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Abstract— Neuromuscular retraining is an important part of
facial paralysis rehabilitation. To date, few publications have
addressed the development of automated systems that support
facial training. Current approaches require external devices
attached to the patient’s face, lack quantitative feedback, and
are constrained to one or two facial training exercises. We
propose an automated camera-based training system that pro-
vides global and local feedback for 12 different facial training
exercises. Based on extracted 3D facial features, the patient’s
performance is evaluated and quantitative feedback is derived.
The description of the feedback estimation is supplemented by
a detailed experimental evaluation of the 3D feature extraction.

I. INTRODUCTION

Neuromuscular retraining is an important part of reha-

bilitation for patients with hemifacial paralysis. To date,

biofeedback is provided via electromyography (EMG) or

mirror (see Fig. 1).

We developed an automated camera-based training system

that provides feedback for training exercises, with the goal

of improving the process of facial paralysis rehabilitation.

In the context of this paper, feedback refers to displaying

an automatic estimate of the similarity between the patient’s

facial movement and target movements conducted by healthy

persons. Fig. 2 presents an overview of our approach. In

our scenario, RGB and 2.5D images are captured while the

patient is performing facial training exercises specified by the

training system. Input images are pre-processed to prepare

them for feature extraction. The extracted 3D facial features

are the basis for the feedback estimation, which relies on

Random Forest classification and proximities [1]. The key

contributions of this paper with respect to the described

procedure are:

• Review and selection of 3D facial feature extraction

methods. Detailed evaluation of features from emo-

tion/face recognition systems for our therapeutic sce-

nario.

• Introduction of a new algorithm for feedback estimation,

which is based on the extracted 3D features. In com-

parison to state-of-the-art approaches, our feedback es-

timation: 1) provides global and local feedback, which

allows well-directed adaption of facial movements by

the patients, 2) does not require external devices at-

tached to the patients face, 3) is based on generic

feature extraction algorithms, which are not adapted to

specific facial movements. This allows easy integration

of further exercises. Thus, we employ twelve facial
exercises compared to one or two exercises in similar

state-of-the-art approaches. 4) is evaluated using a data

set of real patients.

Present
state

Target 
state

Fig. 1: Present and target state of facial paralysis therapy

(bottom image: c© TU ILMENAU / Michael Reichel).

The remainder of this paper is structured as follows: In

Sec. II, related work in the areas of automated facial paralysis

rehabilitation and 3D facial feature extraction is presented.

Our method is introduced in Sec. III. Subsequently, a detailed

experimental evaluation of the extracted 3D facial features is

given, and examples of the estimated feedback are presented.

Conclusions are drawn in Sec. V.

II. RELATED WORK

In this section we give an overview of related work with

respect to the application scenario (Sec. II-A) as well as

more general works addressing 3D facial feature extraction

(Sec. II-B).

A. Facial Paralysis Rehabilitation

Recent works in image processing and machine learning

aim to improve facial paralysis rehabilitation and its key

elements, namely diagnosis and therapy.

Most of the work is focused on the develop-

ment of methods for automated facial paralysis grading

(i.a. [2], [3], [4], [5], [6], [7], [8]). The underlying objective

is to enhance reliability and objectivity of processes and

outcomes related to diagnosis. Compared to that, only few

publications focus on the therapeutic part of the rehabilitation

process due to higher demands for real-time capability.

Diagnoses can be done offline using recorded images. An

interactive therapy system requires attendance of the patient.

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.26

141

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.26

141

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.26

141

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.26

141

2017 IEEE 12th International Conference on Automatic Face & Gesture Recognition

978-1-5090-4023-0/17 $31.00 © 2017 IEEE

DOI 10.1109/FG.2017.26

141



Pre-Processing Feedback Estimation

global local

? • Compute 3D P.C.
• Face Alignment
• Find Local Regions

• Point Signatures
• Curvature Descr.
• Dist./Angle Descr.

Global and local:
• Random Forest Class.
• Proximity Estimation
• Feedback Estimation

Feature Extraction
To-Do

Approach

FeedbackFeedback
Screen Screen

2.5D-Img

RGB-Img

Input Images
from Patient's Face

Fig. 2: Schematic overview of our approach. The red frames mark the key contributions of this publication.
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Fig. 3: Overview of the reviewed feature extraction ap-

proaches.

However, the improvement of automated landmark localiza-

tion methods, also known as face alignment, directed more

attention towards this subject.

In [9], a wearable robot mask is presented to assist

physiotherapy of a hemifacial paralyzed patient. Physical

support of the paralyzed hemiface is provided by pulling

the facial skin through flexible wires attached to the face.

The actuators are controlled by bioelectrical EMG-signals

obtained from the healthy side of the face.

In [10], an interactive game for the training of the eyelid

movement is proposed. The patient’s face is captured by

a camera, and a virtual seesaw is displayed on a screen.

The degree of eyelid closure, extracted as the vertical length

between the upper and the lower eyelid, is used to control

the slope of the seesaw.

In [11], a Kinect-based interactive game for the reha-

bilitation of tongue and lip movements is presented. The

patient has to collect virtual food displayed on a screen by

performing licking and biting movements. Similar to [10],

a knowledge-based feature extraction method is used. As

a result, the integration of further facial exercises would

require the implementation of additional feature extraction

methods.

B. 3D Facial Feature Extraction

Automated face analysis is a popular research topic with

various applications such as facial expression recognition,

Action Unit detection and face recognition. As a result, there

are many different feature extraction methods comprising a

variety of properties ([12], [13]). We restricted our research

to 3D feature-based static extraction algorithms due to the

following reasons:

• 2D vs. 3D: Performing facial training exercises results

in a continuous change of the facial surface. Especially

changes in homogeneous regions, e.g., in the areas

of the cheeks, are better represented by 3D than 2D

intensity data as preliminary experiments showed. For

the sake of brevity, in this paper we focus on 3D features

only. However, in future work the combined strengths

of both color-based and depth-based features should be

exploited by means of a late or early fusion strategy.

• Static vs. Dynamic: Each of the facial training exercises

that we selected in cooperation with speech therapists

has to be retained for two to three seconds. Compared

to maintaining each exercise, the pace of the movement

is less important. Therefore, we extract static features

from single images. Nevertheless, dynamic extraction

from video data is a possible future extension.

• Feature-based vs. Model-based: An interactive therapy

scenario requires real-time capability. However, the fit-

ting of a 3D model can be computationally intensive

compared to feature-based extraction algorithms.

We reviewed 28 papers, published between 2006 and 2014,

that matched the listed properties. A majority of these pub-

lications belongs to the field of facial expression recognition

(22 out of 28). Feature-based approaches can be divided into

distance-based, patch-based and global approaches, thus we

classified the 28 approaches according to these categories

(see Fig. 3). Early approaches are dominated by distance-

based feature extraction. Since 2010 the number of patch-

based approaches is growing. For the sake of brevity, the

following overview will be constrained to a subset of the 28

publications.
1) Extraction of Euclidean distances: The extrac-

tion of distance features is based on the underly-

ing assumption that facial movements cause distinct

changes in spatial relations between landmarks. In total,

eight publications employ distance-based feature extraction

([14], [15], [16], [17], [18], [19], [20], [21]). Additionally,

in some of the listed approaches angles between pairs of
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distance vectors are extracted.

2) Patch-based feature extraction: Facial landmarks serve

as reference points for the extraction of distances. However,

some facial areas, e.g., the cheeks, have a lower spatial

density of landmarks and therefore require alternative feature

descriptors. Patch-based approaches extract features from the

facial surface. Six of the reviewed patch-based approaches

rely on curvature analysis ([22], [23], [24], [25], [26], [27]),

five on 3D Local Binary Patterns ([28], [29], [30], [31], [27]).

III. APPROACH

Fig. 2 illustrates our system that consists of three main

parts. Each part will be described in this section.

A. Pre-Processing

During each training session, the patient is seated in

front of a screen while performing facial training exercises

provided by the system (see Fig. 4). RGB and 2.5D facial

images are continuously captured using a Kinect sensor. In

each RGB image, 49 facial landmarks, shown in Fig. 5a,

are detected using discriminative deformable models [32]1.

In the next step, a colored 3D point cloud is generated

from the RGB and the 2.5D images, based on the intrinsic

and extrinsic camera parameters previously estimated via

calibration [33]. Finally, twelve local regions for patch-based

feature extraction are determined by employing the posi-

tion of the facial landmarks and a depth-based foreground-

background segmentation. The positions of the local regions

are visualized in Fig. 5b.

B. Feature Extraction

This subsection describes the 3D facial feature extraction

methods of our approach. With regard to the findings of the

literature review, we selected one exemplary distance-based

approach and implemented patch-based curvature extraction.

We compare both to extracted point signatures. The three

feature vectors, resulting from the different extraction algo-

rithms, are later concatenated and employed for feedback

estimation.

1) Extraction of Euclidean distances and angles: We rely

on the work of Rabiu et al. [18], because it is the most recent

distance extraction approach from the review in Sec. II.

It comprises the extraction of 16 Euclidean distances δi
between distinct facial landmarks and 27 angles θj between

pairs of these 3-dimensional distance vectors. The resulting

feature vector consists of 43 dimensions.

2) Extraction of surface curvature: We estimate mean and

Gaussian curvature values for small facial surface patches

and use HK-classification to classify them into eight discrete

surface types visualized in Fig. 5d-5e [34]. We refer to [35]

and [36] for a detailed description of our method. In the next

step, the estimated surface types for each local region shown

in Fig. 5b are combined in an 8-bin histogram vector. The

vectors of all twelve local regions are concatenated to a final

96-dimensional feature vector.

1We use a pre-trained model provided by Asthana and Zafeiriou under
https://sites.google.com/site/chehrahome/

3) Extraction of point signatures: Point signatures de-

scribe paths on a surface that run radially around a distinctive

point (see Fig. 5f). We implemented a modified version of

the algorithm originally introduced for object and face recog-

nition by Chua et al. [37]. For a detailed description of our

implementation, we refer to [35] and [36]. We selected the

nose tip as center point and determined eight different radii

r for our point signatures, with r ∈ {4cm, 4.5cm, ..., 7.5cm}
(see Fig. 6e). The angle for point signature sampling is

α = 5.7◦. This results in 64-dimensional vectors for each

of the eight point signatures, which are then concatenated

to a vector of 512 dimensions. In the later evaluation, we

additionally test a 32-dimensional point signature vector (

α = 11.6◦).

C. Feedback Estimation

Our feedback estimation approach is based on Random

Forests and proximities derived from these forests [1].

Proximites are an estimate for the similarity between two

observations. Our feedback estimation consists of two main

parts, namely preliminary offline preparations and online

feedback estimation.

1) Offline steps: First, we train a Random Forest (RF)

based on all training observations of the K = 12 facial

training exercise classes. Training observations are repre-

sented by the concatenated feature vector of all three feature

types. Each training observation, attached to class k, with

k ∈ {1, ...,K}, should be a valid representative of a correct

performance and therefore only comprise data of healthy per-

sons. The next step focuses on the Nk training observations

of the k-th exercise and is repeated for all K facial training

exercise classes: For each training observation i, with i ∈
[1, 2, ..., Nk], proximities to all j-th training observations,

with j ∈ [1, 2, ..., Nk] and i �= j, are determined and saved

in a (Nk − 1) dimensional vector vk,i.

2) Online steps: The system provides a facial training

class k, that the patient should ideally perform. Static images

of the patient are captured in fixed time intervalls, features

are extracted, and subjected to the trained RF classifier as

test observation tk. Now, the following feedback estimation

steps are conducted for each observation. First, the prox-

imities atk,i between the test observation tk and the Nk

training observations i are determined. Second, each atk,i
is compared to the elements of the corresponding training

vector vk,i. In the course of this comparison, we determine

the percentage ptk,i of elements of vk,i that are smaller than

atk,i. The values are concatenated in a vector:

ptk =
[
ptk,1 · · · ptk,i · · · ptk,Nk

]
. (1)

The estimated continuous feedback value f̃tk , with f̃tk ∈
[0, 1], results from the median of all elements of vector ptk :

f̃tk = median(ptk). (2)

We additionally compute the median ãtk of all Nk values

of atk,i. Based on f̃tk and ãtk , six discrete feedback levels

are obtained according to Tab. I.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 4: Facial training exercises that we selected in cooperation with speech therapists. The exercises (b) and (c) are also

performed in a vertically mirrored manner, which results in 12 different exercise classes. (a) Cheek (b) CheekL (CheekR)

(c) TongueL (TongueR) (d) Taut lips (e) Eyes closed (f) A-shape (g) I-shape (h) O-shape (i) U-shape (j) Pursed lips.

(a)

1 2

3 4
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(b) (c) (d) (e) (f)

Fig. 5: (a) Detected facial landmarks. (b) Local regions for patch-based feature extraction. (c)-(e) Examples of the eight

estimated discrete surface types. (f) Radial point signature centered around the nose tip.

TABLE I: Discretization of the feedback based on the fulfillment of three different constraints (B1 ∧B2 ∧B3).

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

B1 ãtk = 0 ãtk > 0 ãtk > 0 ãtk > 0 ãtk > 0 ãtk > 0

B2 f̃tk = 0 f̃tk > 0 f̃tk > 0, 05 f̃tk > 0, 3 f̃tk > 0, 5

B3 f̃tk ≤ 0, 05 f̃tk ≤ 0, 3 f̃tk ≤ 0, 5

IV. EXPERIMENTS AND RESULTS

This section presents the results of our work. First, we

introduce the experimental data sets, followed by a detailed

evaluation of the feature extraction methods. In the end, real-

world feedback results are shown and discussed.

A. Experimental Data

For the evaluation, two different data sets are employed.

Both were pre-processed according to the description in

Sec. III-A.

The evaluation of the facial feature extraction is based on a

collection of 931 colored 3D point clouds. The point clouds

comprise facial data of 11 healthy persons, aged between

25 and 28 years, who perform 12 facial training exercises

shown in Fig. 4. In order to exclude bias due to the automated

landmark localization, feature extraction (and determination

of local regions) is based on 58 manually labeled landmarks.

The second data set contains 117 colored 3D point clouds

of facial paralysis patients during their rehabilitation session.

It is solely used as test set and is evaluated using the RF that

was trained with the first data set. Since the second data set

was recorded in an other environment and contains additional

persons (of different ages), it allows us to assess the general-

ization power of our model. Furthermore it represents a real

therapy situation, e.g., a slight in-plane head rotation due to

physical impairments of the patients. Experimental results,

which were determined using the second data set, are given

in Sec. IV-C.

B. Evaluation of Feature Extraction
In this section, we evaluate how well the 12 facial training

exercise classes can be separated based on the extracted

3D facial features. For classification, we employ a Ran-

dom Forest of 150 decision trees, which is also part of

our feedback estimation algorithm. Results of the RF are

compared to the results of a multi-class linear SVM. We

use the RF-implementation provided by the TreeBagger-class

of Matlab, and the SVM-implementation provided by the

LIBSVM library [38]. The evaluation is based on a n-fold

crossvalidation, where n = 11 corresponds to the number of

subjects in the data set. This satisfies the constraints of a real-

world scenario in which the images of the patient will not

be part of the training data. The measure of our evaluation

144144144144144



is the mean accuracy, which is the arithmetic mean of all

accuracies over the 11 test persons (subsequently middled

over the 12 classes). Prior to training and classification, the

vectors of the three feature types are concatenated to a final,

651-dimensional feature vector. RF-based classification of

the concatenated feature vectors results in a mean accuray of

80.41%. When multi-class linear SVMs are used, 84.73% of

all test observations are classified correctly (see Fig. 6a). The

findings for the single feature types, the local classification

and the automated landmark localization are as follows:

1) Evaluation of Euclidean distances and angles: Feature

extraction according to [18] results in mean accuracies

of 61.06% (RF) and 60.62% (lin. SVM), when used for

the classification of the 12 facial training exercises2. We

additionally evaluated distance and angle features separately

using RF classification (distance: 49.78%, angle: 62.95%).

Interestingly, classification solely based on extracted angles

results in a higher mean accuracy than the classification

based on the concatenated distance-angle vector. In the next

step, we estimated the mutual information (MI) between

each feature dimension and the target class variable [39].

Fig. 6c visualizes the features that resulted in a high MI

value, Fig. 6d the features with low MI values. The horizontal

stretching of the mouth δ14, for example, shows a high

relation to the target class. The mean vertical width of both

eyes δ8, however, exhibits a weak relation the target class.

2) Evaluation of point signatures: Point signature extrac-

tion according to Sec. III-B.3 results in mean accuracies

of 65.94% (RF) and 75.4% (lin. SVM) for α = 5.7◦

(α = 11.6◦: 63.98% (RF), 73.89% (lin.SVM)). Compared

to the outcomes of the classification based on distance-

angle features, an improvement of 4.88 (RF) and 14.78
(lin. SVM) percentage points is yielded (for α = 5.7◦).

However, the number of feature dimensions increases from

43 to 512. Once again, we estimated the MI between the

single feature variables and the target class variable. The

results are shown in Fig. 6e-6f. Features extracted in the

lower cheek areas exhibit relatively large relation to the target

variable, compared to features extracted in the areas of the

eyes.

3) Evaluation of surface curvature: The classification

based on extracted curvature features results in mean accura-

cies of 69.71% (RF) and 71.81% (lin. SVM). Compared to

point signature based classification, mean accuracies differ

in +3.77 (RF) and −3.59 (lin. SVM) percentage points.

However, the number of feature dimensions is smaller (96

vs. 512). Again, we estimated the MI between the target

variable and the 96 feature variables. For better visualization,

the eight MI values of each local region are averaged (see

Fig. 5b for the positions of the 12 local regions in the

facial area). The barplot in Fig. 6b shows the estimated

MI values. Similar to the results obtained for the point

signatures, feature variables that were extracted in the cheek

regions exhibit a larger relation to the target class variable

2For comparison: In [18] a mean accuracy of 92.2% was obtained for 7
basic emotion classes.

than features extracted in the areas of the eyes.

4) Evaluation of local feature extraction: Besides global

feedback, we additionally want to provide local feedback for

semantic areas of the face, namely eye, mouth, and cheek

areas. For local feedback estimation, feature extraction is

constrained to the local facial area. Point signature curves,

for example, which consist of 64 sample values, are divided

in five segments according to Fig. 6g. Extracted sample

values of each segment are assigned to the corresponding

region. The assignment of the 12 curvature vectors to five

feedback regions is done according to Fig. 6h. Distance

and angle features are attributed to one or more regions

according to their position in the face. Compared to global

classification (RF: 80.41%), local classification results in

decreased recognition accuracies. Based on the concatenated

features that were extracted from the regions of the eyes, only

42.31 (R1) and 38.17 (R2) percent of the 12 facial training

exercises are correctly classified. Better results are achieved

for the areas of the mouth (R4: 59.42%) and the cheeks (R3:

69.19%, R5: 67.10%).

5) Evaluation of automated landmark localization: When

automated landmark detection according to [32] is used,

a mean accuracy of 79.54% (RF) is obtained (manual:

80.41%).

C. Evaluation of the Feedback Approach

In this section, we provide outcomes of our feedback es-

timation based on automatically detected landmarks. Typical

results for in therapy patients are presented in Fig. 7. Target

performances by a healthy person were shown in Fig. 4. Dif-

ferent states of the target exercise eyes closed, for example,

are illustrated by Fig. 7b and 7c. The insufficient closure of

the eyelids in the first image is evaluated correctly. Fig. 7d

shows a weaker performance of the exercise cheek compared

to Fig. 7e, which also becomes apparent in the estimated

feedback. The remaining subfigures show reasonable results

for the estimated global feedback as well. However, the

robustness of the local feedback needs further improvement.

We conclude the evaluation with these typical examples

instead of a quantitative evaluation. The reason is, that

currently, no ground truth feedback level annotations are

available for our data set due to the enormous effort that

would arise for speech therapists in order to label our data.

However, the outcomes of our data driven feedback approach

constitute an initial configuration of the final system. We

plan to refine our results later on by collecting real-time

evaluations of speech therapists. For this purpose, we want

to integrate a feedback interface for speech therapists that

allows optional evaluation of the estimated feedback levels.

The feedback is then used to refine our system. We believe

that it might pose less of a challenge for the therapist to

correct decisions of the system rather than to start annotations

from scratch.

V. CONCLUSIONS AND FUTURE WORKS

We introduced an automated training system for patients

with hemifacial paralysis. The objective is to support practice
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Fig. 6: (a) Mean accuracies and number of feature dimensions for the classification of 12 facial training exercises (extraction

of DA: distance-angle, PS: point signature, CA: curvature). (b) Mean mutual information estimated for the 12 local extraction

regions of the surface curvature extraction. (c)-(d) Distances and angles with (c) high MI and (d) low MI to target class

variable. (e) Eight point signatures with different radii. Each point signature is sampled and results in a 32- or 64-dimensional

feature vector (based on the radial sampling angle). (f) MI for the single feature variables of eight different 32-dimensional

point signatures (blue: low MI, red: high MI). (g) Local segments of point signatures. (h) Five local feedback regions.

by giving global and local feedback with respect to the

facial movements. We conducted a detailed evaluation of the

feature extraction algorithms and presented typical results of

our feedback estimation. In contrast to other state-of-the-art

approaches, no wearable devices are necessary. Additionally,

twelve instead of one ore two exercises can be evaluted.

Future work includes the improvement of the local feature

extraction, i.a. by extracting local binary patterns. Addition-

ally, we want to integrate a feedback interface that enables

speech therapists to evaluate and reinforce our initial data

driven feedback estimation results.
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