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Abstract

Mobile robots following and guiding stroke patients during their rehabilitation program are in the focus of our research
in rehabilitation robotics. To be able to act autonomously, it is crucial for the robot to extract long and precise movement
trajectories of the patients. But already keeping track on one specific person in a crowded dynamic environment is
inherently hard, since multi-sensor tracking as well as appearance-based re-identification are challenging tasks in real-
world environments. Therefore, we aim for developing a coupled person tracking system that combines user tracking
by spatial proximity with appearance-based user recognition. We analyzed all subcomponents of such a system and
identified four essential parts, that significantly influence the overall performance. We show, that it is essential, to (1)
accurately detect all persons in scene, (2) track people as long as no ambiguities occur, (3) visually re-identify the user
otherwise, and (4) reduce the search space for re-identification to just relevant hypotheses using spatial proximity as
criterion. In our experiments, we show, that by addressing all these aspects, our system significantly outperforms each

approach, that excludes just one of these important parts.

1 Introduction

A recent trend in late stages of stroke patients’ rehabili-
tation is the so called self-training. It includes the unre-
stricted exploration of patients in the clinic, re-training
both their physical and cognitive skills. Our robot-
assisted training approach aims at supporting this process
by guiding the patients to pre-defined memorable places
in the rehab center. The robot shall also serve as compan-
ion, to address the patients’ insecurity and anxiety ("Am
T able to do that", "Will I find my way back?") which are
possible reasons for not performing or neglecting self-
training.

In the following, a sketch of a typical walking training
session described in [1]] is given. The training session is
initiated either by the robot by sending a text message to
the phone in the patient’s room or optionally by the pa-
tient, who can call the robot by telephone. The robot then
autonomously drives to the patient’s room and takes a
non-blocking waiting position at the door. It observes the
corridor for a person emerging from the respective room
door and starts a verbal greeting. Then the patient logs in
via touching a start button on the screen as asked by the
robot. After that, the re-identification module learns the
patient’s current appearance.

Based on the training progress in preceding training ses-
sions, the patient can choose the path for the upcoming
walking training. Then, the robot follows the patient in a
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Figure 1: Typical situation of a mobile robot following a
patient, where a track is cut. The robot has to decide, if
the new found track still corresponds with the user.

polite distance. On the way along the walking session,
the robot points out possibilities for having a rest and also
remarks orientation features (e.g. pictures on the wall,
plants, etc.) which are helpful for finding the way back
on longer tours. Thus, the patient can either go on or take
a seat to revive. When the user appears to be exhausted,
the robot suggests to finish the training and going back to
the patient’s room.

In this scenario, to be able to act autonomously, it is cru-
cial for the robot to keep track of the patient as precise
and long as possible. In the field of mobile robotics, this
problem is often treated as tracking approach. Different
cues are used to enable long person tracks. However,
sometimes tracks have to be cut due to temporal fully oc-
clusions, or to avoid ID switches, which would result in a
wrong navigation behavior of following wrong persons.
In these situations, in recent work, tracks are either con-
nected by spatial distance of track hypotheses or by vi-
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sual re-identification. In this paper, we show, that none of
them is capable of creating long person tracks on its own,
due to limitations of both approaches: The assignment by
geometrical proximity cannot avoid ID switches, in case
of other persons nearby. On the other hand, vision-based
re-identification often faces problems in case of changing
illuminations. Therefore, we propose a coupled system,
that decides in each situation, which merging approach is
appropriate, and thus, tries to overcome the drawbacks of
each approach alone.

2 System Design for Tracking

Person tracking on a mobile robot as well as visual re-
identification are challenging tasks in crowded real-world
environments. Our System aims to bring both fields of re-
search together and shows that they can benefit from each
other.

2.1 System Overview

Our target platform is a SCITOS G3 which was designed
for the clinical training scenario. Two of our experimen-
tal platforms, named Roreas and Ringo, are shown in
Fig. 2} The relatively small footprint size of 45 x 55cm
with a total height of 1.5 meters allows them to inter-
act safely under limited space conditions. For navigation
tasks, like path planning and localization, the robots are
both equipped with two 270° SICK S300 laser range find-
ers, mounted 20cm above ground. Additionally, three
Asus RGB-D cameras (two in driving direction and one
backwards) are used to avoid obstacles outside the lasers’
field of view. The sensors used for tracking and re-
identification are the laser range finders and an omni-
directional color vision system. While the system on
Roreas consist of four pEyel22xLE-C cameras, Ringo
possess an experimental system with six cameras and
fisheye lenses. The cameras were mounted on top of the
robots’ heads, to ensure a large field of view for the de-
tection and tracking task. Both robots are equipped with
an i7 quad core processor with 3.2 GHz exclusively for
person detection and tracking. Therefore, even the highly
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Figure 2: Both robot platforms used as walking assis-
tants including their equipment used for person tracking,
person re-identification, navigation and HRI.

computationally expensive approaches of our system can
be computed in real time.

Fig. 3 gives an overview of the coupled person detection
and tracking system. All sensor data are processed asyn-
chronously by person detection modules, referred to as
detection cues. The output generated by these cues is pro-
jected into a global world-coordinate system and fused by
the tracking module to hypotheses which correspond with
persons in the local surroundings of the robot. The track-
let association module decides which hypothesis corre-
sponds with the person to guide or follow, which is than
passed to the HRI module. In ambiguous cases, the vi-
sual re-identification module is asked to decide, which
hypothesis corresponds with the current user.

2.2  Sub-Modules

In the following, we briefly describe the sub-modules of
our tracking system.

| Global map |

Kalman-filter-based

= Sensors 5
%\ Detection cues
Visual person
= — detection

——| Visual person tracking

Tracking

Transformation |
Hypotheses
. ) Visual person Tracklet Human robot

T re-identification association interaction (HRI)

Figure 3: System overview of all sub-modules and their
connections.
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Human robot interaction (HRI): The scenario-specific
HRI tasks are guiding and following stroke patients to
different destinations in the clinic. These tasks are imple-
mented as part of the navigation system, consisting of a
Dynamic Window Approach (DWA) [2]] and an E* plan-
ner [3]]. Therefore, the module receives the current user
track and navigates the robot, taking the user’s position
into account. The robot adapts its speed according to its
current user to keep a comfortable distance to the user.
To realize a polite accompanying behavior, different tasks
respecting people’s personal space and detection of dead-
lock situations [4] are implemented. Therefore, a reliable
detection [J5]] and tracking [6] of all people in the robot’s
vicinity is necessary. For more details on the navigation
system, we refer to [[7]].

Laser-based person detection: Person detection in laser
scans usually is based on the idea of detecting legs [} 9].
In [5,110], we have shown that it is possible to increase the
detection performance significantly by using Binary De-
cision Trees as weak classifier instead of the previously
used Decision Stumps. Furthermore, it is also possible to
detect persons using walking aids like crutches or walkers
and even people sitting in wheelchairs. Since the opera-
tional setting remains the same as in previous work, we
use the detector of [5] and refer to [, [10]] for evaluation
results.

Visual person detection: In addition to the laser detec-
tions, our system supports different replaceable visual de-
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tection approaches. In this particular walking training
scenario, persons occur in diverse ranges of appearance,
e.g., diverse poses or occlusions at near scale where the
legs cannot be perceived. Therefore, we integrated differ-
ent detection approaches into our system which are able
to detect full views of persons or parts of them. We eval-
uate the scenario-specific performance of all of these ap-
proaches in the experimental section of this paper.

1) VJ detector: The detector of Viola & Jones [11] uti-
lizes haar-like features in a cascade of separate Adaboost
classifiers. For this detector, we make use of three differ-
ent models trained for faces, full-, and upper-body detec-
tions.

2) HOG detector: To detect people by the shape of their
body, we use a full body detector based on Histograms of
Oriented Gradients (HOG) as features with a linear Sup-
port Vector Machine (SVM) as classifier [12]. For this
detector we just use a full-body model.

3) Multi-Class-HOG detector: To detect the upper-body
of a person with HOG features, we make use of the detec-
tor described in [[13]]. This detector uses a tree of linear
SVMs to detect persons while estimating their orienta-
tions.

4) Part-HOG detector: The Deformable Part Model
(DPM) described in [[14] uses HOG features with a root-
filter similar to [[12] in combination with smaller patches
("parts") arranged in a star-structure around the root-filter.
Therefore, it is able to use the high discriminability of the
full-body shape, while handling occlusions sufficiently.
In favor of its real-time capabilities, we use the fast im-
plementation of [[15]].

Visual person tracking: For tracking directly within
image space, we apply a template-based visual tracker
[L6]. Its purpose is to handle video frames, that had to
be skipped by the time-consuming visual detectors due
to real-time requirements. This tracker processes frames
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much faster than in real-time at low computational cost,
and thus can additionally process those frames, that could
not be analyzed by a visual detector.
Kalman-filter-based tracking: Our tracking approach,
is based on [6} [17]]. For hypotheses tracking, we use a 7D
linear Kalman filter with three dimensions for the global
position, three dimensions for the velocity and one di-
mension for the person’s upper body orientation, which
is visually detected [13]]. Additionally, we use informa-
tion from the model of the environment for hypotheses
pruning, so implausible hypotheses inside walls or obsta-
cles are removed.

Tracklet association: To get a long user-specific track,
multiple shorter tracklets need to be connected. For this
tracklet association, we advanced our conservative ap-
proach from previous work [18]]. Conservative refers to
the fact, that the tracklets had been connected by their
spatio-temporal proximity, only if the association was un-
ambiguous without the risk of ID switches. Otherwise,
tracklets of nearby persons were cut, and new tracklets
were initialized by the Kalman-filter-based tracking. In
spite of this conservative ID association, certain events
are likely to cause ID switches or wrong tracks, as for
example persons entering or leaving the robot’s field of
view, people walking close to each other, people not be-
ing observed due to occlusions, and so on. These events
need to be handled with great care, since they cannot be
resolved later on. To avoid ID switches in these cases,
appearance-based visual person re-identification is ap-
plied to resolve the ambiguity. To support this, the search
space for re-identification is reduced to only those per-
sons who could have caused the ambiguity (see Fig. f).
To this end, a decision tree is applied to consider track
IDs, re-identification matching scores, and spatial dis-
tances to the user’s predicted position to decide which
of the candidates is the current user of the robotic coach.
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Figure 4: For tracklet association a decision tree is applied to identify the user from possible candidates in the robot’s

surroundings.
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Additionally, tracklets of people that are confidently iden-
tified as non-user (due to a large difference in the match-
ing score of the visual re-identification in comparison to
the correct match) are excluded from future comparisons,
to speed up processing and avoid later mis-matches in
case of changing illumination or other environmental in-
fluences that affect the person’s appearance.

Person re-identification: For identifying the user in var-
ious poses and from different viewpoints, we have de-
cided in favor of a non-biometric, appearance-based re-
identification approach [[19]. Weighted color histograms
from upper and lower body (WHSV) and Maximum Sta-
ble Color Regions (MSCR), both features of the SDALF
approach [20]], are used to describe the user’s current ap-
pearance. The user template, learned during registration
(see Sect. [T, is compared with reasonable hypotheses by
applying a learned distance metric, that compensates for
changing illumination and partial occlusions. Therefore,
we decided in favor of the kernel-LFDA distance metric
learning method (with modifications described in [19]),
as it showed very good performance on many datasets in
the extensive evaluation of Xiong et al. [21]]. Then, mul-
tiple features are fused at score-level using the PROPER
approach [22]]. Finally, the decision, which person hy-
pothesis represents the current user, is made by a prob-
abilistic voting, considering distance scores of multiple
observations per track and rankings in comparison to
other tracks. Fur further details, we refer to [[19]].
Communication and data exchange: As communi-
cation infrastructure between the modules, we use the
robotics middleware framework MIRA [23]]. To handle
components’ different processing times, this framework
allows the modules to dynamically exchange data of al-
ready past and present points in time as needed. There-
fore, we use the callbacks, where every module receives
a notification when new data arrives, e.g., when a new
image is ready for processing.

3 Experiments

To evaluate the proposed person tracking system, we per-
formed numerous tests with the robot in the rehab clinic,
where the patients are to be coached during their walking
training.

3.1 Experimental Setting

To evaluate the visual detection cues of our system, we
manually labeled data of two complete walking exercises
with real patients by annotating tracks in the global coor-
dinate system. The statistics of this dataset can be seen in
Tab. m Our detection dataset contains 4,985 images and
4,434 labeled persons. Therefore, it is comparable with
the standard pedestrian detection benchmark data set Cal-
tech, which includes 4,024 images and 1,002 person la-
bels in reasonable size (see below) in the test set. During
these exercises, 30 different persons were present in the
surroundings of the robot. While four of these persons
were scientific staff members and occur in both datasets,

Figure 5: Typical examples from our dataset with exem-
plary ground truth and detection shown. Top: the robot
follows a patient walking with a crutch. Bottom: two sci-
entific staff members walk behind the robot to observe
its behavior. Ground truth is shown as a green bounding
box, a detection as a blue one, and a ground truth which
was set to be ignored due to heavy occlusions as red one.
Detections matching ground truth labeled to be ignored
neither count as true positives nor false positives. If none
of the detections matches this kind of ground truth, it is
also not count as false negative (see [24]).

the rest were patients and clinical staff members.

The ground truth data for the visual detections were auto-
matically generated by back-projecting the hypotheses to
the image plane. When persons were occluded from walls
or other persons, and less than 75% of their appearance
was visible, the corresponding ground truth was manu-
ally set to be ignored (see Fig[5). Ground truth boxes
labeled to be ignores are handled as defined in the pedes-
trian detection benchmarking protocol of the widely
used Caltech dataset. So detections in this critical areas
of the images neither count as true positive nor as false
positive. If none of the detections matches this kind of
ground truth, it is also not count as false negative. In those
cases, where the robot’s localization was too inaccurate,
the corresponding frames were also discarded manually
in order to avoid projection errors. The dataset includes
images from all four cameras of the panoramic camera
system shown in Fig. [2] left, recorded with a frame rate
of 2 Hz. To decide which of the different visual detection
approaches is sufficient for our application, we used the
evaluation protocol defined in [24]]. Detections are con-
sidered a match with ground truth if the ratio of intersec-
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tion to union of the two bounding boxes is 0.5 or above.
This means, their overlap needs to be about 66%. If mul-
tiple detections match the same ground truth, the decision
is made by the detections’ confidence scores. Every de-
tection can be assigned to one ground truth at most and
vice versa. Detections and ground truth boxes that are not
assigned, are counted as false positives and false nega-
tives respectively. In [24], all bounding boxes that exceed
image borders are excluded from evaluation. We follow
this protocol, except we do not ignore persons which ex-
ceed the lower image border, since these detections result
from persons standing near the robot and interacting with
it. So this is an important part of our scenario.

We use two subsets for the evaluation. Following the pro-
tocol, the "reasonable" subset as defined in [24] includes
ground truths with a height of 50 pixels and larger while
at least 65% of their bounding box is unoccluded. All
other bounding boxes are labeled as "ignore", and thus,
they are excluded from evaluation (see above). This sub-
set is used to evaluate the overall detection capabilities,
since it contains a good cross-section of person appear-
ances during the whole training exercise. The "partially
occluded" subset as defined in [24] includes just ground
truths where 1% — 35% of their bounding box is occluded.
Unoccluded ground truth bounding boxes are ignored.
Since partially occluded ground truths are mainly caused
by persons standing in close proximity to the robot, where
the legs were out of the camera’s field of view, this subset
is a benchmark for the tracking capabilities during Hu-
man Robot Interaction. In the following, this dataset in-
cluding two exercises is referred to as detection dataset.

exercise 1 | exercise 2 overall
duration 4:11 min 7:42min | 11:53 min
distance 98 m 101 m 199m
other persons 10 20 30
walking aid walker crutch various
images 1850 3135 4985
reasonable gt 1747 2687 4434
unoccluded gt 1356 1919 3275
partially occl. gt 391 768 1159

Table 1: Statistics of our detection benchmark dataset.
gt = number of ground truth labels

For evaluation of the complete tracking system, we ex-
tend this dataset by eight additional sequences. There-
fore, it contains walking trainings of four different pa-
tients using various walking aids. The overall runtime
is 52 minutes, in which the robot drove a distance of 929
meters and encountered 141 other people, including tech-
nical and clinical staff, as well as other patients.

3.2 Visual Person Detection

For adequate user recognition, robust person detection is
essential (see [19]). Therefore, we have to determine the
best person detectors for the addresed scenario first.

Reasonable as defined in [24]
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Figure 6: Detector performances on the reasonable im-
age subset (person height > 50 pixels, occlusion max.
35%), we use as benchmark for the detection perfor-
mance of the whole walking training.

Partial occlusions as defined in [24]
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Figure 7: Detector performances on the occluded subset,
which we use as a benchmark for the detection perfor-
mance when Human Robot Interaction is done.

A comparison of the detection results is given in Fig. [§]
and Fig.[7] We plot the average miss rate against the av-
erage false positives per image on logarithmic axes.

The Viola-Jones detector equipped with the three differ-
ent models for face, full-, and upper-body detections (V.J-
Face, VJ-Full-Body, VJ-Upper-Body) under-performs on
our dataset compared to the other approaches. The per-
formance of the face detector increases on the occluded
dataset, while the full-body detector performs worse. The
upper-body detector has a lower miss rate, but one false
positive detection per second in a single camera, which
is not acceptable for this scenario. Please note that, since
this is an cascaded approach, the results are just plotted
as a single point in the diagrams.

The Multi-Class-HOG detector for detection and orien-
tation estimation under-performs as well on both of our
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datasets. This might be caused by the relatively small
training dataset, since some persons get detected very
well and others do not. Even on the occluded dataset,
where an upper-body detector should perform better, this
detector yields no superior results.

The HOG detector performs relatively well on the reason-
able dataset (person height > 50 pixels, occlusion max.
35%) with 41.3% missed detections at an average of 1
false positive per 10 images, which is a common break-
point to compare detectors. On the other hand, on the
occluded subset the miss rate increases to 61.3% at the
same false positves rate. This is unacceptable for our ap-
plication, since the interaction with the robot is a critical
part for user acceptance and, therefore, a robust person
detection is crucial.

The Part-HOG yields the best results on the reasonable
dataset (person height > 50 pixels, occlusion max. 35%),
where just 27.6% of the persons were missed at an aver-
age of 1 false positive per 10 images. The performance
is even better on the occluded subset, where the miss rate
drops to 19.4%. This can be explained with the larger
height of persons in close proximity to the robot. There-
fore, the Part-HOG is our choice for the application and
further experiments.

The runtime of the different detection approaches can be
seen in Tab. 2] Since the four camera system we use in
this paper is restricted by hardware to 2 Hz each, all of
the detection approaches can compute in real-time with-
out frame skips, using the exclusive PC for visual detec-
tions. Therefore, our visual person tracking approach is
currently not used in the four camera setup at 2 Hz. How-
ever, the experimental panoramic camera system depicted
in Fig.[2]right, consists of six cameras with frame rates of
up to 15 Hz each. Therefore, visual tracking and experi-
ments regarding the tracking quality at higher frame rates
will become an important part in our future work.

runtime | frame rate
VJ-Face 159 ms ~6Hz
VJ-Full-Body 62 ms ~16Hz
VJ-Upper-Body 265 ms ~4Hz
Multi-Class-HOG | 92 ms ~11Hz
HOG 552 ms ~2Hz
Part-HOG 495 ms ~2Hz

Table 2: Runtime comparison on an Intel core i7 with
3.2 GHz. Please note that the runtime of the VI detector
strongly depends on the number of features used in the
different models.

3.3 Person Re-Identification

To benchmark the scenario-specific re-identification per-
formance, we recorded a new ROREAS dataset in the re-
hab clinic. During rush-hour times of two days, the robot
frequently drove through the corridor where patient’s
walking exercises took place. Images of nearby persons
were automatically detected and saved. Therefore, a total
of 11,034 images, showing 207 different people, was
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Figure 8: Synthetic recognition rate on scenario-specific
dataset. Our re-identification approach [[19] outperforms
the popular method SDALF [20], using identical features.

collected. The person IDs were semi-manually labeled.
To make the dataset more realistic, we eliminated simi-
lar appearances for each person automatically by cluster-
ing. Similar appearances most often result from person
observations of the same track. These can be handled
by tracking. In real-world applications, re-identification
only handles more complicated cases where observations
of different tracks are compared. After elimination, each
person, for whom at least two different views were avail-
able, was added to the ROREAS dataset. It consists of
776 images showing 192 different persons with 2 — 10
views each.

Fig. [§ shows the SRR curve (Synthetic recognition rate)
of our re-identification component in comparison to the
SDALF approach [20], that extracts the same features.
As described in [19], in comparison to [20], our ap-
proach applies metric learning to compare feature vec-
tors. Therefore, the training set is preprocessed to en-
sure to learn a distance metric that compensates for
changing illumination. Additionally score level fusion
is used to combine the features instead of a manually
designed fusion scheme. It is visible, that these mod-
ifications lead to a significant improvement of the re-
identification rate. However, the SRR curve of our ap-
proach on this dataset is considerably lower than on
other standard re-identification benchmark datasets. That
means, appearance-based person re-identification on a
mobile robot (ROREAS) is far more difficult than re-
identification of pedestrians in multiple static cameras
with disjoint views (standard benchmarks). The average
recognition rate for two persons in the scene was 93 %,
which is a typical number of persons for ambiguities in
tracking. For six persons in the surroundings of the robot,
the recognition rate drops below 80 %. Hence, situations
where the user model has to be compared with lots of hy-
potheses should be avoided. Therefore, the search space
should be reduced by the tracklet association module to
only the persons that are observed near the provious ob-
servation of the user. In our scenario the search space is
almost always reduced to two possible candidates. This is
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why tracklet association is essential to accomplish robust
autonomous tracking by combining different cues.

3.4 User Following and Guiding

Next, we evaluated the skills of our coupled system. Over
a period of 52 minutes, the robot followed and guided
four subjects. During the exercise, the robot drove a dis-
tance of 929 meters. 32 times the track was lost. Using
the tracklet association and person re-identification mod-
ules, the amount of lost tracks could be reduced to 15.
While using normal tracklets (without association) for
user tests, just one complete exercise could be finished
without manual intervention. With the coupled system,
this amount could be increased to four out of ten. The
average track length was extended from 29 meters to 61
meters.

Assigning cut tracklets to new hypotheses only by
means of spatial proximity fails in the addressed sce-
nario since erroneous assignments occur to often. Us-
ing re-identification without a tracklet association com-
ponent performs much worse due to much more ambi-
guities and more people to compare with. Therefore,
the combination of spatial tracklet association and vi-
sual re-identification is essential. Additionally, people
wearing similar clothes, e.g., only slightly different gray
tones with a large variance in multiple illuminations, can
be distinguished much better using the tracklet associa-
tion component, since they are compared only if they are
nearby each other, and thus, are observed under similar
lighting conditions.

The remaining issues are mainly caused by lighting
changes between daylight near windows and artificial
illumination within corridors. Thus, the patients’ ap-
pearances change significantly, which complicates re-
identification. A better performance would only be possi-
ble by using more advanced features or distance metrics
that are applied in these situations to compensate for the
differences in illumination.

4 Conclusion

We presented a coupled person tracking system that
unites tracking by spatial proximity with appearance-
based user recognition. The tracking aims to help the
robot to keep track of patients performing their walking
training in order to act as a personal coach. To be able
to act autonomously, it is crucial for the robot, to extract
long and precise movement trajectories of the patients.
To achieve this objective, it is essential to:

e accurately detect all persons in scene in one ore
more sensor cues,

e track people as long as no ambiguities occur,

e robustly re-identify the user out of a group of peo-
ple if necessary,

o reduce the search space for re-identification to just
relevant hypotheses using spatial proximity as cri-
terion.

By addressing all these aspects, our system performs sig-
nificantly better and increased fully autonomous exer-
cises from 10% to 40%. The average track length has
been doubled. Nevertheless, fully autonomy is still out of
range, due to difficult lightings and a very crowded envi-
ronment.
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