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Abstract. For a mobile assistive robot operating in a human-populated
environment, a polite navigation is an important requirement for the
social acceptance. When operating in a confined environment, narrow
passages can lead to deadlock situations with persons. In our approach
we distinguish two types of deadlock situations at narrow passages, in
which the robot lets the conflicting person pass, and either waits in a non-
disturbing waiting position, or forms a queue with that person. Forth-
coming deadlock situations are captured by a set of qualitative features.
As part of these features, we detect narrow passages with a raycasting
approach and predict the movement of persons. In contrast to numeri-
cal features, the qualitative description forms a more compact human-
understandable space allowing to employ a rule-based decision tree to
classify the considered situation types. To determine a non-disturbing
waiting position, a multi-criteria optimization approach is used together
with the Particle Swarm Optimization as solver. In field tests, we eval-
uated our approach for deadlock recognition in a hospital environment
with narrow corridors.

Keywords: Human-aware navigation, socially assistive robotics, situa-
tion understanding, polite navigation

1 Introduction and Motivation

In the ongoing research project ROREAS (Robotic Rehabilitation Assistant for
Stroke Patients) [10], we aim at developing a robotic rehabilitation assistant for
walking and orientation exercising in self-training during clinical stroke follow-up
care. The robotic rehab assistant is to accompany inpatients during their walking
and orientation exercises, practicing both mobility and spatial orientation skills.
The test site is a complex U-shaped rehabilitation center and accommodates
more than 400 patients. The operational environment is highly dynamic. Patients
and staff working in the patients’ rooms are moving in the corridors and in the
public areas, many of them using walking aids. Moreover, beds, supply and
cleaning carts, or wheel-chairs are occupying the hallways, resulting in more or
less restricted space conditions at some times.

The self-training is mostly performed on the corridors. Due to the structure of
the building or objects standing in the hallways, some parts have limited lateral
space, forming a narrow passage which permits movement only in one direction at
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(a) Our robot in a typical narrow pas-
sage

(b) Forthcoming person

(c) Same Direction

Fig. 1: Our robot in a typical narrow passage at our test site, the m&i rehabilitation
center in Bad Liebenstein, and schematic depiction of the considered conflicting situ-
ations caused by narrow passages.

a time (Fig. 1(a)). Moving in such a restricted space imposes deadlocks in narrow
passages. Since a polite and attentive navigation is an important requirement
for an assistive robot, these situations must be predicted to trigger a proactive
reaction of the robot. In this work, we distinguish two types of deadlocks: (i)
deadlocks caused by a forthcoming person and (ii) deadlocks occurring when
the robot and a person are entering the narrow passage in the same direction.
In Fig. 1(b)(c) schematic examples of these situations with a narrow passage
typical to the operation area are depicted. Both cases have different resolution
strategies, but basically result in a ”give way” behavior. To be more specific, in
case of type (i) deadlocks, the robot is driving to a waiting position to give way
to the forthcoming person, whereas type (ii) deadlocks are resolved by forming
a queue and following the person through the narrow passage.

When a deadlock situation with a forthcoming person is predicted, the robot
needs to wait until the narrow passage has been cleared. In the wait state, the
robot should position itself in a non-obstructive manner aside. This has a twofold
effect: First, in an already restricted environment, the position to be chosen
should not hinder the movement of the person and ease the deadlock elimination.
Second, the movement to a waiting position signals the approaching person the
intention of the robot to give way. Additionally, the narrow passage must be
observable from the robot’s waiting position, since it must be able to recognize
when the narrow passage is free to be entered. In our approach, we formulate
the problem of finding a suited waiting position as a multi-criteria optimization
problem and use a Particle Swarm Optimization (PSO) [16] as solver.

The main contributions of this paper are: (a) a new approach for detecting
narrow passages by means of qualitative features capturing the spatial relation-
ships of conflicting situations, (b) an efficient method for predicting space con-
flicts in narrow passages, (c) a fast approach for finding non-obstructive waiting
positions based on multi-criteria optimization, in order to support the conflict
resolution.

2 Related Work

The recognition and handling of deadlock situations in narrow passages has been
explicitly taken into account in [3]. In this approach however, deadlock situations
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are only recognized and handled in a reactive manner, when the path is blocked
by a person standing in a narrow passage. For a rehab center with patients
having reduced mobility and using walking aids, a more predictive recognition
is necessary to proactively avoid deadlocks.

In our approach, a set of qualitative spatial features is used to recognize dead-
locks. Such a qualitative description is also used in [12] to evaluate the move-
ments of a robot and a person. Particularly, the Qualitative Trajectory Calculus
is utilized. In [14] and [24], Inverse Reinforcement Learning is employed to learn
a navigation behavior in crowds based on features capturing the environment.
However, narrow passages are not explicitly described.

To assess the situation from a set of situation describing features, the re-
lationships between them must be described. The techniques for finding these
relationships belong to the field of Data Fusion (DF). In the robotic field, only
few papers on DF for situation assessment have been published so far. A general
framework for situation assessment is described in [1]. Situations are learned
with an extensible Markov Model from a set of feature sequences describing the
environment. In contrast to the robotics research, the field of Advanced Driver
Assistance Systems provides a wider range of publications dealing with situation
understanding. The common applications are the recognition of a driver’s driv-
ing maneuvers, driving behaviors at intersections, and the recognition of unusual
driving behaviors. For situation assessment, often Hidden Markov Models [21],
Bayesian Networks [19][9], and rule-based techniques [20] are used.

So far, only explicit recognition techniques have been mentioned. In the
robotics field, there also exists a category of implicit techniques. The main sub-
ject of these techniques are the usage of spatiotemporal planners and the incor-
poration of long-term human motion predictions to avoid deadlocks. Although
the deadlock problem can be solved with this approach, there is still a need for
situation assessment, when a human-robot communication is required to inter-
act with the person when a deadlock situation occurs. Since implicit techniques
aim at generating collision free trajectories, deadlock situations are not explicitly
recognized. The implicit techniques can be distinguished by the used planning
algorithms and human motion prediction methods. The most widely used plan-
ners are A∗ [13][2] and Rapidly-Exploring Random Trees [18][23]. Human motion
prediction methods can be categorized into learning-based and reasoning-based
[17] ones. Learning-based approaches learn a predictor from a given training set
of trajectories [2], whereas reasoning-based approaches make predictions based
on a given motion model for the person [7].

Since our focus lies in the application of qualitative features for describing
deadlock situations and an efficient collision prediction method for narrow pas-
sages, we only use a simple linear motion prediction and a rule-based approach
for situation assessment. However, our field experiments demonstrate that these
methods result in a relatively good recognition performance for this hospital
environment.

3 Robot Platform ROREAS

Our robot has a relatively small size of 45 x 55 cm footprint and a height of 1.5 m
(Fig. 1(a)). The drive system is a differential drive with a castor on the rear and
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allows a maximum driving speed of up to 1.4 m/s. The robot’s sensory sys-
tem consists of two SICK laser range finders, three Asus RGB-D cameras, and
a panoramic color vision system mounted on the top of the head. For person
perception, we utilize a probabilistic multi-hypotheses and multi-cue tracking
system based on a 7D Kalman filter [25]. It tracks the position, velocity and
upper body orientation of multiple persons. As detection modules, we are using
a face detector, a motion detector, and an upper-body shape detector. Addition-
ally, generic distance-invariant laser-scan features are used to detect legs and
persons with mobility aids (i.e. crutches, walkers and wheelchairs) [26]. With
these detection modules we are able to track persons up to a distance of 8 m.
To safely navigate in dynamic environments, the positions of obstacles need to
be determined. To this end, we use a generic mapping system which is able to
process 2D laser-scan and 3D information of the robot’s surroundings [5]. The
navigation system consists of a Dynamic Window Approach (DWA) [8] guided
with an E∗ planner [22]. Furthermore, multiple DWA objectives are utilized to
respect the personal space of bystanders and to achieve a right-hand traffic be-
havior. The complete robotic system was developed with MIRA [6]. For a more
detailed overview of our robot system see [10].

4 Deadlock Recognition

The deadlock recognition is formulated as classification problem. As argued be-
fore, we distinguish two types of conflict situations depending on the move-
ment intention of the person (Fig. 1(b)(c)). Both situations have different res-
olution strategies. In case of a deadlock with a forthcoming person, the robot
drives to a non-disturbing waiting position aside. These situations are labeled
as Waiting. In case of a deadlock with a person moving in the same direc-
tion as the robot, a queue is formed with the person. These situations are la-
beled as Queuing. Using the resolution strategies as class labels and adding the
class Proceeding for uncritical situations, the deadlock recognition problem can
be formulated as a classification problem over situations. In finding a classifier
C : S → {Waiting,Queuing, Proceeding} with S as the set of all situations, we
can recognize the considered deadlock situations. Our recognition approach can
be described as a sequential processing chain consisting of four distinct steps:
(1) the detection of the narrow passage, (2) the extraction of qualitative spatial
features describing the situation around the narrow passage, (3) the prediction
of space conflict, and (4) the classification of the considered situations. In all the
processing steps we assume a planar operational space.

4.1 Narrow Passage Detection

Narrow passages are detected by first calculating normals perpendicular to the
planned path for a finite set of points sampled from the path (Fig. 2). The nor-
mals are determined analytically. To this end, we utilize a spline interpolation
scheme to derive a trajectory π : R → R

2 parametrized over the path’s arc
length. For each normal, rays are cast in the navigation map until hitting an ob-
stacle in the 2D occupancy map. The total length of the resulting rays indicate
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Fig. 2: The narrow passage detection. The circles depict the sample points on the
robot’s path for which a ray perpendicular to path is cast. π is the trajectory of the
path parametrized over arc length. The highlighted path points π(s) and π(e) are the
start and end point of the narrow passage with s and e as their corresponding arc
length. Thus the arc length interval of the narrow passage is N = [s, e]. The quadratic
points are the boundary points of the narrow passage’s polygon. The polygon itself is
marked red.

how much free lateral space is available at a given path point. With these dis-
tances, a narrow passage can be described as a continuous path section given by
an arc length interval N ⊂ R, where the section’s maximum distance is smaller
than a given threshold. Another useful form for reasoning about the spatial re-
lationship around the narrow passage is its bounding polygon. To construct the
polygon, the sampled path points in the narrow passage, which were used to
calculate the normals, are translated along their cast rays to get the points on
the polygon’s boundary.

4.2 Qualitative Spatial Features

The common method to describe spatial relationships is to use geometrical mea-
sures. For humans these quantitative measures are a rather unintuitive way for
describing spatial relationships. Instead, they use a qualitative abstraction and
group similar measurement values to an intuitive representation [12]. For ex-
ample, a person is more likely to describe another person as standing behind
him/her, than to give the exact orientation angle. We use this insight to re-
duce our geometrical feature space to a more compact space. In this compact
space, simple rules are employed to distinguish the considered situations. Thus,
we overcome the need for a learning approach to collect a dataset, which must
contain many instances of the geometrical features. We use the following features
to describe deadlock situations:

Movement Direction In Fig. 3(a) an illustration of this feature is depicted.
This feature describes the movement direction of a person relatively to the move-
ment direction of the robot at either the start or the end of the narrow passage.
We distinguish three different directions Opposite, Same and Passing. Addi-
tionally, a fourth value Standing is introduced for a person with no movement.

Orientation This feature represents the position of a person relatively to the
robot. The feature can take the values in Front, Rear and Side. To determine
this feature value, the angle between the robot’s movement direction and the
connection line of the person to the robot is used. See also Fig. 3(b) for an
illustration.
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(a) Movement Direction (b) Orientation (c) Narrow passage positions

Fig. 3: Qualitative spatial features extracted from the position of the narrow passage,
the persons and the robot.

Narrow Passage Position Given a narrow passage, this feature describes the
positions of the robot or a person relatively to the passage. We define three
sub-areas representing the Pre-, Post- and In-area of the narrow passage (Fig.
3(c)). The reference orientation is given by the movement direction of the robot.
To determine this feature value for a person, we assume a person to be disc-
shaped. The intersection area of the person with the narrow passage’s polygon
and the relative orientation to the narrow passage is utilized to reason about the
sub-area.

4.3 Space Conflict Prediction

A narrow passage can be understood as a rail predefining a movement flow.
Persons entering the narrow passage can only move along the given direction.
Moreover, a point in the narrow passage can only be occupied by one person
or the robot at the same time. Thus, without losing information, we describe
the movement of the person and the robot through the narrow passage as a
trajectory τ : R → R parametrized over time and having function values in
the passage’s arc length interval on the planned path. Using a linear model,
the movement of the person through the narrow passage can be predicted. By
assuming a linear motion model the trajectory of the robot and the person can
be described as linear functions. Thus, predicting space conflicts can be reduced
to finding the intersection point of two linear functions.

4.4 Situation Classification

For each perceived person we extract the qualitative spatial features and pre-
dict possible space conflicts. Thereafter, a decision tree (DT) is used to classify
the situation for each person separately. In Fig. 4(a) a coarse view on the DT
is depicted. The root of the DT represents common preconditions for the con-
flicting situations. Only when these conditions are fulfilled, further evaluations
are considered. The preconditions consist of the check for the presence of a nar-
row passage and a space conflict with a person. Furthermore, an activation area
around the narrow passage is constructed, permitting further evaluations only
when the robot and conflicting person stay inside this area. Upon the fulfillment,
the evaluation is redirected to the subtrees according to the movement direction
of the person. The subtrees for standing persons and persons moving in opposite
direction are dedicated for the separation of the Waiting class from the Proceed-
ing class, whereas the subtree for person moving in the same direction separates

Proc. Int. Conf. on Social Robotics (ICSR), Paris, France, pp. 643-653, Springer 2015



Preconditions

Pro-
ceeding

Movement Direction

Standing Same Opposite Pro-
ceeding

Passing
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(a) High-level view

Person to NP

Waiting Robot to NP

Waiting Pro-
ceeding

InPre

PostIn

(b) Opposite movement

Robot to NP

Queuing Person to NP

Pro-
ceeding

Person to Robot

Pro-
ceeding

Queuing

FrontRear

InPre

InPre

(c) Same movement

Fig. 4: (a) The high-level view of the decision tree. The orange nodes represent the
classification results; the blue nodes are the decision nodes; and the red nodes contain
a subtree. (b) The subtrees for persons moving in the opposite direction and (c) same
direction to the robot. The decision nodes use the relative position of the robot or
persons to the narrow passage (NP) and the relative position of the person to the
robot to chose the appropriate class.

Queuing from Proceeding. The main idea of the subtrees is to use the qualitative
spatial features describing the relative positions of the person and robot (Sec.
4.2) for arguing about the class membership. In Fig. 4(b)(c), the subtrees for
persons moving in the opposite and the same direction as the robot are depicted.

5 Finding Non-Obstructive Waiting Positions

5.1 Multi-criteria Optimization

The problem of finding a proper waiting position is formulated as a multi-criteria
minimization problem. The search space consists of points (x, φ) with x ∈ R2

a position in a planar world and φ ∈ [0..2π) an orientation defining the robot’s
viewing direction. The information about the obstruction and the passage’s ob-
servability of a pose is encoded in the optimization function

f(x, φ) = α · cdist(x) + β · cobserve(x, φ)+

γ · cwall(x) + η · csocial(x)
(1)

through linear combination of the criteria (i) driving distance to a position cdist,
(ii) observability of the narrow passage cobserve, (iii) distance to walls cwall and
(iv) social distance to persons csocial. Since our criteria are non-linear or non-
differentable, we use the Particle Swarm Optimization to find the minimum.

5.2 Optimization Criteria

Driven Distance Given the representation of the environment as a grid map,
this criterion penalizes positions which are far away from the robot, thus min-
imizing the time to drive to the selected position. This is important, since the
person might get irritated about the robot’s intention to wait, if the waiting
position is chosen too far. The driven distance to a position is determined with
Dijkstra’s algorithm [4]. Note, that for unreachable positions, Dijkstra’s algo-
rithm results in an infinite distance.
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Observability This criterion indicates if the narrow passage is observable at a
given pose. The robot’s field of view is modeled as a cone directed along φ. The
cone is further refined to incorporate the position of obstacles. The refinement
is conducted by casting rays from x inside the cone until hitting an obstacle or
the cone’s boundary is reached. The ending points of those rays are used to form
a polygon. The intersection area of this cone and the narrow passage’s polygon
is used to determine the observability value.
Distance to Walls Imagine a robot moving in a hallway and the robot waits in
the middle of the hallway. This is a rather unintuitive signal and depending on
the width, the person might have to squeeze around the robot. A more intuitive
way is to let the robot wait near the walls. This is more explicit and provides the
person more free space to pass the robot. To determine the distance to walls a
distance transform algorithm [15] is performed on the environment’s map. The
resulting image allows lookup of the distance to the next wall for each potential
waiting position.
Social Distance Every person has a social distance s/he keeps to others when
s/he has no intention of interaction [11]. Assuming that a person is represented
as a disc-shape and has the position xh, the social distance of a person is modeled
as a Gaussian centered at xh. Then for a position x, the social distance criterion
is the summed function values of all the perceived persons’ Gaussian evaluated
at x.

6 Experimental Results of Field Tests and Outlook

In extensive field tests we evaluated our approach for deadlock recognition in
the ”m&i Fachklinik” rehabilitation center in Bad Liebenstein with our robot
platform. The tests were conducted over two days. During the tests, we let the
robot autonomously drive between different goals and floors of the building. For
evaluation, an external observer accompanied the robot and manually counted
the decisions taken by our approach, but always from far distance to prevent
any distraction. In total, a distance of 4,700 m was traveled. During the first
4,000 m, only bystanders were crossing the robot’s way. These bystanders were
staff members, patients, or guests, which randomly occurred on the hallway and
had no knowledge about the robot’s deadlock recognition. In this test run, we
observed that most bystanders were considerate towards the robot and let it first
pass. Only some bystanders took the initiative resulting in the robot to give way.
Hence during the remaining 700 m, we additionally informed two test subjects
with normal mobility about the deadlock recognition, but without insight to the
technical details, and instructed them to actively obstruct the robot by crossing
its way. Thus, we obtained more variability in the deadlock situations and a
better assessment of the overall robustness. How they crossed the robot’s way
were up to the test subjects. Each bystander or test subject which crossed the
robot’s way in a 2 m radius was considered as potential source of a deadlock and
contributed to one instance in the confusion matrix shown in Table 1.

6.1 Discussion and Future Works

In total 157 persons were potential sources of deadlocks. From these 157 persons,
35 persons caused deadlock situations at narrow passages with further division in
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Predicted class

Proceeding Queueing Waiting

Ground

Truth

Proceeding 96 19 7
Queueing 0 12 3
Waiting 1 1 18

Table 1: The confusion matrix containing the experimental results. Each instance in a
row correspond to one situation class actually occurred during the experiments. The
columns correspond to the predictions made by our approach.

15 queueing and 20 waiting situations. Out of these 35 deadlock situations only
one was misclassified as uncritical situation (true positive rate of 97 %). From
these 34 correctly classified deadlock situations, 30 were assigned to the correct
deadlock type (accuracy of 88 %). However, 26 of 122 uncritical situations were
classified as deadlocks (false positive rate of 21 %).

The performance of the deadlock recognition strongly depends on the accu-
racy of the situation describing features which in turn depends on the person
tracker, the narrow passage detection, and the space conflict prediction. Analysis
of the false positives revealed that 19 of 26 false positives are caused by false de-
tections of the person tracker. In these cases, the deadlock recognition assumed
to have a conflicting situation with a person, even though there was no person
present at all. The remaining 7 false positives were caused by dynamic obstacles,
e.g. moving persons or objects moved by persons. If a dynamic obstacle causes a
narrow passage, the narrow passage itself also has a movement. Since the narrow
passage detection uses the navigation map which currently is not yet able to dis-
tinguish dynamic obstacles, this movement could not be considered in the space
conflict prediction and leads to false predictions. Surprisingly, the linear motion
model used in the space conflict prediction and neglecting the uncertainty in
the qualitative spatial features only have little influence on the recognition per-
formance. This can be explained by the structure of the test site which mainly
consists of long and narrow corridors. In this environment, the movement and
space is already restricted. Thus, a simple linear motion model leads to good
predictions, and the extracted features have only little uncertainty.

In future works, we are going to reduce the false positive rate by improving
the person tracker and the narrow passage detection. To be applicable for com-
plex environments, a more elaborate motion prediction and the consideration of
the uncertainty in the recognition process is needed. Furthermore, the human
perception about the robot’s behavior need to be evaluated more specifically to
get better insights to the courtesy of the robot. These evaluations should also be
conducted over a longer time period, when the bystanders get used to the robot
and renounce to act courteously in front of deadlocks.
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