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Abstract— During social interaction between humans and
robots, body language can contribute to communicate mutual
emotional states. In this paper, a method is presented, that
enables wheeled robots with differential drive to express various
emotional states by means of different movement styles during
goal-directed motion. The motion control of the robot utilizes
an objective-based motion planner optimizing the control com-
mands in a high-dimensional search space by means of an
evolutionary algorithm. The main contribution in this paper is
an objective function that uses human feedback on the perceived
robot emotion in order to evaluate the possible robot control
sequences. First group experiments have been conducted in
order to demonstrate the system and find suitable movement
styles for possible emotional states.

I. INTRODUCTION

In continuation of [1], [2], the aim of our current research
project SYMPARTNER (SYMbiosis of PAul and RoboT
companion for Emotion sensitive caRe) [3] is the devel-
opment of a social robot companion that is intended for
domestic applications especially in one person households.
One focus of the project is the emotion awareness of the
system. On the one hand, we try to recognize the moods and
emotional states of the user by means of on-board sensing
capabilities and incorporation of a smart home installation,
on the other hand, the emotion aware design of the system
tries to evoke positive feelings in the user. Futhermore,
the intended long-term interaction benefits from a strong
emotional binding between human and robot. To this end,
we give the robot a character with own emotional states,
that are to be expressed to the user by means of different
modalities. Among animated eyes, head gestures, and voice
modulation, the body language of the robot seems to be a
promising instrument for that.

In contrast to humanoid robots, our system is designed as
a low cost platform and, therefore, has only five degrees of
freedom (see Fig. 1). Besides the movable ears and a tilt
servo for the head, the robot is equipped with a differential
drive consisting of two driven wheels on the front side and
a castor wheel in the rear. The maximum velocity of that
robot is about 1 m/s. For obstacle and people detection, there
are two ASUS Xtion depth cameras (one in the head facing
downwards and one in the rear) as well as a Kinect 2 RGB-D
camera in the head facing horizontally forward.
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Fig. 1. Robot Alfred with its main sensors, actuators, and interaction
devices; conceptual design by Hassenzahl and Welge, University of Siegen;
construction and implementation by MetraLabs GmbH Ilmenau

This paper is focussed on the expression of robot internal
emotions by means of specific movement patterns that are
to be shown during the normal operation of the robot. That
means, the already challenging navigation to goals in narrow
home environments is to be augmented by different motion
styles.

Heider and Simmel [4] already showed that people do
associate emotions to abstract objects based on a two dimen-
sional movement pattern. Here relations to the environment
and other objects (actors) over time seem to play an impor-
tant role in addition to the velocity and acceleration profile.
Correlation of perceived emotions to shape and velocity of
robot movements has also been investigated by Dang et al.
[5]. In a Wizard of Oz experiment, they tested round vs.
sharp angled shapes of movement trajectories at different
velocities.

This shows that the movement patterns should not be
disregarded in designing of an emotional robot. Also if
mainly other modalities are used for expression of emotions,
the actual movement behavior should not evoke conflicting
emotions to achieve a natural and consistent impression.

Studies like the aforementioned one have a general draw-
back. They lack in optimality of the robots movement
patterns with respect to the recognizable emotion. Usually,
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the effect can only be as good as the wizard controls the
robot. For future work in assistive mobile robots, the aim
should be to have a system available which can generate
movement patterns on its own and gets the feedback on the
perceived emotion from observing people in order to improve
the own motion patterns.

In order to go in that direction, the developed motion
planner can be trained with arbitrary movement patterns. Af-
terwards, the produced patterns are labeled with an emotional
state by human observers. By means of that, for a given or
desired emotional state of the robot, the most appropriate
pattern can be chosen among the available templates.

The remainder of the paper is structured as follows. First,
a coarse sketch of the approach is given followed by some
key ideas of the developed local motion planner used in
the system. The main part consists of the description of the
objective function used for evaluation of the suitability of
potential movement trajectories according to the intended
emotional impression on human observers. Finally, some
results of the user experiments used for training the system
are presented.

II. EMOTIONAL NAVIGATION APPROACH

For our purposes, the robot’s state of affect is modeled
using the ALMA model [6] considering emotions, moods,
and personality. Based on external and internal events dur-
ing interaction and autonomous operation, the state is de-
scribed in a three-dimensional space of pleasure, arousal,
and dominance. That emotional state is used by the arbitrary
modalities in order to modulate the robot’s expression.

For the modulation of the movement style, the 3D-state
is projected to a coordinate in the 2D emotion space (2D-
ES), consisting of the dimensions arousal and valence (each
ranging from -1 to 1) as proposed by J. A. Russell [7] in
order to make it more handy for human spectators, which
are an essential component in the approach.

The basic idea is to have a motion planner that is able to
propose potential movement commands and internally rate
these according to several pre-defined objective functions.
This approach is known as Dynamic Window Approach
(DWA), which was introduced by Fox et al. in [8] as the
first objective-based motion planner for differential drive
robots and is now commonly used in the robotic fields.
As a result, the selected control command is a compromise
that is safe and satisfies various criteria. These criteria,
implemented in form of objective functions, comprise a
goal orientation, collision avoidance, or social constraints to
people in the surroundings. In extension of that approach,
we implemented a further objective function considering the
emotional impression on potential observers.

We found that the quality of the resulting control com-
mands greatly depends on the complexity of the potential
movement trajectories considered by the planner during the
search process. In early experiments with our DWA motion
planner we found, that the bow like trajectories considered
by the DWA are not sufficient for generation of more
difficult and expressive motion patterns. For that purpose, we

developed a local motion planner [9] using an evolutionary
optimization process for generating proposal trajectories with
a high degree of freedom.

Given that framework, the idea of making the movements
emotionally expressive can be broken down to an objective
function, that is able to rate potential movement trajectories
according to the desired emotional impression. For that
purpose, we had to find a model that given an emotional state
maps trajectories onto a scalar cost value. These costs have
to be low for trajectories that match the intended emotional
expression and high for those ones that are perceived as
a different emotion. At this point, data from experiments
with human observers come into play. The data are used
to train the model and enable the robot to estimate the
impression of trajectories correctly. Initially, the robot does
not know how to modify the motion behavior due to missing
training data. Therefore, in an initial experiment the robot is
manually controlled by different people in order to record a
representative set of expressive movement trajectories. The
aim here is to cover the whole emotional repertory of the
emotion space. Up to now, we do not know either if the
robot will be able to reproduce these movement patterns,
nor which emotional impression these patterns will have to
spectators. Based on this set of template trajectories, the
robot can generate movement patterns on its own in a second
user experiment. Due to the restrictions of the objective
functions and the motion planner these trajectories are,
however, slightly different from the manually driven ones.
Now a group of human observers provide their impressions
as emotion labels in the 2D-ES. These labels now can be used
to select an appropriate template from the set of recorded
trajectories given a desired emotion to be expressed.

At the current stage of development, the motion planner
and a suitable model for the emotional objective function
have been implemented, and first user experiments have been
conducted showing that the approach is promising. At this
point, we are able to generate visibly different motion styles
with our robot, which are applied in combination with target
directed motion and obstacle avoidance.

III. EVOLUTIONARY MOTION PLANNER

One essential step towards the emotionally expressive
movement patterns is the objective-based local motion plan-
ner developed for optimizing the control command sequence
in a very high-dimensional search space. The motion planner
works in an interval of 250 ms and provides the actual
velocity target for the robot’s motor controllers for that
period. In order to correctly estimate the outcome of a
command for the next time step, all possible continuations
have to be considered up to a certain planning horizon in
time. This is of particular importance for objectives, like
the emotional evaluation, which are looking at the exact
shape rather than checking only a collision free progress in
any direction. Other approaches, like the DWA, introduce
vast simplifications to that search space by discretizing the
command space and reducing the considered continuations
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of the sequences to a constant velocity, which results in only
bow-like trajectories to be tested.

In order to keep the flexibility of possible command se-
quences, our approach utilizes an evolutionary optimization
process searching the set of complete control sequences
rather than only for the next command. For that purpose,
we hold a population P = {Ai|i = 1, . . . ,m} of possible
future acceleration sequences as individuals. These individ-
uals Ai = (at|t = 0, . . . , f) consist of an acceleration
vector at = (atx, a

t
φ) for each time step in the future

(cycle time of the motion planner itself) of a window of
a few seconds (typically 3 to 4 sec.). ax is the translation
acceleration and aφ is the rotational acceleration (see Fig. 2
for a visualization of that modeling). The acceleration values
are limited to the robot’s physical capabilities. The length of
the planning horizon is limited by the minimum stopping
distance but also increases the capability to plan over local
minima in the cost function. On the other hand, a longer
planning horizon also increases the complexity of the search
space drastically. Although, we can benefit from reusing
the population in future time steps, real-time constraints are
limiting the manageable planning horizon.

An evolutionary algorithm works iteratively for g gener-
ations and consists of the following steps: evaluation of the
individuals’ fitness, selection, and reproduction of the best
individuals. Mutation and cross-over during the reproduction
ensures an exploration of the search space, and the selection
brings the population closer to the optimum. At the end of
a planning cycle, the first acceleration command of the best
individual is executed and the population is transferred to
the next time step (Fig. 2). In the following, these phases
are described in more detail.

A planning cycle starts with the initialization of the
population. Here, we can cope with the weaknesses of the
random search in our algorithm, which can not guarantee,
that a safe trajectory can be found. In order to enforce
consideration of safe trajectories, one part of the initial pop-
ulation is generated deterministically, consisting of stopping
trajectories of different length and direction. The remaining
part is reusing knowledge from the last cycle. The best
sequences from the preceding population are transfered into
the current time step by cutting off the first command and
filling up with af = (0, 0), resulting in a shift in time. To
take into account the deviation of the real robot velocity
to the planned acceleration, the new first element a0 is
corrected by the deviation of the actual velocity vodometry
to the planned one divided by the cycle interval ∆t.
a0 = a1old + (v1

old − vodometry)/∆t
Once a population has been set up, the loop starts with

the fitness evaluation for the individuals. Thereto, by means
of a forward model of the robot’s physics, the acceleration
sequence Ai can be converted to a velocity sequence Vi =
(vt|t = 0, . . . , f) with vt = (vtx, v

t
φ). These velocity

sequences in turn are limited to the robot’s maximum speed
parameters and integrated to a movement path in world
coordinates.

The resulting movement trajectories are then used for

Fig. 2. Encoding of individuals as sequences of acceleration vectors
which are optimized for g generations in each planner cycle, propagation
of the final population of one planner cycle to the next helps reusing the
optimization effort from past cycles and reduces number of generations
needed in each planner cycle.

evaluating the fitness of the individuals. This is done by the
set of objective functions, each yielding a cost value or a hard
deny (in case of potential collisions). These individual cost
values are summed up and can be compared to the costs
of other individuals later on. In our setup, the following
objective-functions are used:

1) A path and heading objective is responsible for
navigating towards a given target position in world
coordinates. This is done by evaluating a globally
planned navigation function (using E* planner [10]) at
the trajectory’s end point and additionally evaluating
the deviation of the orientation at the end point to the
wanted goal orientation in proximity to the goal posi-
tion. The navigation function is replanned periodically
on a cost-map that incorporates the current obstacle
situation as recognized by the robot’s distance sensors.

2) A distance objective for avoiding collisions with
static and dynamic obstacles. Trajectories are checked
considering the robot’s exact footprint for collisions in
a static occupancy map as well as in the local map
containing the sensed obstacles.

3) A direction objective preferring forward motion of the
robot to account for the limited sensor capabilities in
the rear.

4) A personal space objective to keep distance to people
in the close proximity of the robot. For detected people,
their future movements are predicted using a linear
motion model, and the distances to the robot’s potential
movement path along the resulting trajectories is eval-
uated using a Gaussian-shaped model of the personal
space.

5) The emotional objective that is comparing the es-
timated impression on the human observers to the
current emotional state of the robot. Further details on
this follow in the next section.

Based on the cost value, the individuals of the population
are sorted in ascending order. This allows to prefer the
best individuals over weaker ones during the generation
of offsprings for the next population. The next generation
is built up from the n best individuals of the last one
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(selection), and the remaining individuals are generated each
by combining two randomly drawn individuals from the last
generation. The index in the sorted list thereby is drawn
from a normal distribution with mean 0 and a fixed variance,
which defines the selection pressure. The at of the two parent
individuals are mixed into one new sequence, while the value
is taken either form the first or the second parent randomly.
Last step is mutation of the at values by means of a normal
distributed random offset. After that, the loop starts over
with the new generation of individuals, while over all n
generations the best rated sequence is stored for execution
of its first command at the end of the planning cycle.

The evolutionary motion planner has already proven its
better performance compared to the DWA in a social navi-
gation scenario. See [9] for comparative results.

IV. EMOTIONAL OBJECTIVE FUNCTION

In order to make the selection of the individuals depending
on the intended emotional impression on human spectators,
we developed a new objective function taking the velocity
sequences Vi of the unrolled individuals and a desired
emotional state in the 2D-ES and mapping it to a cost value.

The emotional impression of a robot’s movement trajec-
tory depends on various factors of influence. Besides the
actual velocity profile (translation and rotation), distances
and orientations to people in the surroundings seem to have
an influence. Moving frontally towards people may evoke
association to a curious mood, while avoiding people can
support the impression of fear. Also the geometry of the
environment and the robot’s position in the environment may
make a difference. If there is a free space, and the robot
moves close to the walls, it may appear shy compared to
a movement in the center of the room. Also the moving
direction in relation to the robot’s destination has an influ-
ence. Very goal-oriented movements indicate attention and
curiosity, while undirected patterns can express boredom.

All these factors make a data-driven model more complex.
When designing a model, one has to consider the amount of
data that is available for training. If the model is too complex,
it might not be able to generalize in unseen situations. Due
to this, we decided to concentrate on the velocity profiles
only. Spatial relations to people and obstacles are planned
for a second version of the approach, when more training
data will be available.

Therefore, as a data base for the model, we have a set
T = {(Vj , {Epj })} of labeled template velocity profiles
covering about 10m of robot movement each. Vj = (vt|t =
0, . . . , tmax) are the velocity sequences and Epj ∈ 2D−ES
are the labeled emotional impressions of observer p, when
the robot performed the pattern Vj . Fig. 3 shows the velocity
profiles of three exemplary templates on the right side, while
the emotional labels {Epj } are illustrated in the emotion
space on the left.

An additional essential aspect is the efficiency for evaluat-
ing the model. The motion planner runs at 4 Hz, and in each
cycle it processes 5 generations with 60 individuals each.
This results in 1200 fitness evaluations per second. This is

the same amount of trajectories as the DWA has to evaluate,
if the 2d velocity space is discretized in 15x20 bins.

Furthermore, in contrast to the other objective functions it
is necessary to consider also a historic context when deciding
on the suitability of future trajectories. For example, this is
essential to continue a sinusoidal movement pattern in the
correct direction rather than starting a new sinus pattern in
an arbitrary direction in each time step. To that end, we
added a history part (v−h, . . . ,v−1) to the velocity profile
Vi, before the voting takes place. This v consists of the real
odometry values measured in the past. The length h has been
chosen between 2 and 4 seconds, which corresponds to 8 to
16 velocity samples in the interval of the planner cycle.

The first idea for realizing the cost function was to train
a predictive model that maps the input velocity profiles Vi
into the 2D-ES. Then the distance in the 2D-ES to the
desired emotion yields the costs we are looking for – high
costs for undesired emotional impressions and low ones
for a good match. Attempts for realizing such a mapping
based on the training trajectories generated during the user
experiments was unsuccessful, since the space of possible
trajectories is so huge that the little amount of training data
is not representative. So, the evolutionary optimization in
the planner each time found completely different trajectories
that were mapped exactly onto the desired emotion state and,
therefore, got low costs. However, the resulting movement
patterns did not look like the training data at all.

The actual realization of the objective function, in contrast
to the mapping attempt mentioned before, operates the other
way around. First, the emotional labels Epj are used to find a
set of suitable template trajectories in the training data. Then,
the actual velocity profile to be rated is matched against these
patterns, and low costs are generated if the trajectory matches
the training profiles at any position. If no matching position
can be found, the costs returned are high.

In more details, for each template sequence j the density
of the labels {Epj } at the current desired emotion Ed is
evaluated (step one in Fig. 3). A high density of labels
indicates a good match of the j-th template in emotion
space. These matches in the second step are converted into
a template specific prior cost value

Cj = 1− 1

|p|
∑
p

e−(Ep
j
−Ed)

2/σ (1)

used as a constant cost offset for the matching process (cyan
bars in Fig. 3).

After this computation, which has to be done only once per
planner cycle, the input velocity profile Vi is shifted along
the templates (step three in Fig. 3), and a distance to the
velocities in the templates is computed and added as costs
to the Cj (cyan curves in the diagrams of Fig. 3). Over
all templates Tj and all time offsets in the templates, the
minimum yields the final costs

C = min
j,t

{
Cj +

(
1− 1

h+ f

f∑
w=−h

e−|v
t+w
j

−vw
i |2/ρ

)}
(2)

in: IEEE Int. Symp. on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, pp. 1351-56, IEEE 2017



T
1

T
2

T
3

T
1
  T

2
  T

3

arousal

valence

given training data: 
emotion labels Ep in 
2DES for template 
velocity profiles T

j
 

T
1
  T

2
  T

3

V
x 
[m

/s
]

V
x 
[m

/s
]

V
x 
[m

/s
]

V
φ

 [r
ad

/s
]

V
φ

 [r
ad

/s
]

V
φ

 [r
ad

/s
]

V
φ

 [r
a

d
/s

]

V
x 
[m

/s
]

history          future

matching along template velocity profiles

yields cyan correlation curves

minimum yields cost value

t [sec]

robot's current emotional state trajectory to be rated

template velocity profiles

similarity in 
emotion space

template prior costs

template prior costs

input

output

1

2

3

correlation costs

+

1

-1

-1 1

co
st

s
co

st
s

co
st

s
kernel 
density 
estimation

Fig. 3. Illustration of cost computation in the emotional objective function, for a given proposal trajectory and a desired emotional expression (input).
First, the suitability of the templates (T1 red, T2 green, and T3 blue) in the emotion space is evaluated. The colored samples in the 2D-ES on the left are
the labels given by human observers during the training experiment. The sample density in a second step leads to template-specific prior costs, which are
added to correlation results during step three. The training velocity profiles on the right (only three are shown) are used to compute the costs by matching
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T1 is a slow, curved forward motion with occasional hesitation (perceived as fear or boredom), T2 is a slow motion with stops to look left and right (fear
and anger), T3 is forward motion in narrow sine like pattern (excited, happy).

for the input trajectory with ρ defining the sensitivity for
deviations in the velocity space. In order to speed up the
evaluation, dynamic programming is used for the minimum
search. Additionally, the velocity samples from the history
of the trajectory have to be matched only once per planner
cycle since they are the same for all proposal trajectories
coming from the evolutionary motion planner. Therefore,
increasing the context does not increase the computational
effort drastically.

In future work, we plan to further investigate the forward
mapping approach, which failed so far, due to the bad
generalization properties in the high-dimensional input space.
For consideration of additional context information, like
spatial relations to people and objects along the movement
path, the template matching approach used so far seems to
be unusable. We plan to apply artificial neural networks as
a predictive model, which maps the input trajectory and the
context information into the 2D-ES. The approach of Leibig
and Wahl [11] is promising, since it enables a network to
know if the input is close to the training data or not, which
helps to identify those inputs for which the network still
generalizes insufficiently.

V. HUMAN LABELING EXPERIMENTS

As already mentioned, the proposed emotional navigation
system is based on a dataset of emotional labels for distinct
movement templates presented by the robot to human spec-
tators.

Two different group experiments have been conducted
in order to get these data. Initially, there are no distinct
movement patterns that could be autonomously performed
by the robot. Therefore, a first group experiment with 12 par-
ticipants provided a spectrum of possible movement patterns
and additionally aimed to prove the existence of a common
sense of emotional interpretation among the participants.
For recording the manually driven template trajectories, an
easy to use control mechanism is required, since steering
the robot with the keyboard is not that handy and only
useful for smooth straight trajectories. A remote control
by means of a 13 cm small model of the robot has been
implemented for that purpose. The model can be moved on
a small glass table and is tracked by means of a webcam
capturing a QR-code like pattern from below. The velocity
observations of that model are sent to the real robot, where
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Fig. 4. Emotion labels of the autonomous navigation experiment (blue
- male, red - female). The robot performed emotional movement patterns
while targeting a goal in the hallway of our institute building while 11
participants observed and rated their impression in the 2D-ES.

the velocity commands are directly relayed to the motor
controllers resulting in a relatively direct replication of the
model robot’s movements.

During the experiment, in each case, one of the partici-
pants controlled the robot along a hallway of our institute
building, while the remaining audience observed it and had to
note their impression by means of a cross in the 2D emotion
circle on a form. During the runs, the actual movement
trajectory of the robot was recorded. The group consisted
of staff members and students of our lab in age between 24
and 50 with 5 female and 7 male participants.

The visual analysis of the label data showed, that there are
patterns that make a similar impression on the observers, but
others are ambivalent (also visible in the data of the second
experiment shown in Fig. 4). Since the ”puppeteer” had a
certain emotion in mind for each trial, for most of the parts
of the 2D-ES a significant pattern could be generated at the
end. Only the lower right quadrant representing the relaxed
mood is not covered sufficiently.

After the velocity patterns were recorded, the robot was
able to perform the movement patterns autonomously. There-
fore, the recorded velocity profiles have been trimmed man-
ually to only contain the desired pattern going in a straight
direction, and the emotional objective function was used as
described above but only one template Tj was active at
a time. Finally, 19 patterns have been generated using the
earlier recorded velocity profiles.

In a second experiment, the participants had to label the
perceived emotion again while the robot drove autonomously,
resulting in the data shown in Fig. 4. During trial 20, the
emotional objective function was disabled as a reference,
which results in the ”normal” navigation behavior. The label
data shows that the impression is slightly biased towards the
active side of the 2D-ES in that particular case, which is
due to the faster and goal-directed motion compared to the
patterns with the activated emotion objective.

An analysis of the emotion labels showed, that the au-
tonomously generated movement patterns are of a similar
quality as the manually driven patterns with respect to
perceivable emotions. A comparison of the average standard
deviation of the emotion labels given by the observers for
manually driven trajectories (0.471) and the autonomously
driven (0.493) shows that there is no significant difference
in the interpretability of the patterns. The concentration of
labels in different sectors of the 2D-ES shows that there is a
common sense of emotional interpretation of movements in
the group as supposed in the beginning.

VI. CONCLUSIONS

We could show that it is possible to realize an autonomous
motion controller for a mobile robot, that is able to combine
safe, goal directed navigation with emotionally expressive
movement patterns. In order to overcome arbitrariness in
the design of emotional expressive patterns, we suggested to
involve opinions of a group of people voting the performed
movement patterns directly in a real-valued emotion space
and demonstrated the feasibility of such an approach. Open
issues to be considered in future developments are alternative
models for the emotional objective function also taking into
account further context information (e.g. spatial distances to
users and obstacles). Nevertheless, the approach of using
only the velocity profiles without any context information
showed a good performance in our user experiments.
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[1] C. Schröter, S. Müller, M. Volkhardt, E. Einhorn, C. Huijnen,
H. van den Heuvel, A. van Berlo, A. Bley, and H.-M. Gross, “Re-
alization and user evaluation of a companion robot for people with
mild cognitive impairments,” in IEEE Int. Conf. on Robotics and
Automation (ICRA). IEEE, 2013, pp. 1145–1151.

[2] H.-M. Gross, S. Müller, C. Schröter, M. Volkhardt, A. Scheidig,
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