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Abstract— One important function in assistive robotics for
home applications is the detection of emergency cases, like falls.
In this paper, we present a new detection system which can run
on a mobile robot to detect persons after a fall event robustly.
The system is based on 3D Normal Distributions Transform
(NDT) maps on which a powerful segmentation is applied.
Segments most likely belonging to a person lying on the ground
are grouped into clusters. After extracting features with a soft
encoding approach, each cluster is classified separately. Our
experiments show that the system is able to reliably detect
fallen persons in real-time. It clearly outperforms other 3D
state-of-the-art approaches. We can show that our system is
able to handle even very challenging situations, where fallen
persons are very close to other objects in the apartment. Such
complex fall events often occur in real-world applications.

I. INTRODUCTION

Having an independent life in ones own apartment as long
as possible is a big desire for many people. Unfortunately,
mobility and fitness decrease with proceeding age and,
thus, a lot of ordinary activities can become challenging.
Simultaneously, the risk for dangerous situations increases
which is especially critical when living alone.
One example for such critical situations are falls. According
to [1], about 30% of the population at the age of 65 and above
fall at least once a year. Consequences of a fall event reach
from smaller injuries, like contusions, up to more critical
injuries, like fractures. The higher the age, the higher is the
risk for such an injury. Besides the physical impairments, a
fall can also have psychological consequences, e.g. the fear
of falling again. This can cause social retreat and decreasing
activity. Hence, a fall event is one of the main reasons for
people to decide to live in a supervised retirement home.
Nursing staff and caregivers can assist the elderly in their
everyday life and can check if they are fine in their own
home. But due to the demographic change in industrialized
countries the support by nursing staff gets more and more
difficult. According to [2] people at the age of 65 and higher
will represent more than 30% of the German population in
the year 2060, while the working population will decrease by
about 23% compared to the year 2013. A way to unburden
nursing staff is the commitment of a robot who lives together
with people or supports them elsewhere, like e.g. explored
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Fig. 1: Difficult example for a fallen person. The RGB image
in (a) shows that the person touches a table and an armchair.
Nevertheless, our detector is able to detect the person as
displayed in (b).

in [3]. Amongst other things, a robot could keep an eye on a
person in certain time intervals. Critical situations can then be
reported to human caregivers over a communication system,
or the emergency medical service could be called directly.
Besides the detection and report of dangerous situations, the
pure presence of a robotic companion could also lower the
fear of such dangers.
In this work, we present a novel 3D lying person detector
for detecting falls which is applied on our mobile companion
robot [3]. This multi-stage approach is based on a robust seg-
mentation of a 3D Normal Distributions Transform (NDT)
map [4]. The goal of the segmentation is to find clusters
of NDT cells which probably correspond to a fallen person.
From each cluster features are extracted using a soft encoding
approach. Finally, these features are used to classify whether
a given cluster represents a fallen person or not. As shown
in Fig. 1 our approach is able to detect fallen persons even
in difficult situations, e.g. when they touch furniture, like
armchairs or tables. For cluster-based approaches such scenes
are very difficult because objects included within a cluster
could cause a different feature representation and, thus, a
correct classification becomes more complicated.

II. RELATED WORK

The literature about fall detection systems is compre-
hensive, especially in the domain of wearable devices.
Overviews about existing approaches are given in [5], [6],
[7] and [8]. Most of the existing systems try to detect a fall in
the moment it is happening, i.e. the actual movement of the
human body until it hits the ground. Many detectors rely on
wearable devices, like wristbands or belts, which measure the
acceleration. Modern variants, like [9] and [10], can utilize
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the accelerometers of a smartphone and thus, no extra device
must be worn. Nevertheless, a fall cannot be detected when
people forget their mobile phone somewhere. Furthermore,
the deployment of wearable sensors on a human is inappro-
priate for the operation of a mobile robot since the detection
should be independent of external devices.
Also vision based systems exist which analyze the velocity
or form of a person detected and tracked over time. Recent
approaches also exploit the skeletons delivered by a 3D
sensor for fall detection, e.g. the work in [11] or [12]. But for
our scenario an active detection via vision-based sensors is
unsuitable because this would require that the robot follows
the human permanently without a break and thus, a very
intrusive movement behavior would be necessary.
Hence, we define the problem of fall detection for our
scenario as the detection of people lying on the ground.
This offers multiple advantages: The robot does not have to
observe a fall when it happens. The fall can rather be detected
afterwards. In the same sense, the robot has several chances
to detect the fall from different points of view when going
on a search mission. Furthermore, the fall detector does not
need to run all the time. It only has to be enabled in cases
where the human cannot be detected by any of the robot’s
regular person perception modules. Hence, the robot’s on-
board computation capacity can be used for other services
and daily routines.
Unfortunately, literature about systems which detect persons
lying on the ground via vision sensors is very rare. In [13] a
part-based approach for the detection of upright pedestrians
in 2D RGB images based on edge features [14] was adapted
to lying persons. To handle the multitude of different lying
poses, eight different detectors were trained – each for a
certain orientation of the body. Similar, in [15] multiple SVM
classifiers were trained. Disadvantages of these approaches
are the run time and the number of required training samples.
Each detector costs computation time and requires lying
person samples of a particular orientation. Furthermore, RGB
cameras are sensitive to lighting conditions and, thus, they
cannot be used in the dark. In contrast, our approach does not
require the training of multiple detectors. Furthermore, we
make use of active 3D sensors which allow the application
in darkness.
An 3D approach based on point clouds is presented in [16].
There, the first step is the removal of the ground plane
followed by a Euclidean clustering. Then after extracting
features based on surface normals each cluster is classified
separately. The most problematic part of this approach is
the clustering step. Since a ground plane subtraction is the
only step of pre-segmentation, it can happen that a person
is split into multiple clusters depending on the viewpoint of
the sensor, or a human is represented by a cluster together
with objects of the environment, e.g. wheeled walkers or
armchairs. Several clusters of a single person divide the
human’s unique features and thus, lower their distinctiveness.
This in turn could lead to a missing detection. In a similar
way objects deform the feature representation of humans
when included into a cluster.

Our system is a multi-stage approach too. But in contrast,
we use NDT maps as 3D data representation instead of
raw point clouds which allows an efficient fusion of sensor
readings from different points of view. This should avoid
that the representation of a person is split into multiple
clusters. Furthermore, before the clustering step we do a
more complex segmentation and thus, only the parts of the
map which most likely belong to a lying person are processed
further. Hence, the resulting clusters should be free from
environment objects, even in cases where they are touched
directly as shown in Fig. 1. In our experiments, we show that
our approach clearly outperforms our earlier results [16].

III. NDT FALLEN PERSON DETECTOR

The architecture of our fallen person detector is shown
in Fig. 2. The system consists of different modules which
are described more detailed in the following. Input is a
depth image captured by a depth sensor like the Asus Xtion
or the Kinect2. After creating an NDT map of the scene
appropriate features are extracted. These features are used
for a segmentation step, where those NDT cells which most
likely belong to a fallen person are searched and grouped
into clusters. Afterwards, per cluster a single feature vector
is calculated and used to classify whether a given cluster
represents a fallen person or not.

A. Ground plane estimation

Since the ground of a scene does not hold relevant
information which are useful for the detection of lying
people, sensor readings belonging to the ground plane can
be ignored. This procedure speeds up the whole detection
process and simplifies the following segmentation process.
For the ground plane estimation different possibilities exist.
For example the complete depth image or only a certain
region could be converted into a point cloud on which a
RANSAC algorithm [18] is applied in order to calculate
the plane. Alternatively, the plane could be removed directly
within the input depth image by the method of [19], where in
a so called v-disparity image the depth values per horizontal
image line are accumulated. Assuming that most of the
points belong to the ground, the plane can be found by
a simple line fitting within the v-disparity image. In cases
where the extrinsic parameters of the depth sensor are known
exactly, a costly calculation of the ground plane is not
necessary because the plane is defined implicitly by the
sensor mounting. When applying the detector on a mobile
robot, like in our scenario, the latter approach should be the
most appropriate choice since nearly no computing time is
consumed.

B. NDT mapping

Our fallen person detector operates on NDT maps, a
spatial representation storing surface parts as three dimen-
sional normal distributions N (~µ,Σ). Such a map is created
by converting a depth image into a point cloud, which is
superimposed by a set of voxels afterwards. Per voxel a
mean vector ~µ and a covariance matrix Σ can be calculated
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Fig. 2: Overview of the presented fall detection system. After computing a ground plane-free NDT map of the input depth
image, IRON features [17] are calculated. Using these features, a segmentation on the map is applied in order to find clusters
of NDT cells. Finally, each cluster is classified by a Mahalanobis classifier separately after extracting appropriate features
per cluster.

out of the points [4]. The final map consists of a set of N
normal distributions only, where N is the number of voxels
which surround a certain minimum number of points. Please
note, that we use the word ”NDT cell” in the following as
an equivalent for a single normal distribution. In 3D, these
distributions can be visualized by ellipsoids as shown in
Fig. 1b. In particular, we use the NDT mapping approach
presented in [20] which accumulates sensor measurements
over time and thus, creates a more complete representation.
As voxel size we chose 5cm× 5cm× 5cm.
The reason for using the NDT representation in this work
are twofold. On the one hand, the subsequent calculations
are much faster, compared to applying them on the raw
point cloud, because the number of elements which need to
be considered is much lower. On the other hand, our robot
already uses an NDT map for localization and navigation and
thus, no extra representation must be computed or stored.
Since the ground plane of the scene is known in our system,
the resulting map is free from NDT cells which belong to
the floor as shown in Fig. 2.

C. IRON feature calculation
In order to detect fallen persons and to segment the scene,

appropriate features have to be computed from the NDT map.
The IRON descriptors [17] are utilized for this purpose. Orig-
inally, they were developed for the application in mapping
and localization. However, we found out that IRON features
are well suitable for a number of detection tasks, too. The
reason for that is their rotational and translational invariance,
which makes them very distinctive for persons in various
poses. Simultaneously, their calculation does not need much
computational resources.
Calculating IRON features requires a surface normal for
each NDT cell. Such normal vectors are computed via
an eigenvalue decomposition of the covariance matrices Σ
of the NDT cells. There, the eigenvector corresponding to

the smallest eigenvalue equates to a surface normal. The
IRON-descriptor of a cell itself considers all neighboring
cells within a spherical neighborhood (we chose a radius
of 50cm) and consists of two equally sized 2D histograms.
Both histograms discretize the distance between the base cell
and the neighboring cells in their first dimension respectively.
The first histogram additionally encodes the angle between
the base’s normal and the normals of the neighboring cells.
Hence, the first histogram corresponds to a description of
the local surface curvature. The second histogram encodes
the shape of the local neighborhood by binning the angle
between the base’s surface normal and the line connecting
the means of the base and neighboring cells in the second
dimension. In our experiments, we used three distance bins
and eight angular bins for both histograms.

D. Segmentation
The final classification step of our detector evaluates

clusters of NDT cells. Therefore, the goal of the
segmentation step is to find all cells which most likely
belong to persons lying on the ground and to combine
them into groups. The inclusion of non-human objects
or background elements, like furniture, would change the
shape of a cluster. This complicates the detection because it
gets more difficult to distinguish between clusters with and
without persons. Hence, the idea behind the segmentation
process is to filter out those non-human elements. The
sub-steps to obtain such clusters are presented in the
following.

1) Background subtraction: A simple idea to remove
content belonging to the background is to employ a map
of the environment if available. Since our robot uses such a
map for localization, we can subtract parts of the background
in our local map gathered by current sensor readings.
In particular, we have implemented a simple nearest neighbor
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search, where for each NDT cell in the local map the closest
cell in the environment map is searched. If both cells have
a distance below a threshold τ to each other, it is assumed
that they represent the same background element.
Since our approach is based on NDT cells, we do not need
to rely on distances only. Instead, we additionally exploit the
covariances to decide if a cell matches the background. More
specifically, we include the similarity between observed and
known background cells and, therefore, create a dynamic
threshold τ per cell. To do so, we exploit the normal vectors
of the cells. The smaller the angle between the normal ~nE
of the environment map cell and ~nL of the local map cell,
the more similar are both cells and the higher is the distance
threshold, which assigns the local cell to the background.
This relation is modeled by

τ = (1− 2 arccos(|~nE · ~nL|)
Π

)τd + τs

where τs and τd are parameters that describe the static and
dynamic portion of the threshold respectively.

2) Cell classification: The cell classification is the actual
step where a label is assigned to each NDT cell indicating
whether it originates from a human or not. If the background
subtraction in Sec. III-D.1 is enabled, the classification is
applied onto the foreground map only.
The labeling is realized by a classification of the
corresponding IRON descriptors with an AdaBoost
classifier [21] consisting out of multiple decision trees as
weak learners and trained over a set of training data.

3) Smoothing: The initial segmentation by the cell
classification is not perfect as shown in Fig. 3a. Therefore,
we apply an additional smoothing step in which the average
of the AdaBoost classification scores of all NDT cells within
the spherical neighborhood of a query cell is calculated. This
new score replaces the original score of the cell afterwards.
The effect of the smoothing can be seen in Fig. 3b.

4) Clustering: After having all NDT cells selected which
most likely belong to a lying person, we apply DBSCAN
[22], in order to cluster human-alike labeled cells close to
each other into groups. We assume that all cells within a
resulting cluster represent the same object. Since the cell
classification in Sec. III-D.2 acts as a pre-filter, these objects
are most likely humans. Without this segmentation, it could
happen that the NDT map is under-segmented and, thus,
results in clusters containing multiple objects in cases where
they are too close to each other.

E. Cluster feature extraction

From now on, each NDT cluster is processed separately.
The objective is to verify which of the found clusters really
represents a fallen person. Since the clusters are usually
unequal in their size and, thus, have a different number of
NDT cells, appropriate features independent of the number
of cells are required for this final classification. To do so,

we apply an encoding of single IRON features of a cluster
similar to [23] where sparse coding on 2D image descriptors
was applied. All resulting code vectors of a single cluster
are then combined into a single histogram representation by
applying the average pooling of [23].
In particular, instead of sparse coding we do the encoding
based on a soft threshold [24] on each IRON descriptor
within the cluster. Although very simple, it has been shown
by the authors that this is often competitive to sparse coding
and thereby very fast.
Inspired by [25], we learn a set of reference IRON features
with a Growing Neural Gas vector quantifier [26] in the
training phase. The training as well as the encoding in the
application phase is based on the cosine distance rather than
the Euclidean distance in order to avoid the so called hubness
[27] in high dimensional feature spaces.1

F. Mahalanobis classification

Having a histogram over all code vectors of a NDT cluster,
we use a simple Mahalanobis distance and thresholding to
decide, if the cluster represents a fallen person or not. The
classifier is very simple but has the crucial advantage that
it requires training samples from a single class only. This
is an important property since the acquisition process of
negative training data for a conventional classifier would
be very difficult because object NDT clusters of almost all
sizes and forms had to be recorded2. Additionally, we can
generalize better in unknown environments, as we will show
in Sec. IV-D.
To create the classifier, we first extract the features explained
in Section III-E from all positive samples in our training
set. Secondly, we use all feature vectors to compute a
multivariate normal distribution. In the application phase, an
unknown sample is classified via the Mahalanobis distance
to the model. If it is below a certain threshold, the sample
is treated as a fallen person. In order to determine an
appropriate threshold, we adopt the idea from [28]: We use
a test set, consisting of positive and negative samples, and
calculate the probability density p(fallen person|d) which
assigns a probability to be a fallen person to each distance
d. With p, a suitable threshold can be indirectly defined by
specifying the desired probability of misclassifications.

IV. EXPERIMENTS

In order to evaluate the performance of our fallen person
detector, we carried out experiments on our mobile robot
presented in [3], which is a domestic health assistant. In
particular, it is equipped with two laser scanners, one directed
forwards and one looking backwards, an RGB-front-camera
and three Asus Xtion depth cameras for sensing the area in
front of the robot, the back and the ground. Since we search
for persons lying on the ground, we only use the latter one

1The hubness is the effect that some feature vectors are nearest neighbor
to the majority of data points.

2Note that this is not the case for the segmentation classifier since there
just a little section of the whole NDT Map is considered which always has
the same size.
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(a) (b)

Fig. 3: Results of the cell classification step, where green indicates cells belonging to a human (a). Improved segmentation
after the smoothing step (b). The main differences are highlighted by red ellipses.

inclined downwards for the detection task. The remaining
sensors are used for obstacle avoidance and localization in
our experiments. In the following, we describe our training
process as well as the test data used for detecting fallen
persons.3 In the results section, we compare the proposed
method with the approach based on surface normals pre-
sented in [16]. Since those features achieved the best results
we do not consider the other ones studied in [16].

A. Training

There are two classifiers we need to train within our de-
tection system: The AdaBoost classifier for the segmentation
and the Mahalanobis classifier for the cluster verification.
The latter only requires positive data, i.e. NDT clusters of
fallen persons. Hence, we collected a set of NDT maps
representing lying persons in different poses free from the
ground and from any other objects. The data were captured
from ten persons who lay in front of the depth sensor. Each
pose was captured eight times with different orientations
of the person towards the sensor respectively. We were
recording continuously, while the persons moved between
the different poses. That way, we were able to collect 25,150
NDT maps for the training in total.
For the segmentation classifier, we need NDT cells only.
Since we use AdaBoost, additional negative samples are
required which we gathered by randomly driving the robot
through the regions of the environment without people and
recording NDT cells not belonging to humans.
Since we did not have negative training samples of point
clusters, we could not retrain the detector presented in [16]
for comparison. Nevertheless, both detectors are tested on
completely unknown test data recorded in our apartment-like
living lab which should allow a fair comparison.

B. Test data

For the evaluation of the fallen person detection system,
we recorded 45 test sequences while our robot was driving

3Our training as well as our test data set is publicly available online
at https://www.tu-ilmenau.de/neurob/data-sets-code/
fallenperson/

through an apartment-like environment autonomously. A
background NDT map of the complete test environment was
created beforehand. This allows the robot to locate itself
within the model of the environment which is necessary
in order to test the background subtraction module of our
system. We recorded local NDT maps as well as the raw
depth images. The latter can be converted into point clouds
and were used for the reference approach in [16].
In each sequence, the robot was randomly placed within
the environment and sent to a certain location, while either
passing a fallen person or other objects on the ground placed
to test for false alarms. In some sequences, the robot was
sent to the person or a certain object directly. Per recording,
one or no fallen person was present. To keep the sequences
realistic, the whole drive of the robot was captured, so that
other objects, furniture or other background elements, were
visible, too.
The sequences have a different difficulty each. More specif-
ically, in some cases the persons were placed in close
distance to other objects, in order to make it hard to separate
them from the rest of the scene. Therefore, they may touch
different furniture objects, like shown in Fig. 1. Also exam-
ples with objects looking very similar to fallen persons in
NDT maps were created artificially, by placing for example
backpacks together with carpetbags, a vacuum cleaner and
piles of blankets within the test environment. Additionally,
tapes with a large dog were recorded where it was lying on
the ground, sitting, standing, and walking. Furthermore, a
special difficult test sequence, where the dog lies besides a
fallen person, is included too. An image of it is shown in
Figure 4.
For each sequence, we manually labeled a ground truth
bounding box. For the evaluation, we consider the presence
of a fallen person only in frames which have at least
100 NDT cells of the local NDT map within the box. In
sequences without persons, the box is placed in a way that
there are never cells in it. A detection is counted as positive
if the centroid of the corresponding NDT cluster lies within
the box. If multiple hypotheses fulfill this requirement, only
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Fig. 4: Part of an NDT map of a lying person together with a
dog. Both are segmented as positive within the segmentation
step. Although the dog is included into the cluster wrongly,
the whole cluster is classified as a fallen person. Hence, an
alarm would not be misplaced in such a case. Note, that the
lying dog alone is not classified as fallen person.

the one with the highest classification score is treated as true
positive, while the others are counted as false detections.
To get a fair comparison to the approach in [16], we
used the same conditions for the assessment. Therefore, we
additionally generated an NDT map, which is only used to
decide if a ground truth example is present or not (if 100
NDT cells are within the box). This is necessary, since the
method in [16] is based on point clouds.

C. Results

The results of our detector as well as from the detector in
[16] are plotted as detection error tradeoff curves in Fig 5.
It can be seen that our new fallen person detection system
clearly outperforms the approach in [16]. We analyzed the
bad performance of the latter one and found out, that the
problems were caused mostly by the segmentation step. In
particular, the authors used only a plane subtraction and an
Euclidean clustering for segmenting persons. This cannot
separate the humans from the rest of the scene good enough,
especially when objects are very near by.
In contrast, our multi-stage segmentation module is able to
separate fallen persons from other objects and, thus, enables
a better performance for the overall detector. Our system can
detect more than 80% of the persons lying on the ground
while doing a single false positive detection every 100th
frame. Most of the missed samples are scenes where a large
part of a person is occluded. However, since our system can
detect persons after a fall event, there should be more than
one chance for a correct detection, when the robot is moving
around.
Fig. 5 also shows that the background subtraction has little
effect on the performance. More specifically, the performance
will slightly increase if we disable the background subtrac-
tion depending on the working point in the DET curve. This
can have different reasons. For our experiments, we only
used a static background map. Shifted furniture releases an
area where a possible fallen person would be assigned to the
background. A dynamic background map like it is created
when using a life-long SLAM-approach could be a solution
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Fig. 5: Detection error tradeoff curves of our fallen person
detector and of the detector presented in [16]. Both axis are
in logarithmic scale. For the difference between ours and
ours without background subtraction see Sec. IV-C.

for that problem. A second problem of the background
subtraction could be cases where objects, like furniture, are
touched directly. In those cases, distinctive parts of the body
could be assigned to the background.
The runtime of our system is 39 ms on average on a single
CPU core of an Intel i7-860 machine with eight GB RAM.
This allows a detection in real-time given an update rate of
ten frames per second of the depth image. Since we already
use an NDT map on the robot for other tasks, the runtime
of the point cloud transformation is not included in this
duration. In contrast, the ground plane estimation is included,
which requires a large part of the computation. If the ground
plane is simply estimated by the extrinsic parameters of
the sensor as described in Sec. III-A, the run time can be
reduced to 16 ms. Disabling the background subtraction and
estimating the ground plane by the sensor mounting results
in a runtime of 18 ms, which is still real-time.

D. Field-test

To proof the generalizability and performance of our pro-
posed detection system in a real environment, we performed
a field test in an apartment of the ARTIS residential complex,
situated in Erfurt (Germany). This test set consists of two
scientific staff members and one female pensioner, who was
still able to lie down on to the ground and get up again
safely. An image of her is shown in Fig. 6. Negative test
samples were generated by driving the robot through the
whole apartment. It can be seen in Fig. 5 that the curve on
this more realistic data is even better than that in our living
lab. In particular, we reach about 99% correct detections by
one false alarm every 100th frame. This can be explained
with the absence of hard to classify examples in this very
tidy apartment.
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Fig. 6: Example from our field test setup. The pensioner is
simulating a fall in her living room.

V. CONCLUSION

We have presented a novel system for detecting persons
lying on the ground which can run on a mobile robotic
platform in real-time. Compared to previous approaches,
the major advantage is the multi-stage segmentation module
based on a subtraction of the ground plane, a background
subtraction, an NDT cell classification, and a clustering.
Experiments have shown, that even without knowledge about
the environment, i.e. without the background removal, hu-
mans can be separated almost perfectly. This allows the
detection of critical fall events even in situations, where
other objects are touched. The proposed approach clearly
outperforms other 3D state-of-the-art fallen person detectors.
By having a single false classification per 100 frames, the
new system misses less than 20% of all fallen persons. In
a real operational environment, the detector is even better:
99% of all fallen persons are found by producing one false
alarm in 100 frames only. Since our system aims to find
humans lying on the ground after a fall, it has multiple
chances for the detection of an emergency case. Hence,
we can use a more conservative threshold for our classifier,
because we assume, that the robot can have a look onto a
person from different points of view, before activating an
emergency routine. This is part of an ongoing work dealing
with integrating the individual detection results in a more
consistent overall decision of a fall situation.
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