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Abstract—Road condition acquisition and assessment are the
key to guarantee their permanent availability. In order to main-
tain a country’s whole road network, millions of high-resolution
images have to be analyzed annually. Currently, this requires
cost and time excessive manual labor. We aim to automate this
process to a high degree by applying deep neural networks. Such
networks need a lot of data to be trained successfully, which are
not publicly available at the moment. In this paper, we present
the GAPs dataset, which is the first freely available pavement
distress dataset of a size, large enough to train high-performing
deep neural networks. It provides high quality images, recorded
by a standardized process fulfilling German federal regulations,
and detailed distress annotations. For the first time, this enables a
fair comparison of research in this field. Furthermore, we present
a first evaluation of the state of the art in pavement distress
detection and an analysis of the effectiveness of state of the art
regularization techniques on this dataset.

I. INTRODUCTION

Public infrastructures are suffering from aging and there-
fore need frequent inspection. Distress detection and a solid
management for maintenance are the key to guarantee their
permanent availability. Therefore, condition acquisition and
assessment must be applied to the whole road network of a
country frequently. For Germany, this results in road surface
condition acquisition of about 13,000 km freeways and about
40,000 km federal highways1 with high-speed measurement
vehicles and the assessment of the extracted data afterwards.
Since the initial acquisition in 1991, the relevant surface
characteristics are redetermined periodically in a four year
cycle. Since freeways are inspected in both directions on all
lanes, a total of approximately 30,000 lane-km need to be
covered annually.

∗This work has received funding from the German Federal Ministry
of Education and Research as part of the ASINVOS project under grant
agreement no. 01IS15036.

1German Federal Road Research Institute (Bundesanstalt für Straßenwesen
BASt): Erfassen und Bewerten von Oberflächeneigenschaften, ZEB – Zus-
tandserfassung und -bewertung von Straßen (Acquisition and assessment of
road surface characteristics), info flyer, 2016.

Fig. 1: Exemplary pavement images from the presented GAPs
dataset with different types and levels of distress. Each image
is overlayed with the output from a deep neural network for
distress detection at the upper left part of the image. Red color
suggests a high probability for distress, while blue symbolizes
intact road.

Following German federal regulations, the surface char-
acteristics have to be evaluated in terms of evenness, skid
resistance, and substance condition. The surface characteris-
tics evenness and skid resistance are mainly measured and
analyzed automatically using laser sensors and sideway-force
coefficient routine investigation machine technology (SCRIM).
The substance condition is captured with camera systems
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and has to be evaluated by visual inspection of the recorded
images. Current evaluation is done manually and therefore
requires excessive manual labor (evaluation of 2 000 images
per lane-km). Therefore, the time span between the actual
inspection and the final evaluation may be up to several
months. In the meantime, small damages, like cracks, can lead
to substantial downtimes with a high impact for the population.

In the research project ASINVOS2, we aim to automate
this process to a high degree by applying machine learning
techniques. The basic idea is to train a self learning system
with manually annotated data from previous inspections so
that the system learns to recognize underlying patterns of
distress. Once the system is able to robustly identify intact
infrastructure, it can reduce the human amount of work by
presenting only distress candidates to the operator. This helps
to significantly speed up the inspection process and simulta-
neously reduces costs. Furthermore, inspection intervals can
be reduced, which helps to remedy deficiencies in time.

In this paper, we present the GAPs dataset, which is the first
free and publicly available pavement distress dataset of a size,
large enough to train high-performing deep neural networks.
It provides high-quality images, recorded by a standardized
process fulfilling German federal regulations, and detailed
annotations. For the first time, this enables a fair comparison
of alternative approaches in this field. Furthermore, we present
a first evaluation of the state of the art in pavement distress
detection on this dataset, followed by an analysis of the
generalization ability of a deep neural network in the given
road condition assessment domain. Therefore, we review the
effectiveness of state of the art regularization techniques.
Finally, we analyze, which performance measures should be
reported in the future, to give a fair comparison.

II. RELATED WORK

Automating the distress detection process has already at-
tracted a lot of interest in the literature. Beside commercial all-
in-one solutions like Dyntest, Pathway and the Applus System
[1], whose internal algorithms are relatively unknown, a lot of
different image processing approaches for automatic distress
detection emerged in the literature during the last decade. The
algorithms developed for evaluation of the pavement surface
can be coarsely divided into three major groups: Crack im-
age thresholding, patch-based classification, and depth-based
algorithms.

A. Crack Image Thresholding

The first group of algorithms uses image processing meth-
ods to detect road distress structures that can be extracted by
thresholding afterwards. Therefore, preprocessing algorithms
are applied in order to reduce illumination artifacts. Under
the assumption that crack structures can be identified as local
intensity minima, thresholding in the image space is applied

2ASINVOS: Assistierendes und Interaktiv lernfähiges Videoinspektiossys-
tem für Oberflächenstrukturen am Beispiel von Straßenbelägen und
Rohrleitungen (Interactive machine learning based monitoring system for
pavement surface analysis)

afterwards. The resulting crack image is further refined by
morphological image operations and by searching for con-
nected components. Approaches belonging to the aforemen-
tioned group are presented in [2], [3], [4], [5], as well as in [6],
where the closed source but publicly available CrackIT tool-
box is presented. This toolbox is included in the experimental
evaluation of this paper. Other variants of that group use
graph-based crack candidate analysis for further refinement
[7], [8], [9], a multi-scale curvelet transform instead of a
binary threshold [10], or gabor filters in order to find crack
candidates [11].

B. Patch-based Classification

The algorithms of the second group apply different types
of classifiers to patches of the image in order to extract
crack or distress regions. Support vector machines (SVM)
are commonly used. For example the classifier is applied to
Histogram of Oriented Gradient (HOG) features [12] or Local
Binary Patterns (LBP) [13], [14]. Neural networks are also
applied in this domain, as for instance in [15], which describes
an approach that uses a Multi Layer Perceptron network in
combination with frequency features and image histograms.
Other approaches rely on neural networks that do not require
a separate feature extraction. For instance [16] use a Multilayer
Autoencoder, and [17] use a Convolutional Neural Network for
distress detection. The latter is included in the experimental
evaluation of this paper.

C. Depth-based Algorithms

The third group of algorithms relies on depth information
of the pavement. E.g. [18] proposes an algorithm for light
section based crack detection, while [19] describes a method
that relies on a 2D laser range finder. An algorithm that applies
crack detection on 3D point clouds is given in [20]. Depth-
based algorithms are excluded from our evaluation, since the
presented dataset includes image data only.

D. Datasets

Although, a lot of different methods have been presented
so far, there is a lack of publicly available datasets that are of
descent size and are recorded in a standardized way. To our
best knowledge, there are only three different datasets avail-
able, all of which have less than 300 images in total [5], [6],
[7]. This hampers comparability, since most publications are
using own datasets that have been generated using consumer
cameras and are labeled in different ways.

III. GAPS DATASET

The German Asphalt Pavement Distress (GAPs) dataset3

addresses the issue of comparability in the pavement distress
domain by providing a standardized high-quality dataset of
large size. This does not only enable researchers to compare
their work with other approaches, but also allows to analyze
algorithms on real world road surface evaluation data.

3The GAPs dataset is available at
http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/.
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A. Standardized Data Acquisition

Accurate measurement data about the road’s current con-
dition are crucial for planning maintenance or expansion
projects and reliable cost estimation. Thus, the German Road
and Transportation Research Association (FGSV) developed
a specific approach for collecting data of road condition
– the so-called Road Monitoring and Assessment (RMA)
[21]. The RMA process standardizes data acquisition on a
systematic basis and provides nationwide uniform parameters
to ensure objective analyses of surface conditions as well as
a high degree of quality. The key aspects are longitudinal and
transversal evenness, skid resistance and surface distresses.
Mobile mapping systems, equipped with high-resolution cam-
eras and laser-based sensors, are the state of the art in the
RMA context.

1) Certification and quality standards: The German Fed-
eral Highway Research Institute (BASt) does not only par-
ticipate in developing and optimizing such mobile mapping
systems, but also acts as an approving authority for measure-
ment systems and analysis processes that are deployed in the
field of RMA. In Germany, providers of RMA services require
an annual BASt certification to run RMA campaigns. This
certification process includes static tests, like general technical
checks of the measurement platform and its components, tests
of the camera system using special test images, and tests of
the laser sensors using a test specimen of granite. In addition,
there are dynamic tests that include comparative measurements
with the BASt reference measurement vehicles on a special
proving ground (test against ”golden device”). Apart from the
data acquisition, the BASt certification process also includes
strict reviews of the data analyses procedures.

2) Measurement vehicle: The data, that are presented in
this paper, have been captured by the mobile mapping system
S.T.I.E.R (Fig. 2). This measuring vehicle is manufactured and
operated by the German engineering company LEHMANN +
PARTNER GmbH. S.T.I.E.R has been designed for large-scale
pavement condition surveys and is certified annually by the

Fig. 2: Mobile mapping system S.T.I.E.R

BASt since 2012. Therefore, it complies with the high German
quality standards in the field of RMA. The main components
of S.T.I.E.R are an inertial navigation system, laser sensors for
evenness and texture measurements, a 2D laser range finder
and different camera systems for capturing both the vehicles
environment and the pavement’s surface. The relevant data
source for this paper is the surface camera system. It consists
of two photogrammetrically calibrated JAI Pulnix TM2030
monochrome cameras. Each one features the Kodak KAI-
2093 1” progressive scan CCD imager with 7.4µm square
pixels, a frame rate of 32 fps and a resolution of 1920×1080
pixels. The surface camera system is synchronized with a high-
performance lighting unit. This allows continuous capturing of
road surface images even at high velocities (ca 80 km/h) and
independent of the natural lighting situation. The cameras are
mounted left and right at the rear of S.T.I.E.R’s roof rack
pointing at a right angle towards the road. As each camera
image covers a pavement patch of 2.84m×1.0m, both images
combined describe the entire driven lane.

3) RMA-specified labeling: Within the scope of the con-
ventional RMA workflow, a sequence of left and right surface
camera images is stitched together in driving direction. The
result is a continuous sequence of surface images that represent
10 meters of the entire driven traffic lane. According to the
FGSV-regulation, the surface damage detection and analysis
process is based on these images. For this, an inspection grid
is applied to each 10-meter-image (see Fig. 3). A single grid
cell has a longitudinal length of 1m and a transversal length
of 1

3 of the lane width. If a grid cell contains a relevant surface
damage, the whole cell is assigned to this damage type. Once
the damage detection and classification is done, the measured
raw-data is used to calculate condition variables and finally
condition grades ranging from ”very good” to ”very poor”

Fig. 3: left: Labeling as expected by German FGSV-regulation.
right: fine labeling of different distress types using bounding
boxes.
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using a weighting scheme defined by the FGSV. The presented
conventional labeling approach is sufficient for indicating the
level of safety and comfort for road users, but due to the
lack of the precise damage location labels in terms of pixel
coordinates, this labeling is not appropriate to train a classifier.
Also stitched images are problematic, since artificial edges at
stitched image borders may complicate the learning process.

4) Dataset for neural network training: To provide a high-
quality training dataset, we use the HD-images from the left
and right surface camera instead of stitched images. The GAPs
dataset includes a total of 1 969 gray valued images (8 bit),
partitioned into 1 418 training images, 51 validation images,
and 500 test images. The image resolution is 1920×1080
pixels with a per pixel resolution of 1.2mm×1.2mm. The
pictured surface material contains pavement of three different
German federal roads. Images of two German federal roads
are used for training. Another section of one of these roads
is used for validation. The two roads can be characterized by
relatively poor pavement condition. The third German federal
road is uniquely used for testing. Its condition is better. Thus
the ratio of intact to defect road surface differs significantly
from the other two roads. The data acquisition took place in
summer 2015, so the measuring condition were dry and warm.

The images have been annotated manually by trained op-
erators at a high-resolution scale (see Fig. 3) such that an
actual damage is enclosed by a bounding box and the non-
damage space within a bounding box has a size of lower
than 64×64 pixels. The relevant damage classes are cracks,
potholes, inlaid patches, applied patches, open joints and
bleedings (see Fig. 4). Cracks are the dominant damage class.
This class comprises all sorts of cracks like single/multiple
cracking, longitudinal/transversal cracking, alligator cracking,
and sealed/filled cracks.

Fig. 4: Surface defect classes as defined by FGSV-regulation:
CRACK – Crack∗, POTHO – Pothole∗, INPAT – Inlaid patch∗,
APPAT – Applied patch∗, OPJOI – Open joint∗, BLEED –
Bleeding (not present in acquired images of GAPs dataset).
∗Class is included in GAPs dataset.

IV. EVALUATED ALGORITHMS

Comparing different methods for distress detection is cur-
rently hindered by the lack of a sophisticated and publicly
available benchmark dataset. Therefore, we have selected two
different state of the art methods that are evaluated in the
experiments section of this paper.

A. Image Thresholding Approaches

We have used the publicly available CrackIT Toolbox [6]
as representative for the image thresholding based approaches.

The toolbox provides different algorithms for image prepro-
cessing and crack detection based on pattern classification
techniques. It provides an image preprocessing stage that
includes filters for context aware image smoothing and a
dedicated lane line detection module to remove lane lines from
the input image. Furthermore, the toolbox applies local image
block-based normalization to reduce illumination dependence.
Assuming low intensity values for crack pixels, the image is
thresholded afterwards by analyzing the standard deviation
of the intensity values of local image blocks. The resulting
binary crack candidates image is refined afterwards by a
connected-component algorithm in order to identify relevant
cracks pixels.

The results of the toolbox are very sensitive to changes
in the parameters used for the different processing steps.
Therefore, the authors suggest to tune the parameters for the
desired field of application, which we did on the GAPs training
data.

B. Deep Learning Approaches

As representative for deep learning approaches, we have de-
cided in favor of the promising Convolutional Neural Network
(CNN) approach [17] for road crack detection (in the following
referred to as RCD net). Zhu et al.[17] presented a relatively
small CNN with four blocks with alternating convolutional
and max-pooling layers and two fully-connected layers (see
Fig. 5), inspired by LeNet [22] architecture.

4×

convolution 2D

4×4 (48)
5×5 (48)
3×3 (48)
4×4 (48)

maxpooling

2×2

flatten

768

200

dropout
p = 0.5

1

Fig. 5: Structure of RCD net [17]

TABLE I: RCD model [17]. Abbreviations: D – dropout
(dropout probability), W – weight decay, in – input, conv –
convolution, pool – max pooling, fc – fully connected layer,
out – softmax output

type filter size stride regular. output size # paramet.
in 3×99×99
conv 4×4 (48) 1×1 W (0.0005) 48×96×96 2 352
pool 2×2 2×2 48×48×48
conv 5×5 (48) 1×1 W (0.0005) 48×44×44 57 648
pool 2×2 2×2 48×22×22
conv 3×3 (48) 1×1 W (0.0005) 48×20×20 20 784
pool 2×2 2×2 48×10×10
conv 4×4 (48) 1×1 W (0.0005) 48×7×7 36 912
pool 2×2 2×2 48×4×4
flat 768
fc (200) W (0.0005) 200 153 800
out (2) D (0.5), 2 402

W (0.0005)
271 898
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3×

convolution 2D

5×5 (64)
4×4 (128)
2×2 (192)

dropout p = 0.0 | 0.2 | 0.3

convolution 2D

3×3 (96)
3×3 (160)
2×2 (224)

dropout p = 0.1 | 0.2 | 0.3
maxpooling

2×2

convolution 2D

2×2 (256)

dropout p = 0.3

convolution 2D

2×2 (256)

dropout p = 0.4
flatte

n

2304

dropout
p = 0.5

1000

dropout
p = 0.5

500

dropout
p = 0.5

1

Fig. 6: Structure of ASINVOS net

By using only small filter sizes for the convolutional layers
and only 48 filters per layer, the net is very compact and has
only 0.3M weights (see Tab. I). Therefore, this network does
not need much regularization. Only weight decay and dropout
for the last fully-connected layer is used.

The authors provided us their CAFFE [23] code and their
dataset, so we could check equality of results. We got a
comparable but slightly better results on their data (the exact
partitioning of their dataset could not be recovered). We then
reimplemented the RCD using Keras [24] based on Theano
[25] and integrated it into our framework. By parameter tuning,
again, we could slightly improve the net’s performance. For
the best parameter setting see Tab. IV.

Since the RCD net is relatively small and does not represent
modern CNN architectures, that are deeper, we conceptualize
another CNN with eight convolutional layers, three max-
pooling layers, and three fully connected layers (referred to
as ASINVOS net in the following), and implemented it using
Keras [24] based on Theano [25]. Its architecture is inspired
by the ImageNet winning VGG-models [26] (multiple units of
two convolutional layers followed by one max-pooling layer)
and AlexNet [27] (fully connected layers with softmax output).
All neurons are ReLUs [28]. For the exact architecture, with
filter sizes and dropout rates see Fig. 6.

The ASINVOS net has 4.0M weights (see Tab. II). Thus,
regularization is the key to perform well on unknown data.

1) Regularization: Dropout [29] is known to be a very
good regularization technique that avoids co-adaption and also
improves generalization abilities. Therefore, our first approach
is the extensive use of dropout for all layers except the input
layer as sole regularization technique. Recently, this has been
successfully applied in the person detection domain [30].

In recent years, batch normalization [31] replaces dropout
in modern neural network architectures. It is well known,
that input normalization (zero-mean, unit variance) as a pre-
processing step can improve neural network training. Batch
normalization takes this idea even further and aims to re-
move the covariate shift from the internal activation of each
subsequent layer. Thus, batch normalization can speed up
training and often leads to a higher accuracy. We pursue

TABLE II: ASINVOS model. Abbreviations as in Tab. I.

type filter size stride regular. output size # paramet.
in 1×64×64
conv 5×5 (64) 1×1 — 64×60×60 1 664
conv 3×3 (96) 1×1 D (0.1) 96×58×58 55 392
pool 2×2 2×2 96×29×29
conv 4×4 (128) 1×1 D (0.2) 128×26×26 196 736
conv 3×3 (160) 1×1 D (0.2) 160×24×24 184 480
pool 2×2 2×2 160×12×12
conv 2×2 (192) 1×1 D (0.3) 192×11×11 123 072
conv 2×2 (224) 1×1 D (0.3) 224×10×10 172 256
pool 2×2 2×2 224×5×5
conv 2×2 (256) 1×1 D (0.3) 256×4×4 229 632
conv 2×2 (256) 1×1 D (0.4) 256×3×3 262 400
flat 2304
fc (1000) D (0.5) 1000 2 305 000
fc (500) D (0.5) 500 500 500
out (2) D (0.5) 2 1 002

4 032 134

two approaches: First, we replace dropout with batch normal-
ization. Second, we use dropout in combination with batch
normalization.

Since large weights may impair generalization abilities of a
neural network, penalizing them is considered as a good reg-
ularization mechanism. We evaluated two approaches, namely
weight decay [32] and max-norm regularization [29]. To find
appropriate hyper-parameters, we plotted the norm of weights
in different layers over epochs. Once the network started to
overfit, we determined the norms at this epoch and derived
suitable hyper parameters.

2) Network Structure Variation: To evaluate, if the network
structure can be improved, we set up two experiments: First,
we evaluate the input coding. We recognized that the gray
value histogram showed a distribution composed of three
normal distributions (road paint, asphalt color, and shadows
due to pavement structure). Therefore, we chose a topological
input coding with three neurons per pixel.

Second, based on findings in [33], that each convolutional
filter larger than 3×3 can be replaced by multiple 3×3-
filters, we rearranged our structure. 5×5-filters are replaced
by two successive 3×3-filters and the 4×4-filter by a 3×3-
filter. Szegedy et al. [33] also found, that the performance
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improves when two successive 2×2-filters are replaced by one
3×3-filter. With this replacement, the modified ASINVOS net
(referred to as ASINVOS-mod) used 3×3-filters only. Based
on modern neural network architectures, e.g. [33], [31], [34],
where pooling layers are replaced by filter map reducing
convolutional layers with a stride of 2×2, we also replaced
all pooling layers by such convolutional layers, that learn the
reduction. We also followed these state of the art nets by
replacing valid convolutions with size preserving convolutions
by the use of zero-padding. The modified structure is shown
in Tab. III. The increased number of layers and the use of size
preserving convolutions result in an increase of parameters to
18.3M. This increases the explanatory power of the neural
network, but may negatively affect the generalization abilities.

TABLE III: ASINVOS-mod model. Abbreviations as in Tab. I.

type filter size stride regular. output size # paramet.
in 1×64×64
conv 3×3 (64) 1×1 — 64×64×64 640
conv 3×3 (64) 1×1 D (0.1) 64×64×64 36 928
conv 3×3 (96) 1×1 D (0.1) 96×64×64 55 392
conv 2×2 (96) 2×2 D (0.1) 96×32×32 36 960
conv 3×3 (128) 1×1 D (0.2) 128×32×32 110 720
conv 3×3 (160) 1×1 D (0.2) 160×32×32 184 480
conv 2×2 (160) 2×2 D (0.2) 160×16×16 102 560
conv 3×3 (192) 1×1 D (0.3) 224×16×16 276 672
conv 2×2 (192) 2×2 D (0.3) 192×8×8 147 648
conv 3×3 (256) 1×1 D (0.3) 256×8×8 442 624
flat 16384
fc (1000) D (0.5) 1000 16 385 000
fc (500) D (0.5) 500 500 500
out (2) D (0.5) 2 1 002

18 282 278

TABLE IV: CNN model comparison

approach RCD [17] ASINVOS ASINVOS-mod
neurons
neuron type ReLU ReLU ReLU
model size
input 99×99 RGB 64×64 gray 64×64 gray
depth 6 layers 11 layers 13 layers
# weights 0.3 M 4.0 M 18.3 M
layer configuration
conv filter size 3×3 – 5×5 2×2 – 5×5 3×3
feature map max-pooling max-pooling convolution

reduction stride 2×2 stride 2×2 stride 2×2
regularization
dropout 1×(p = 0.5) 10×(0.1 – 0.5) 12×(0.1 – 0.5)
weight decay 0.0005 — —
learning parameters
optimizer SGD SGD SGD
learning rate 0.001 0.01 0.01
momentum 0.9 0.7 0.9
batch size 48 256 256

V. EVALUATION OF STATE OF THE ART ON GAPS DATASET

To show the capabilities of deep neural networks for distress
detection on road surfaces, we applied them on the presented
GAPs dataset (see Fig. 1 for visual results). Furthermore, we
compare the results with classical computer vision algorithms
that are common in the research community.

A. Evaluation Protocol

To evaluate the pure classification performance of the dif-
ferent algorithms instead of the detection performance, we
extracted image patches. Using a sampling strategy that favors
distress over intact road, we extracted a total of 4.9M patches
for training (approximately 1

8 distress), 200 k patches for
validation ( 14 distress) and 1.2M patches for testing purpose
(better pavement condition, only 1

20 distress). All algorithms
are evaluated on patches of size 64×64, except the RCD net
that is additionally evaluated on 99×99-patches (drawn at the
same positions), since this is its intended input size.

The dataset contains different types of road paint (arrows,
lane lines, etc.). Since first evaluations with the CrackIT
toolbox revealed, that it fails to handle road paint robustly,
we excluded patches with road paint from the evaluation. We
consider this a fairer comparison.

B. Performance Measures

To make future comparisons as easy as possible, we report
all common performance measures, that can be derived from
the Receiver Operator Characteristic (ROC) curve and the
Precision Recall (PR) curve. The full listing with equations
and used abbreviations is shown in Tab. V.

TABLE V: Performance Measures, where tp is the number of
true positives, fn the number of false negatives, fp the number
of false positives, and tn the number of true negatives.

measure abbreviation, equation curve
true positive rate, TPR = REC = tp

tp+fn
ROC,

Recall PR
true negative rate TNR = tn

fp+tn
ROC

precision PRC = tp
tp+fp

PR
balanced error rate BER = 1− 1

2
(TPR + TNR) ROC

accuracy ACC = tp+tn
tp+fn+fp+tn

ROC

Matthews correlation MCC = tp·tn−fp·fn√
α

ROC
coefficient α = (tp + fp)(tp + fn)(tn + fp)(tn + fn)

G-mean GME =
√

TPR · TNR ROC
area under ROC AUC ROC
curve
F1 score F1 = 2 · PRC·REC

PRC+REC PR
G-measure GMS =

√
PRC · REC PR

break even point BEP = PRC !
= REC PR

area under precision APR PR
recall curve

We favor two measures: The F1 score, that is derived from
the PR curve, and the balanced error rate (BER), that is derived
from the ROC curve. The often reported accuracy (ACC) is not
a good performance measure when dealing with unbalanced
real-world data (as e.g. the GAPs dataset), since it favors the
dominant class. This is usually the negative class (in our case
intact road), which is not the primary focus of detection. Also
area under ROC or PR curve is not a favorable measure, since
many irrelevant parts of the curve (high errors or low detection
rates) have a large influence on the measure.

If we should choose between F1 score and balanced error
rate (BER), we would decide in favor of the F1 score, since
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it clearly focuses on the positive class (distress) and reports
a combination of detection rate (recall) and false alarm rate
(precision). These two characteristics are most valuable to rate
the applicability of a real-world detector.

C. Computational Effort

Experiments for regularization, network structure, and all
the other parameter evaluations ran for approximately three
months on two NVIDIA Titan X GPUs using Keras [24]
with Theano [25] backend. The average time to train a model
on a single GPU was 10 days. In the execution phase, the
processing of an HD image takes less than a half second.

D. Regularization Evaluation

To be able to evaluate the generalization abilities of deep
learning approaches, the GAPs dataset is partitioned such that
the validation data is more similar to the training data than the
test data. This was achieved by extracting the validation data
from one of the roads that was also used for training, but from
a different section of that road. In contrast, the test data are
extracted from another German federal road with completely
other road surface conditions (less distress).

Tab. VIII shows the validation results, while Tab. IX shows
the test results (table sections original and regularization). It
can be seen, that the performance decreases from validation to
test for all analyzed networks (original and all regularization).
We conclude, that the test data differ more from training data
than the validation data and thus, cause worse results. The
generalization abilities are not sufficient to cope with unknown
and significantly different data. None of the regularization
techniques can cause a substantial improvement over the
results achieved with dropout in the original ASINVOS net.

According to the balanced error rate (BER), batch nor-
malization without dropout achieved the best test results
(Tab. IX), closely followed by dropout only (ASINVOS net).
Dropout in combination with batch normalization performs
worst. Penalizing large weights with weight decay or max-
norm regularization decreases the performance.

If the F1 score is used to rate the performance (which we
prefer), using dropout as sole regularization technique is the
best choice, followed by batch normalization only. Combining
both approaches is unfavorably. Again, both weight decay and
max-norm regularization decreased the performance.

As a result, we propose to use either dropout or batch
normalization for all layers, but neither weight decay nor max-
norm for regularization.

E. Network Structure Evaluation

Tab. VIII (validation results) and Tab. IX (test results) (table
sections original and network structure) show, that the chosen
topological coding clearly performs worse than the pure gray
value input coding (indicated by all performance measures).

We conclude that a CNN is able to learn the input coding by
its own. Furthermore, an increase of input dimensions without
an increase of information can decrease the performance
significantly. Thus, it should be avoided.

An adaption of the network structure substantially improved
the validation result (indicated by all performance measures
but APR), but the generalization abilities have dropped. For
the completely different road in the test data the net with the
modified structure (ASINVOS-mod) performs worse than the
original ASINVOS net (indicated by all performance measures
but AUC) due to the increased number of weights. Therefore,
we have a mixed result.

The modifications are promising, but to achieve better
results on unknown and different data, the regularization must
be improved.

In future work, we will also evaluate more advanced
network structures like ResNets [34], [35], latest Inception-
Nets [33], [36], and sequential classifiers such as stack CNN-
RNN [37], [38].

F. Distress Type Detection Analysis

To ensure, the networks did not only learn to detect the
dominant distress class of cracks, but are able to recognize
each distress class appropriately, we analyzed the detection
results of the ASINVOS and the ASINVOS-mod net in detail.
The threshold parameters were chosen such that the F1 score
had a peak in the precision recall curve and produced the best
result as listed in Tab. VIII and IX repectively.

Tab. VI shows, that both classifiers can robustly detect each
type of distress. Also on the test set (Tab. VII) they perform
well.

We conclude, that the presented CNNs are able to learn
appropriate features to recognize all types of distress.

TABLE VI: GAPs dataset validation results per surface dis-
tress class. Abbreviations as in Fig. 4.

ASINVOS net ASINVOS-mod net
type detected % detected %
CRACK 39110/43065 90.82 39344/43065 91.36
POTHO 4420/4496 98.31 4436/4496 98.67
INPAT 662/746 88.74 688/746 92.23
APPAT 1037/1186 87.44 1059/1186 89.29
OPJOI 2048/2098 97.62 2078/2098 99.05
BLEED 0/0 — 0/0 —

TABLE VII: GAPs dataset test results per surface distress
class. Abbreviations as in Fig. 4.

ASINVOS net ASINVOS-mod net
type detected % detected %
CRACK 18665/23799 78.43 19763/23799 83.04
POTHO 62/68 91.18 60/68 88.24
INPAT 340/391 86.96 381/391 97.44
APPAT 10243/11830 86.58 9913/11830 83.80
OPJOI 649/674 96.29 659/674 97.77
BLEED 0/0 — 0/0 —

G. Comparison to State of the Art

For a comparison of the state of the art see test results in
Tab. IX (ASINVOS net, ASINVOS-mod, RCD net, CrackIT).
Analyzing the results, it is quite obvious, that deep learning
approaches (ASINVOS net, ASINVOS-mod, RCD net) clearly
outperform classical computer vision methods like CrackIT.
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TABLE VIII: ASINVOS dataset validation results. Abbreviations as in Tab. V. Arrows beside the performance measures show
if greater (↑) or lower (↓) results are better. The best result achieved for each performance measure is highlighted in bold. All
performance measures are chosen at the working points of their peak in the respective curve (ROC / PR). TPR and TNR are
chosen at the working point where BER peaks. The preferred performance measures are highlighted in blue.

validation
algorithm TPR ↑ TNR ↑ BER ↓ ACC ↑ MCC ↑ GME ↑ AUC ↑ F1 ↑ GMS ↑ BEP ↑ APR ↑

original
ASINVOS net 64×64 0.9164 0.9411 0.07124 0.9431 0.8493 0.9287 0.9758 0.8876 0.8876 0.8871 0.9482

regularization
+Batch Normalization 0.9068 0.9421 0.07551 0.9422 0.8463 0.9243 0.9711 0.8843 0.8846 0.8828 0.9437
+Batch Norm –Dropout 0.9026 0.9310 0.08317 0.9348 0.8264 0.9167 0.9684 0.8698 0.8699 0.8684 0.9343
+Weight Decay (0.0002) 0.8702 0.9614 0.07709 0.9386 0.8369 0.9229 0.9717 0.8780 0.8780 0.8772 0.9394
+Max-norm (1.45) 0.9060 0.9382 0.07790 0.9387 0.8375 0.9220 0.9710 0.8784 0.8785 0.8776 0.9410

network structure
ASINVOS-mod 64×64 0.9227 0.9466 0.06518 0.9480 0.8624 0.9347 0.9777 0.8973 0.8973 0.8970 0.9475
Topo coding 3×64×64 0.9073 0.9383 0.07713 0.9390 0.8375 0.9228 0.9708 0.8785 0.8785 0.8782 0.9414

state of the art
RCD net 64×64 [17] 0.8105 0.8646 0.16240 0.8759 0.6628 0.8371 0.9099 0.7470 0.7471 0.7467 0.7982
RCD net 99×99 [17] 0.9194 0.9429 0.06882 0.9473 0.8478 0.9311 0.9758 0.8821 0.8821 0.8820 0.9395
CrackIt 0.6182 0.8832 0.24930 0.7596 0.5390 0.7400 0.7982 0.7123 0.7139 0.7093 0.8194

TABLE IX: ASINVOS dataset test results. Abbreviations as in Tab. V and highlighting as in Tab. VIII. For a visualization of
the performance curves in the detection error tradeoff (DET) diagram, that is derived from the ROC curve, and the precision
recall (PR) diagram, see Fig. 7

test
algorithm TPR ↑ TNR ↑ BER ↓ ACC ↑ MCC ↑ GME ↑ AUC ↑ F1 ↑ GMS ↑ BEP ↑ APR ↑

original
ASINVOS net 64×64 0.8149 0.9432 0.1209 0.9772 0.7148 0.8771 0.9221 0.7246 0.7266 0.7158 0.7367

regularization
+Batch Normalization 0.7977 0.9433 0.1294 0.9741 0.6730 0.8685 0.9132 0.6857 0.6868 0.6832 0.7062
+Batch Norm –Dropout 0.8417 0.9213 0.1184 0.9741 0.6690 0.8808 0.9378 0.6813 0.6826 0.6784 0.7112
+Weight Decay (0.0002) 0.8046 0.9238 0.1358 0.9737 0.6541 0.8624 0.9007 0.6660 0.6683 0.6608 0.6909
+Max-norm (1.45) 0.8179 0.9385 0.1218 0.9759 0.6911 0.8761 0.9233 0.7012 0.7036 0.6949 0.7273

network structure
ASINVOS-mod 64×64 0.8372 0.9206 0.1211 0.9723 0.6561 0.8780 0.9322 0.6707 0.6711 0.6698 0.6690
Topo coding 3×64×64 0.8042 0.9168 0.1395 0.9723 0.6413 0.8588 0.9075 0.6518 0.6555 0.6440 0.6641

state of the art
RCD net 64×64 [17] 0.7757 0.9221 0.1511 0.9732 0.6541 0.8457 0.9095 0.6642 0.6676 0.6500 0.6339
RCD net 99×99 [17] 0.8553 0.9389 0.1029 0.9769 0.7077 0.8962 0.9430 0.7184 0.7199 0.7152 0.7684
CrackIt 0.5394 0.9315 0.2645 0.9607 0.4779 0.7188 0.7601 0.4882 0.4969 0.4694 0.4251

Furthermore, CrackIT is extremely sensitive to the chosen
parameters, leading to bad generalization, as can be seen by the
performance drop between similar data (validation, Tab. VIII)
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Fig. 7: (a) Detection error tradeoff (DET) curve and (b)
precision recall diagram on GAPs test data. Dashed lines
show the contour plots of the derived performance measures
(a) balanced error rate (BER) and (b) F1 score (see Tab. IX).

and significantly different data (test, Tab. IX).
Surprisingly, the network with significantly more weights

(ASINVOS net) performed only slightly better that the rela-
tively small RCD net 99×99 [17]. However, when comparing
results for equal input sizes of 64×64 pixels, the ASINVOS
net outperforms the RCD net by far. We conclude, that 64×64-
patches do not provide enough context information. Thus
larger input patches should be the focus of future evaluations.

VI. CONCLUSION

Since road condition acquisition and assessment is impor-
tant to maintain a country’s road network, millions of high-
resolution road surface images are analyzed annually. In order
to replace the extensive manual labor by an automatic distress
detection system with high-performing deep neural networks,
much data for training is needed. Therefore, we presented the
GAPs dataset, which is the first freely available pavement
distress dataset of a size, large enough to train modern
deep neural networks. The dataset images are recorded by a
standardized process fulfilling German federal regulations. For
each image, detailed distress annotations are available.
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Thus, for the first time we were able to evaluate the state of
the art in pavement distress detection in a meaningful way and
reporting appropriate performance measures, namely balanced
error rate (BER) and F1 score. Summarized, only deep learning
approaches were able to achieve satisfying detection results.
Conventional computer vision approaches were beaten by a
large margin. Furthermore, we analyzed the effectiveness of
state of the art regularization techniques including dropout
[29], batch normalization [31], max-norm regularization [29]
and weight decay [32]. The best generalization results were
achieved using dropout only, followed by batch normalization
only. Penalizing large weights decreased the performance.

With the presented dataset and the extensive evaluation of
deep neural networks, we made a first step to automate the
time and labor intensive process of analyzing millions of road
surface images annually.
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