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Abstract—Robust person detection is required by many com-
puter vision applications. We present a deep learning approach,
that combines three Convolutional Neural Networks to detect
people at different scales, which is the first time that a multi-
resolution model is combined with deep learning techniques in the
pedestrian detection domain. The networks learn features from
raw pixel information, which is also rare for pedestrian detection.
Due to the use of multiple Convolutional Neural Networks at
different scales, the learned features are specific for far, medium,
and near scales respectively, and thus, the overall performance
is improved. Furthermore, we show, that neural approaches can
also be applied successfully for the remaining processing steps
of classification and non-maximum suppression. The evaluation
on the most popular Caltech pedestrian detection benchmark
shows that the proposed method can compete with state of the
art methods without using Caltech training data and without fine
tuning. Therefore, it is shown that our method generalizes well
on domains it is not trained on.

I. INTRODUCTION

Detecting persons in images at high accuracy is indispens-

able for a wide range of applications, including pedestrian

detection for car assistance systems [1], person detection

for automatic surveillance video analysis [2], and potential

user recognition for human robot interaction [3]. Therefore, a

person detector should be generic and applicable to several

domains. In the last years, a lot of approaches have been

presented using different advanced hand-crafted features. Re-

cently, deep learning approaches supplant these methods by

learning superior features data-driven. Following this trend, we

present an approach that is trained on a large dataset including

samples from several domains. Therefore, it can cope with the

state of the art without fine tuning on a specific benchmark.

We implemented all processing steps, i.e., feature extraction,

classification, and non-maximum suppression by means of

Convolutional Neuronal Networks. Therefore, we can claim

that it is sufficient to use neural approaches only.

II. RELATED WORK

Visual Pedestrian detection is a wide field of research with

a large range of approaches, developed over recent years.

According to [4], the approaches can be divided into three

families of solutions:

• Full body detection methods applying feature selec-
tion: Decision Forest (DF) approaches [5], [6] typically

generate a very large pool of features during the training

phase. Therefore, they systematically select sums over

Fig. 1: Person detections by Convolutional Neural Networks

at multiple scales shown as red, blue, and green boxes with

overlaid network output.

rectangular regions [7] or haar like features [8] over

different channels of the input image. AdaBoost is then

used to train a classifier while it is simultaneously finding

the best features for the classification problem.

• Body part detectors: The philosophy of deformable parts

models (DPM) [9], [10] is to detect smaller patches, e.g.

a leg or head of a pedestrian and to combine them in

relation to their spatial dependencies. These approaches

usually use gradient features for part description and a

star model to the root of the person to model spatial

relations.

• Deep Learning approaches: The family of deep learning

(DL) approaches make use of deep neural network archi-

tectures to learn features rather than using designed ones

either from raw pixels [11] or edge and color channels

[12], [13].

A well known generic option for object detectors taken up

by us is the usage of multi-resolution models. Since features

of the same object class differ with the distance to the sensor,

it is favorable to train different classifiers for different image

resolutions. This improvement was successfully adapted to DF

[5], [14] and DPM [15], [9] but is not yet exploited by deep

learning approaches.
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Fig. 2: Processing chain in the application phase. To create the resolution pyramid, the input image is scaled by a factor of

0.9057237 to exactly half the image size after seven scales. Thus, each of the three CNNs has to process seven scales. The

near scale CNN (red box, second from left) additionally processes smaller scales to detect larger persons. The classification

results are stacked and non-maximum suppression1 is applied to find the best fitting positions and scales for all persons in the

scene. Finally, detections are post-processed to remove some false positives.

Our contribution is to combine a multi-resolution model

with deep learning techniques using raw pixel information as

input. Therefore, we are able to learn problem-specific features

for every resolution without any feature design decisions.

Since the data used for training and evaluation have a huge

impact on the quality of the detector, the large but challenging

Caltech dataset [1] has evolved as the standard benchmark for

pedestrian detection. In [4] it is shown that nearly every top

performing approach on the Caltech benchmark uses Caltech

training samples while those who do not perform significantly

worse. Hence, often approaches tend to be fine tuned on this

dataset but do not generalize well. We show that it is possible

to achieve top performance on the Caltech dataset without

using Caltech training data and thereby generalize better on

other domains.

III. MULTI-SCALE PERSON DETECTION BY CNNS

To detect persons at different scales using a sliding window

approach, there are three possibilities:

• Using a resolution pyramid and apply a single detector

to each scale.

• Using several detectors for finding persons with different

sizes and apply each of them on the non-scaled input

image.

• Using a hybrid approach with few detectors for finding

persons of different sizes and apply them to parts of the

resolution pyramid.

We decided in favor of the hybrid approach, known as

multi-resolution model, that uses a resolution pyramid in

combination with detectors at different scales. Thus, it is fast

in the application phase, and the number of neural networks

to be trained is manageable.

A. System Overview

Our approach uses three Convolutional Neural Networks to

handle different scales. We trained these networks on cropped

images showing persons (positive class), other objects, and

typical false detections (e.g. sub-images containing only parts

1For the basic idea and an overview on non-maximum suppression, we
refer to [16].

of a person or persons that fill only parts of the image section

= negative class). After network training, fully connected

layers were converted to convolutional layers to be able to

process images of any size without the need to shift a sliding

window to several locations. Thus, we achieve a great speedup

in the application phase.

Fig. 2 shows the processing chain of the application phase.

The requirements and design decisions for this network archi-

tecture are described subsequently. Each of the Convolutional

Neural Networks works on multiple scales of the resolution

pyramid. For each image scale, an output map is calculated.

High neural activations suggest that persons are present in that

region of the image (see Fig.1). When these classifications

have been done, the full output pyramid can be constructed.

Then, a 3D non-maximum suppression (NMS) is applied to

find persons in the scene and at the best fitting scale. For NMS,

we implemented an approximation of the mean-shift algorithm

as a single 3D pooling layer. In a last step, we post-process

all detections. Therefore, we filter out detections that do not

fit the ground plane and those ones, that do appear only once

in consecutive frames.

For implementation, we used the Theano framework [17],

[18] in combination with Keras2. The hardware, used for

training, is a PC with a Core i7 CPU, 16 GB RAM, and a

single NVIDIA Titan X GPU.

B. Related Work: Multi-Scale Neural Networks

In recent work, there are some neural approaches that

address the task of object recognition in multiple scales, which

in the following will be described briefly. One part of ap-

proaches use special pooling layers to represent feature maps

at different scales, e.g. [19] apply pyramidal pooling layers.

In [20] the outputs of multiple layers are connected with

fully connected layers to represent features of different scales.

Another part of approaches apply multiple sub-networks with

identical topology to differently scaled input images. In [21]

these sub-networks are fused by connecting them at the fully

connected layers. In [22] the fusion is done later by connection

at the softmax layer. The approach most similar to ours is [23]:

2Keras: Deep Learning library for Theano and TensorFlow http://keras.io/
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(a) CNN for detecting persons with a height of 128 pixels. It processes near scales and, thus, detects persons of height 80 pixels
and larger.
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(b) CNN for detecting persons with a height of 64 pixels. It processes medium scales and, thus, detects persons of height
40–79 pixels.
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(c) CNN for detecting persons with a height of 32 pixels. It processes far scales and, thus, detects persons of height 20–39 pixels.

Fig. 3: Convolutional Neural Network topologies for detecting persons at different scales.

Multiple CNNs that are applied to different scales produce

multiple output maps that encode positions where objects of

interest are likely to be. Then, all maps are scaled to the same

size to make them comparable. Finally, a complex refinement

step is applied to find out where the objects are and at which

scale. In contrast, we use a top down design to construct

the networks for the differently scaled inputs such that their

output maps are easily comparable. Therefore a simple 3D

max pooling is sufficient to locate the persons in the input

image. Details will be described in the following.

C. Network Architecture and Processing Chain

The objective of the network design is to get network

outputs for different scales that are easily comparable such that

a 3D NMS is sufficient to locate persons in the input image.

The outputs would be comparable if a single network would

produce all output maps. But a single network would not

be flexible enough to detect persons at all scales adequately.

Therefore, we decided in favor of a collection with three

CNNs to detect persons at near, medium, and far scale,

each producing parts of the output pyramid. The three CNNs

process input image patches of different size, so each one

specializes on detecting persons of a specific size. However,

in order to get output maps that appear to be produced by the

same network a proper network architecture for each of the

networks must be chosen.

The input patch sizes for the three networks are chosen

as follows: The far scale CNN processes image patches of

height 32 pixels. It is applied to several scales and, thus, can

detect persons of height 20–39 pixels. The medium scale CNN

detects persons twice that size. Thus, its inputs are image

patches with a height of 64 pixels. Therefore, it is responsible
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for detecting persons of height 40–79 pixels. The near scale

CNN again detects persons twice the size of the medium scale

CNN. Its input patches are 128 pixels high. Thus, it detects

persons who are at least 80 pixels high. To apply the scheme

presented above, the resolution pyramid is scaled by a factor

of 0.9057237 to exactly half the image size after seven scale

layers, and each of the three CNNs processes seven scales as

shown in Fig. 2. The near scale CNN additionally processes

smaller scales to detect larger persons.

If this scheme would be applied using identical architectures

for all CNNs, the size of the output maps in the application

phase would not match the required size. The medium scale

CNN would produce the same output size for an input image

as the near scale CNN. This would be caused by identical

filter and pooling sizes that are applied on the whole image

in the application phase. The expected output size for the

medium scale CNN would be twice the size of the near scale

CNN’s output. In our case, this can be achieved by using

one pooling layer less3. Therefore, the near scale CNN (input

height 128 pixels) has three pooling layers, the medium scale

CNN (input height 64 pixels) two pooling layers, and the far

scale CNN (input height 32 pixels) has only one pooling layer.

The final network topologies are shown in Fig. 3. All neurons

use scalar product activation and a ReLU output function. The

input coding is described in the next section. The output is a

softmax layer with two neurons representing non-persons and

persons.

D. Input Coding

As input we take the pixels of the image to be

classified in RGB color space. We normalize the input

such that a black pixel is represented by three neurons

(RGB) with activation -1, white ones by three neurons

with activation 1, and medium gray pixels by three neu-

rons with activation 0. Thus, the latter have no influ-

ence to subsequent layers. We decided in favor of this input

coding to accomplish that normalization has zero mean.

By gray world assumption the expected mean color is gray.

Additionally, we use zero padding for training samples that

do not fill the complete patch (e.g. when persons are near

the camera and legs are outside the image). Thus, the added

regions do not have any influence on subsequent layers.

E. Network Training

For training the Convolutional Neural Networks, we use

cropped images of size 128 × 48 showing both persons and

non-persons. Therefore, we first composed a large database

incorporating multiple benchmark datasets (see below). Train-

ing images were identical for each of the three Convolutional

Neural Networks but are downscaled for two of them (to

64× 24 and 32× 12 respectively).

3Theoretical background: The number of pooling layers P affects the stride
S in the original image (S = 2P ) and thus, the size of the network output.
Note that this formula is only valid if the convolution filters are applied with
a stride of 1 and the pooling regions have a size of 2×2 with stride 2, which
is fulfilled in our CNNs.

1) Training Data: To get a large, versatile, general purpose

training dataset, we combined 22 datasets from pedestrian

detection and person re-identification domain. Tab. I lists all

datasets used here: Positive samples (persons) are drawn from

all datasets utilized. The number of images taken from each of

the datasets is listed in Tab. I. We took care to avoid sampling

too many images of identical persons. Therefore, if more than

20 images per subject were available, we removed samples by

k-medoids4 clustering based on color histograms of the image

patches to ensure different lighting and other environmental

conditions.

Negative samples were taken from the INRIA [31], NICTA

dataset [35] and from publicly available images without

persons showing landscapes and urban scenes. To simulate

typical false detections, we extracted mis-aligned patches of

the SAIVT-SoftBio dataset [40] showing at most half of a

person. Therefore, we used the ground truth and shifted the

bounding boxes by half in four directions (up, down, left,

right). Additionally, we scaled the boxes in half and doubled

their size to incorporate incorrect scales. This ensures that the

networks learn to separate persons such that all persons stand-

ing nearby can be detected when non-maximum suppression

(NMS) is applied.

To also collect real false detections that are made by state

of the art detectors (we used [10], [14] and [48]), we recorded

data with a mobile robot. The autonomous robot drove through

a clinic [49], [50] and a faculty building [51] when no people

were present, so every detection represents a false detection.

Then, the robot drove through the corridor of the clinic

when lots of persons were present. A laser-based detection

approach [52] and the map of the scene were used to check the

detections for plausibility [3]. We additionally checked them

manually. These negative samples shall help the networks to

avoid typical errors.

Summarized, we collected a relatively large training dataset

containing 100,107 positive and 628,636 negative samples.

This is crucial to learn proper features and classifiers by deep

learning.

Note that only 5.6% of the positive samples are drawn from

domains that are similar to our testing benchmark dataset

Caltech. These are the 5,644 samples from PedCut, PPSS,

and PRID450S dataset (see Tab. I). Furthermore, none of the

negative samples are drawn from domains similar to Caltech.

Thus, our training dataset differs significantly from the Caltech

dataset. Hence, if the trained network works well on Caltech,

we can claim that it generalizes well on domains it is not

trained at.

2) Parameter Optimization and Regularization: As training

algorithm, we use stochastic gradient descend (SGD) with

mini-batches and momentum. To avoid overfitting, we use

dropout for regularization [53], [54]. It is applied to all layers,

except the input layer, using relatively large dropout rates. This

was found to be necessary, since the error landscape seems to

4K-medoids clustering is similar to k-means clustering but with input
samples as centroids, see [46].
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Dataset Short description Location Camera view #images Source
3DPeS 3D People Surveillance Dataset: People viewed from different

angles, good resolution, no occlusions, different lighting
condition

Campus,
outdoor

Surveillance 866 [24]

CAVIAR4REID Clips from shopping center in Portugal of CAVIAR project:
People captured with low resolution camera, some occlusions,
frontal, side, and back views

Mall,
indoor

Surveillance 1220 [25]5

CUHK01 Students walking on campus, observed from different views,
few occlusions

Campus,
outdoor

Surveillance 4403 [26]

ETHZ Pedestrians in pedestrian zone observed over longer timespan,
from low to high resolutions, some occlusions, mainly frontal
and back views

Pedestrian
zone,
outdoor

At ground level 2784 [27], [28]

GRID Surveillance camera footage of a subway station, bad image
quality, very noisy, very dark

Subway,
indoor

Surveillance 1275 [29]

iLIDS Surveillance camera footage of an airport terminal, very
different perspectives, low resolution, noisy images

Airport,
indoor

Surveillance 476 [30]

INRIA Photo collection, holiday and sports activities, mainly urban
scenes

(varies),
outdoor

At ground level 1704 [31]

Mall crowd counting Lots of far away persons in low resolution, many occlusions Mall,
indoor

Surveillance 1356 [32]

Market-1501 Good image quality, persons in several different poses Urban,
outdoor

Surveillance 25259 [33]

MIT Pedestrians recorded in good resolution, only frontal and back
views, no occlusions

Urban,
outdoor

At ground level 888 [34]

NICTA Large collection of pedestrians in urban scenes Urban,
outdoor

At ground level 44223 [35]

PedCut Daimler pedestrian segmentation dataset, pedestrians walk near
streets

Car
traffic,
outdoor

At ground level 785 [36]

PPSS Pedestrian Parsing in Surveillance Scenes Dataset, pedestrians
walking near streets

Car
traffic,
outdoor

Surveillance 3961 [37]

PRID450S Person Re-ID 450S, Pedestrians crossing street, side views,
bad color calibration of images

Cross-
walk,
outdoor

Surveillance 898 [38]

RAiD Re-identification Across indoor-outdoor Dataset, different
lighting conditions, no occlusions, good image quality

Campus,
indoor,
outdoor

Surveillance 865 [39]

ROREAS ROREAS-robot driving through a rehab clinic, patients using
walking aids

Clinic,
indoor

At ground level 2501 [3]

SAIVT-SoftBio Surveillance camera footage, good image quality and resolution Airport,
indoor

Surveillance 3040 [40]

SARC3D Persons in four poses (front, left, right, back view), no
occlusions, good image quality and illumination

Campus,
outdoor

Surveillance 200 [41]

Town Centre Pedestrians in urban scenes, no occlusions Pedestrian
zone,
outdoor

Surveillance 878 [42]

V-47 People in office, different views (front, side, back), many
partial occlusions

Office,
indoor

At ground level 662 [43]

VIPeR Pedestrians, no occlusions, varying lighting conditions Urban,
outdoor

At ground level 1264 [44]

WARD People walking on campus, good image quality, no occlusions Campus,
outdoor

Surveillance 599 [45]

TABLE I: Collection of datasets used to extract positive samples (images of persons).

be very cluttered with lots of suboptimal local minima. The

dropout rates increase from input to output layer with highest

dropout rates of 0.5 for the fully connected layers. For each

layer’s dropout rate, we refer to Fig. 3.

The applied SGD training is controlled by three parameters:

learning rate, mini-batch size, and momentum. These param-

eters were chosen as follows:

• Learning rate: starting at 0.01, linear decreasing to 0.0001

within 2,000 epochs

• Mini-batch size: 256

5Extracted from the CAVIAR-Dataset:
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

• Momentum: relatively high, starting at 0.9, linear increas-

ing to 0.999 within 2,000 epochs

F. Reshaping CNNs for Application Phase

After network training, we reshaped the CNNs such that

they are applicable to different image sizes. Therefore, we first

removed all dropout layers and used the linear output of the

last layer instead of the softmax output. Then, the weights of

the fully connected layers were reshaped to three dimensions

such that they can be used as filter kernels. This avoids the

need of shifting the sliding window to several positions and,

thus, speeds up the processing in the application phase. For the

first fully connected layer this can be done easily by ignoring
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Fig. 4: Evaluation results under reasonable conditions (unoccluded and partially occluded persons taller than 50 pixels) on the

Caltech Pedestrian Dataset. Our approach, referred to as CoopCNN, is compared to the best methods in [47] and the standard

methods Viola & Jones (VJ) and HOG (a) and to other deep learning approaches (b). For a visualization of additional state of

the art methods see Fig. 8.

the step shown as ’flatten’ in Fig. 3. This and succeeding layers

produce a number of feature maps that equal their number of

neurons. Thus, reshaping all other layers is easy, too. Finally,

the softmax function was applied to the two linear output

maps.

G. Non-Maximum Suppression

When CNNs are reshaped, they can be used directly to

calculate output maps from differently scaled full images

instead of patches. Then, the outputs of the three CNNs can be

stacked to create the output pyramid. Finally, non-maximum

suppression has to be applied to find the best positions and

scales for all persons in the scene. Therefore, we implemented

a single 3D max-pooling layer as approximation of the mean-

shift algorithm.

The 3D pooling is applied to the scale of interest and the

respective five scales above and beneath, each filtered with a

2 × 2 2D max-pooling with stride 1 × 1 and one pixel zero

padding (to avoid aliasing affects) and then rescaled to the size

of the output of the scale of interest. For max-pooling, we use

a pooling region of depth 11 (scales), width 3 (x-direction)

and height 7 (y-direction) with zero-padding of 0, 1, and 3 in

scale, x-, and y-direction respectively. The values in x- and

y-direction are chosen because of the fact that persons can

appear next to each other (x-direction) but unlikely above each

other (y-direction). If the maximum is found within the scale

of interest, a person is detected in that scale at the position

of the maximum. The position in the output map can then be

converted to the position in the original image by computing

the output neurons’ receptive field in the input layer, which

matches the detected person’s bounding box. For our network

architecture, this is easily done considering the stride as given

by the number of max-pooling layers in the responsible CNN

at this scale (see Sect. III-C).

H. Post-processing

As post-processing steps, we filter out detections that do not

fit the ground plane and those ones that do appear only once

in consecutive frames.

1) Ground Plane Assumption: Assuming that all people

stand on the ground, the height is a linear function of the base

point of the hypothesis’ bounding box. Therefore, for each

detection we calculate the expected height ĥ from the base

point (only y-coordinate) and compare if the detected height

hdet is within the interval ĥ
1.6 . . . ĥ ·1.6. If not, we remove this

detection.

2) Temporal Filtering: Real applications as well as most

datasets (e.g. Caltech, see Sect. IV) provide videos instead

of incoherent images. To incorporate the temporal context, we

filter out detections that are found in the considered frame only

but not in the three frames before and after. Correspondences

are found by comparing the ratio of the overlap to the union

of the bounding boxes and check if it is above a threshold of

0.5 (same as used in Caltech evaluation protocol).

IV. EXPERIMENTS

For evaluation of the proposed method, we choose the

most popular Caltech Pedestrian Detection Benchmark [1]. Its

training data are not included in our training data to show that

we have designed a Convolutional Neural Network collection

that is able to cope with the state of the art on any application

without fine tuning.

The Caltech dataset consists of video streams recorded from

a car driving through urban streets. The objective is to detect

all pedestrians who are at least 20 pixels high. Due to bad

image quality, low resolution, lots of occlusions, and diverse

backgrounds, it is one of the most challenging pedestrian

detection dataset and, thus, the most popular benchmark.

The current evaluation protocol [47] will be explained

briefly in the following. Evaluation is performed for every
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(f) Partial occlusion

Fig. 5: Detailed evaluation results under different conditions on the Caltech Pedestrian Dataset. Our approach is referred to as

CoopCNN. (a) Performance on unoccluded persons taller than 80 pixels, (b) on unoccluded persons of size 30–80 pixels, and

(c) on unoccluded persons of size 20–30 pixels. (d) Overall performance for all annotated pedestrians taller than 20 pixels that

are not fully occluded. (e) Part of the reasonable evaluation (persons taller than 50 pixels) where persons are unoccluded and

(f) where they are partially occluded.

30th video frame (or one image per second respectively).

Assignments of detections with the ground truth are found by

calculating the ratio of the intersection of two bounding boxes

to the union of the boxes. If the ratio is above a threshold

of 0.5, the detection is considered to be a match. If multiple

boxes match the ground truth, only the one with the highest

confidence is taken. Assigned detections are true positives,

not assigned detections are false positives, and not assigned

ground truth boxes are false negatives.

The relevant scenario, referred to as ’reasonable’, is defined

as follows [47]: Persons’ heights have to be at least 50 pixels.

Both unoccluded and partially occluded persons are consid-

ered. Heavily and fully occluded persons are excluded from

evaluation.

We used the publicly available MATLAB code for evalu-

ation. It constructs the detection error tradeoff (DET) curve

(which equals the ROC curve with flipped ordinate) with the

abscissa as false positives per image (fppi) and the ordinate as

miss rate (1 - true positive rate) and shows this on a double

logarithmic plot. The most relevant working point is defined

as position where fppi = 10−1, which means, only one false

detection every ten images is allowed. The miss rate for each

of the detectors at this working point is shown in the legend.

For further evaluation details, we refer to [47].

Fig. 4a shows the detection capability of our approach,

referred to as CoopCNN, in comparison to the best state of

the art approaches evaluated in [47]. Fig. 4b compares the

proposed method with other deep learning approaches that also

excluded Caltech training data from their training. It can be

seen that our approach performs better than the state of the

art and significantly better than the deep learning approaches

ConvNet [11] and DBN-Isol [13] in the relevant range of

fppi = 10−1 . . . 100. Note that the computer vision approaches

evaluated in [47] use hand-crafted features but train a SVM for

classification in a similar way we train our networks. The other

deep learning approaches also use a fully supervised training

scheme. So, the kind of training is comparable. However, the

training datasets differ.

Fig. 5 shows a detailed analysis of the performance. Our

method is compared to the state of the art in several categories:

• Near scale (Fig. 5a) includes only large persons with

a height of 80 pixels and above that are not occluded.

The proposed method is the second best. The only better

approach benefits from a multi-frame tracking approach.

• Medium scale (Fig. 5b) includes only medium sized per-

sons with a height of 30–80 pixels that are not occluded.

Our method is best at the relevant working point and

within the best approaches for more false positive per

image.

• Far scale (Fig. 5c) includes only small persons with a

height of 20–30 pixels that are not occluded. As other

approaches, our method clearly fails.

• Overall (Fig. 5d) includes all persons with a height of at

least 20 pixels that are not fully occluded. Our method is
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Fig. 6: Examples of Caltech dataset. Top row: Detections of the proposed method are shown in red and blue to highlight which

CNN was responsible for the detection (near or medium scale CNN). Center row: Linear network output for larger persons

overlaid. Red regions represent a high output for person class while yellow/green/blue regions represent a low output in this

scale. Bottom row: Linear network output for smaller persons overlaid. Note that visualizations of linear outputs for different

scales and images are scaled separately such that the highest activation is show dark red and the lowest activation as blue. After

application of the softmax function and non-maximum suppression, only the dark red activations remain as person detections.

the best in the relevant range of fppi = 10−1 . . . 100.

• No occlusion (Fig. 5e) shows the part of the rea-

sonable evaluation where persons are not occluded.

Again, our method is the best in the relevant range of

fppi = 10−1 . . . 100.

• Partial occlusion (Fig. 5f) shows the part of the reasonable

evaluation where persons are partially occluded. In this

category our method clearly outperforms the state of the

art. The benefits of the proposed negative sampling for

the training dataset become apparent.

To evaluate the visual results, in Fig. 6 detections are shown

for four examples of the Caltech dataset. Additionally, the

linear network output is shown for different scales. The three

cooperative Convolutional Neural Networks perform very well

in detecting nearly all persons at different scales in the scene

while false positive detections are not present.

Fig. 7 shows the 64 filters of the first convolutional layer

learned by the near scale CNN. The network learned typical

color filters and textural filters in different color channels. It

is remarkable, that it additionally learned some specialized

filters. Blue boxes highlight filters that search for skin color

and edges of elliptical structure simultaneously. These can be

used to find the contour of a face. Red boxes highlight filters

that search for defined lines which may be used to find facial

structure. Note that these filters are very similar to haar-like

features learned by the famous Viola & Jones face detector.

The face position was not labeled in the data but were learned

as underlying structure that strongly indicates the presence of

a person. Since none of the filters is large enough to detect a

face at a whole, the network learned to combine multiple part

features to master this hidden task of finding faces.

As a consequence, we observed some typical false detec-

tions that strongly respond to round (face-like) objects with

Fig. 7: Filters of the first convolutional layer learned by the

near scale CNN. Left: The 64 learned filters. Right: Sample

image from the INRIA dataset to set the filter size in relation

to the patch size. Red and blue boxes highlight specialized

filters. For two filters good fits in the sample are show.
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(a) Comparison to state of the art
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(b) Comparison to deep learning approaches

Fig. 8: Evaluation results under reasonable conditions (unoccluded and partially occluded persons taller than 50 pixels) on the

Caltech Pedestrian Dataset on a wider fppi range than in Fig. 4. Additionally, methods that are not listed there are shown. Our

approach is referred to as CoopCNN.

red shades (skin-colors) in the upper third of the patch. In

the Caltech road traffic scenario, these are back lights of

cars and red traffic lights. These objects caused about one

third of all false positive detections. Note that green traffic

lights do not lead to false detections. Other typical false

detections result from very structured regions with defined

edges and simultaneous color changes. These kind of inputs

are under-represented in the training data. Specific re-training

may eliminate these weaknesses of our detector. This will be

the focus of our future work.

The computation in the application phase on a NVIDIA

Titan X GPU took 2.061 seconds on average per image of

size 640×480 pixels when persons of at least 20 pixels height

should be detected. In future work, we plan to reduce this time

dramatically by cutting the resolution pyramid to only relevant

regions based on the ground plane. Additionally, if far scale

persons are not relevant for the application, the computation

time can be significantly reduced to 0.594 seconds, and if only

near scale persons matter (height ≥ 80 pixels), the computation

time can be reduced to 0.231 seconds. In comparison to the

state of the art methods evaluated in [1], our method is the

second fastest, although this comparison is not fair, since our

method runs on a high performance GPU and all others on

a CPU. But the method with the next best miss rate, Multi-

Ftr+Motion [55], is more than 100 times slower then the pro-

posed method and thus, would not catch up by using a GPU.

V. CONCLUSION

In this paper, we have presented a deep learning approach

that combines three Convolutional Neural Networks to detect

people at different scales. This is the first deep learning

implementation of a multi-resolution model in the pedestrian

detection domain. The networks learn features from raw pixel

information. Due to the use of multiple Convolutional Neural

Networks at different scales, the learned features are specific

for the respective resolutions the particular CNNs are applied

to, which improves the performance significantly. Furthermore,

we successfully applied neural approaches for the remaining

processing steps of classification and non-maximum suppres-

sion. The evaluation on the most popular Caltech pedestrian

detection benchmark shows that the proposed method beats

state of the art methods although it does not use Caltech

data for network training. Other deep learning approaches that

exclude Caltech training data as well are outperformed signif-

icantly. Detailed experiments show that the proposed method

performs best or second best on all sub-evaluations under

varying conditions. It is far the best method when persons are

partially occluded. The fact that we can compete with the state

of the art without training on scenario-specific data shows that

the proposed deep learning approach generalizes very well to

unseen domains.
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