 of the maximum possible gray value (255) to
compute brightness subscore sB(li) = Gauss(Avg(li), µ =
170, σ2 = 50). The structure of the segment is analyzed by
computing the magnitude of the Sobel-filtered image region in
x and y direction. Since the segments can become unsuitable
for projection even if the magnitude is far away from the
maximum value, we use a low threshold for the score function
that allows a maximum average gradient magnitude of 40:
sG(li) = max(0, 1.0 − AvgMag(li)/40). Thus, the resulting
wall projection suitability score is sW (li) = sB(li) · sG(li).

The drawback of this approach is that not all the segments
are visible to the camera and that they can be shadowed by
persons and thus yields wrong scores. To avoid this problem,
the module stores a local segment history (same 8x8 meter
environment as the local map). If segments are shadowed by
persons (details on how to detect shadowing are given in the
Sec. IV-C2), the suitability score is not updated. The same
applies if a segment is currently used for projection, since the
projector changes the score of the segment. If the score cannot
be obtained, we take the score from a similar segment in the
history buffer.

C. Robot position dependent cost functions

The second group of cost functions depends on the robot
pose and therefore needs to be computed for every single robot
pose hypothesis.

1) Robot projection suitability: This cost function is mostly
related to the limitations of the video projector and combines
three different sub scores. First, similar to the person visi-
bility function, the line of sight between pr and pli needs
to be free of obstacles (sO). Second, the projector offers
only a limited aperture angle, therefore segments that cannot
be covered by the projector need to get a very low score.
We compute the angle between segment normal and robot

with αRobot = acos((pr − psi)·nr) and combine it with
the parted Gaussian to match the projector opening angle
of 60◦: sPA(li) = gsp(αSegment,−π/6, π/6, 0.05, 0.05). The
last subscore regards the distance between projector and wall.
Since the projector has only limited brightness and the focus
is fixed, the projector needs to stay within a certain distance
range to offer acceptable projections. Therefore, we select the
optimum distance to be within 1.4 and 2 meter and let the score
drop on both ends: sD(li) = gsp(||pr − pli ||, 1.4, 2, 0.5, 1.5).
Again, the combined score sP becomes sP (li) = sO(li) ·
sPA(li) · sD(li).

2) Person shadowing: Segments that, according to the
robot position, are shadowed by or next to a person should
not be used for projection for two reasons. First, it makes
a proper projection impossible if the person is blocking the
projected image. Second, a person can be dazzled. Therefore,
we penalize segments, when the angle between the line of
sights of the segment and all person hypothesis pi is too low:
alphamin = min∀pi

(acos((pr − pi) · (pr − li))) sS(li) =
1.0−Gauss(αmin, µ = 0, σ2 = 0.1).

D. Selecting the best wall segment for projection

To find the best wall segment for a given robot position pr

and orientation nr the robot position dependent (sP , sS) and
independent score functions (sU , sW ) have to be computed.
Afterwards, the scores of the different functions are multiplied
for every segment independently. We use multiplication for
this step since the different constraints cannot compensate
each other. Segments that are below a certain threshold will
be rejected and removed, leaving only segments that are
feasible for projection. In a final step, adjacent wall segments
get merged, whereby the score of the new segment is the
sum of its sub-segments. This guarantees that large segments
are preferred but requires a proper choice of the segment
threshold in order to combine only segments that are suited for
projection. During our experiments a threshold of 0.2 works
reasonable well. Finally, the segment with the highest score
is returned as the best segment for projection for the current
robot and user positions.
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V. OPTIMIZING ROBOT TRAJECTORIES FOR PROJECTION
WHILE DRIVING

The orientation training in the clinic environment requires
the robot to project information onto walls while driving. This
is a challenging task from the path planning perspective, since
it involves finding a path which also delivers a high projection
score. However, the projection score depends to a very large
extent on the person position, which can only be predicted
on a local scale. Furthermore, the E* path planner [22] used
for metric path planning does not take the robot orientation
into account, which is crucial for the score computation since
we cannot pan/tilt the projector. However, path planning on
a global scale is only subsidiary in the orientation training
scenario in which local navigation is of much more importance.
This local motion planning is performed by the dynamic
window approach (DWA) [23] that samples the possible ve-
locity commands of the robot within a certain prediction time
window and scores them by means of various navigation
objectives (e.g. distance to obstacles, follow a path, follow
a person with a given distance,...) [3], [24].

The prediction time of the dynamic window varies between
2 and 5 seconds, depending on the robot’s velocity and in our
implementation generates 40 alternative robot trajectories with
different rotation and translation velocity. In order to let the
robot prefer trajectories suitable for video projection, we added
a new objective. This objective scores the end points of the
predicted trajectories according to Sec. IV-D. Please note that
we also need the prediction of the person tracker for this step,
since we need to predict the person position according to the
prediction time length of the evaluated trajectory. Therefore,
even the robot position independent score functions need to
be recomputed for different prediction lengths since the user
position changes and needs to be predicted according to the
current trajectory. The obtained score is returned to the DWA
motion planner in order to prefer trajectories with a high
projection score. This substitutes the PSO used in the static
case of position optimization.

VI. EXPERIMENTS

Experiments have been conducted with the actual robot
platform in our faculty building and using a robot simulator.

We have tested the extraction of suitable wall segments and
the projection rectification for various exhibits and situations
in our lab. Results for two situations are given in Fig. 3b.
For every location the local surrounding (8x8 m) of the robot
and the user position was taken into account. The algorithm
was able to generate a rectified projection on wall segments
that are of good visibility to the user. However, the position
optimization tends to generate positions with acute projection
angle as these positions are good in terms of user visibil-
ity and maximum projection distance. If maximum projector
brightness is an issue, we recommend integrating an additional
module for rating the robot to wall angle.

The trajectory optimization has been tested in the robot
simulator that imitates the drive behavior and the laser range
finder of the real robot platform. Furthermore, we generated
noisy person trajectories that were feed as detections into the
person tracker in order to obtain user position and velocity.
Please note that the projection suitability cost function is not
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Fig. 4: Comparison of activated (red) and deactivated (blue)
projection objective for different corridor widths (left) and
different person speeds (right).

Person speed: 0.3 m/s
Person trajectory: blue
With objective: solid
Without objective: transparent
Trajectories are color coded by
projection area (yellow - large,
pink - small)

Fig. 5: Visualization of trajectories for ”Turn” scenario. The
robot starts driving off-center in order to gain a better view on
wall segments in front of the user if the presented objective is
activated.

enabled in the simulator tests. Since the objective is aiming at
the optimization of the combined score of the best segment,
an independent measure for benchmarking the algorithm has
been applied. Therefore, the average size of the rectified
image on the wall was computed for every test setup and
was compared to the results for the activated and deactivated
projection objective. Furthermore, we have averaged the results
of 5 independent trials for every setup to smooth the value
variations introduced by the noisy sensor readings and person
tracking.

In the first setup we analyzed how the approach performs
in a corridor scenario with variable width. Therefore, the
simulated person hypothesis is moving 50 meter in the center
of a straight aisle at a fixed speed of 0.5 m/s while the
navigation algorithms are configured to follow the person at
a distance between 0.5 and 1 meter. The results for different
corridor widths between 1 and 5 meter are given in Fig. 4. As
one would expect, the additional objective cannot generate a
benefit if the corridor width is below 2 meter due to the lack of
free navigation space. However, with increasing corridor width,
the approach with enabled projection objective can greatly
improve the average projection area along the path. It has to be
noted that the conventional approach outperforms the objective
for a corridor with of 2 meter. This effect is caused by the
fact that the navigation algorithms tend to undulate behind the
person (also visible in Fig. 5) generating slightly better results
for that specific corridor width.

The second setup addresses the evaluation of different
walking speeds of the person. Since the maximum speed of the
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simulated robot is 1.0 m/s, we vary the person speed between
0.3 and 0.7 m/s in a corridor scenario with a right turn (Fig.
5). Is becomes obvious that the objective works best if the
difference between the maximum robot speed and the person
speed is high (Fig. 5). However, if the difference is low the
robot needs to drive straight behind the person in order to
follow with the desired distance.

The last setup is identical to the last but the wall at the
right side of the trajectory is replaced by open space. Since the
normal behavior of the navigation algorithms is keeping a large
distance to obstacles, the robot drives to far away from the
wall in that cases and lead to an average projection area 0.22
m2. Once the objective is enabled, it drives slightly off-center
between the user and the wall yielding an average projection
area of 0.65 m2.

The presented approach is real-time capable and can pro-
vide score values for the DWA approach with an update
frequency of 4 Hz for 40 trajectories on the robot (which is
the normal update rate for our DWA approach).

VII. CONCLUSION AND FUTURE WORK

This paper describes a method that takes the user position
into account in order to dynamically extract wall segments that
are suitable for video projection. Furthermore, we showed how
to embed the scoring of the wall segment extraction into a PSO
framework in order to obtain the best projection position for
the robot in the local surrounding.

The experiments given showed that the presented method
is able to improve results for the desired application scenarios
and is real time capable.

Continuing our work, we need to further investigate if the
user adaptive projection correction [20] is beneficial in the
person follow scenario. Furthermore, the work presented so far
is designed to work with one user only. Therefore, we want to
find out if and how the method can be extended to work with
multiple users at a time.
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