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Abstract. In order to allow for flexible realization of diverse navigation
tasks of mobile robots, objective-based motion planner proved to be very
successful. The quality of a selected control command for a certain time
step is inherently connected to the considered diversity of future trajec-
tories. Therefore, we propose an evolutionary motion planning (EMP)
method to solve this high-dimensional search problem without restrict-
ing the search space. The algorithm optimizes sequences of acceleration
commands with respect to objective functions for evaluating the result-
ing movement trajectories. The method has been successfully deployed
on two robots with differential drive, and experiments showed that it
outperforms the Dynamic Window Approach [1] with its restricted dis-
cretized search space. Furthermore, car-like and holonomic robots could
be controlled successfully in simulations.

Keywords: Motion Planning, Motion Control, Evolutionary Optimiza-
tion

1 Introduction

For a general purpose service robot, navigation skills in a populated and some-
times constricted environment are essential. The projects of our lab involving
navigation in home environments [2] and also public buildings [3] showed that a
simple target-directed, obstacle avoiding motion behavior often is not sufficient.
For example, in a public environment social aspects have to be considered in
order to perform a navigation behavior that is accepted by the people indirectly
involved in the robot’s activities. Soft constraints, like respecting people’s per-
sonal space or driving on the right side of an aisle, have to be considered in the
motion planning algorithm in addition to the hard criteria of collision avoidance
and target directed motion. In a home environment, socially assistive robot com-
panions additionally may want to communicate their internal emotional state by
means of different movement styles while performing navigation tasks. As part
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of the SYMPARTNER1 project, we currently work on an objective function for
rating movement trajectories of a robot according to emotional expressivity.

In order to realize diverse navigation behaviors, in our lab the Dynamic Win-
dow Approach (DWA), an objective-based motion planner introduced by Fox et
al. [1], has been further developed and successfully applied for several real-world
scenarios ranging from large public shopping centers and hospitals, to small and
constricted senior apartments. Nevertheless, for generating very specific motion
patterns, in our case the DWA reached its limits due to the very restricted types
of hypothetical movement trajectories used for evaluation. The assumption of
constant future velocity only generates arc-like trajectories. Especially, complex
objective functions, like those for consideration of personal space and emotional
expressivity, need more complex unrolled candidate trajectories than the arc-like
ones of the DWA. Therefore, we propose a new method for generating trajecto-
ries with a high degree of freedom, which then are optimized in order to satisfy
the various objectives mentioned before.

The remainder of this paper is organized as follows: First, a brief discussion
of alternative motion planning methods is given followed by a description of the
objective-based navigation framework used in our lab. After that, our evolution-
ary optimization approach will be introduced, followed by some experimental
results.

2 Related Work

In the robotics field, decoupling the motion planning into global and local planner
is a well established paradigm. The global planner operates on a coarser world
representation and generates a route to the goal, whereas the local planner has
to find optimal control commands to follow the global plan respecting the robot’s
dynamic constraints and the dynamics of the sensed environment.

One of the first local planner, which was able to operate a robot with non-
holonomic dynamics, more specifically a synchro-drive robot, was the DWA [1].
The DWA directly searches in the velocity space adhering to the robot’s dynam-
ics. To keep the search computationally feasible, the velocity space is discretized,
and a constant velocity is assumed for the whole planning horizon. However, this
assumptions results in very restricted trajectories.

More flexible trajectories can be considered with a lattice-based discretization
of the state space using motion primitives [4, 5]. As result, the state space is rep-
resented as a graph with nodes standing for states, and edges connecting nodes
which are reachable using the motion primitives. Then search algorithms are
used on the graph to generate feasible trajectories. The trajectories’ flexibility is
determined by the amount of motion primitives. This must be chosen carefully as
a greater number of motion primitives can result in a computational burden, but
too few primitives generate inflexible trajectories as well. The Rapidly Exploring
Random Tree (RRT) approach [6, 7] is not subject to this restriction, since it
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builds a representation by sampling the state space. Beginning with the robot’s
position as initial tree node, in each iteration a new state is sampled, and the
tree is expanded towards that sample at the closest existing tree node. Although,
RRTs can generate a feasible solution even for higher dimensional state spaces,
the resulting trajectories for common mobile platforms are jerky, and additional
smoothing is needed. Furthermore, the definition of a distance metric required
to find the closest node is not always trivial (e.g. for car-like vehicles).

So, we propose to use an evolutionary algorithm [8] for solving the optimiza-
tion problem. Similar to the DWA, our approach conducts the search in the space
of possible control commands to satisfy the robot’s dynamic constraints. Unlike
other approaches, no constant velocity is assumed over the planning horizon,
nor a discretization of the command space or predefined motion primitives are
required. Overall, this is leading to more flexible candidate trajectories enabling
a more accurate estimation of a control commands outcome in the future (see
Fig. 1).

3 Objective-based Motion Planning

The main requirement for a motion planner is the ability to satisfy different
combinations of constraints on the movement in various scenarios. The objective-
based approach introduced with the DWA [1] can realize this by decomposing
the resulting navigation behavior into a set of objective functions, each of them
responsible for a certain aspect. By means of an interface where the higher
level application only specifies a navigation task, the objectives are activated
or deactivated individually depending on the current needs (see [3] for further
details on the architecture of our navigation stack). Each of the objectives is able
to evaluate costs for a given hypothetic movement trajectory of the robot. These
costs are real-valued numbers or even a hard deny which prohibits a trajectory
if it led to a collision, for example. The motion planner then has to combine
the costs of all active objectives by means of a weighted sum, in order to find a
global rating for a given trajectory.

For our experiments, a basic set of objective functions has been applied,
which comprises

1. a path and heading objective responsible for approaching the minimum
in a globally planned navigation function (using E* planner [9]) and turning
towards a given goal orientation in proximity to the goal position,

2. a distance objective for avoiding collisions with static and dynamic ob-
stacles,

3. a direction objective preferring forward motion of the robot to account
for the limited sensor capabilities in the rear,

4. a personal space objective to keep distance to people in the close prox-
imity of the robot by predicting their movements with a linear model

For all the objectives, the costs are computed for all the points along the trajec-
tory. By averaging along the trajectories, future outcome as well as immediate
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costs are considered equally, which helps to find command sequences that contain
the useful actions already in the beginning rather than in the far future parts,
as it could be the case if only the trajectories’ endpoints would be evaluated.

With these objectives, the aim of the motion planner is to generate potential
movement trajectories which are associated with the next velocity command for
the current planning cycle (250 ms in our case) and find the most suitable with
respect to the rating yielded by the objectives. This means that a compromise
of all active objectives has to be found. After that, the corresponding velocity
command will be executed and the planning cycle starts again.

Since the selection of the next motor command has to be real-time capable,
this optimization is only done for a local trajectory of a few seconds maximum.
An appropriate time horizon has to be selected carefully. On the one hand, the
minimum time frame considered is determined by the given physical properties
of the robot. Maximum velocity and deceleration define a stopping time, which is
the minimum planning horizon to include safe stopping trajectories in optimiza-
tion. On the other hand, a small time horizon may lead to suboptimal solutions
and potential oscillations. Therefore, the size of the predicted local trajectories
should be as long as possible given the real-time restrictions. A robot then for
example may be far-sighted enough to turn in front of a narrow passage in order
to reach a target orientation at the end which may be unreachable if the robot
could not turn inside the narrow gap. Also for avoiding moving obstacles (like
walking people), a longer planning horizon with flexible trajectories allows to
react on the changing situation more appropriate (see Sect. 5).

4 Evolutionary Optimization Algorithm

Fig. 1. Trajectories evaluated by the DWA (left) and our proposed approach (right),
color codes for the costs (red high, blue low), the target is behind the lower border in
direction of the red star.

For a given time horizon (e.g. 3.5 s in our case), the set of possible movement
trajectories is enormous. For each time step, a real-valued tuple of translational
vx, vy (vy = 0 in case of differential drive) and rotational velocity vφ is possible
which define the actual trajectory over time if applied to the robot’s motor
controllers. So, the motion planner has to solve a difficult search problem.

Contrary to the DWA, which exhaustively searches the whole discretized ve-
locity space and to be computationally tractable assumes a constant velocity
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for the whole planning horizon, our approach’s trajectories are far more flexible
(see Fig. 1) by permitting individual velocities at each time step of the plan-
ning horizon. In order to search in this high dimensional trajectory space, an
evolutionary algorithm is applied.

That means, we hold a population P = {Ai|i = 1, . . . ,M} of possible ac-
celeration sequences as individuals. These individuals Ai = (at|t = 0, . . . , T )
consist of an acceleration vector at = (atx, a

t
y, a

t
φ) for each time step t of the

planning horizon. See Fig. 2 for a visualization of the encoding scheme. Most

Fig. 2. Encoding of individuals as sequences of acceleration vectors which are optimized
for g generations in each planner cycle, propagation of the final population of one
planner cycle to the next helps reusing the optimization effort from past cycles and
reduces number of generations needed in each planner cycle, which enables real time
operation.

evolutionary algorithms consist of the following main steps, which can be found
in our motion planner as well: (1) proper initialization of the population, (2)
evaluation of each individual’s fitness, (3) selection of the best individuals, and
(4) producing a new generation by applying mutation and crossover operations
on the best selected individuals. These steps are repated for several generations
to bring the population closer to an optimum.

For application in the motion planning domain, due to real time restrictions,
only a small number g of generations (g = 5 in our case) can be evaluated in the
available time slots, but we can benefit from the fact, that trajectories of the
subsequent time step are not independent of the last population. A trajectory
found for one situation is also valid for immediately succeeding situations, except
that the robot has simply traveled along that trajectory for a small step.

Propagating Individuals Therefore, we apply a propagation operation to the
final population P of the last planning time step in order to initialize a new pop-
ulation P ′, which is going to be used as the start for the new planning cycle (see
Fig. 2). The new population is built up from the best individuals of the last gen-
eration in the last planning cycle, which are shifted by one element in time. That
means the acceleration vectors of t = 0 (which have been executed currently)
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are cut off, and a new vector (0, 0, 0) will be appended at the end to fill up the
sequence. The remaining individuals of the population will be generated deter-
ministically in order to ensure that the population at least contains a minimum
number of individuals encoding a safe stopping trajectory. Since a randomized
search algorithm is used for finding an optimal trajectory, otherwise it can not
be guaranteed, that a collision free trajectory is included in the population. This
means the green seed individuals of Fig. 2 consist of deceleration trajectories
which try to reach zero velocity at different rotational and translational speeds.

Fitness Evaluation Having an initial population, we enter a loop of g genera-
tions for optimization. The first step in that loop is the evaluation of the fitness,
for each individual in the population. Therefore, the acceleration sequence of
each individual is transformed into a movement trajectory in space by means of
a forward model of the robot. All these trajectories are then evaluated by the
active objectives of our current motion task.

Selection of the Best After determining the fitness of the individuals, the
next generation will be generated by combining two individuals from the last
generation as parent for a new individual. In order to prefer better rated indi-
viduals for reproduction, the individuals are ordered by fitness and two random
indices in that sorted list are drawn by means of a normal distribution with
mean 0 representing the index of the best individual and a given variance speci-
fying the selection pressure for the evolutionary algorithm. Over all generations,
the best rated individual is stored for execution at the end of the planning cycle
(this ensures that safe stop trajectories can be executed if non of the recombined
individuals satisfy the constraints of the objectives).

Mutation and Crossover Once two parent individuals were drawn, the re-
combination of a new individual takes place by copying the acceleration vectors
for each time step either from the first or from the second parent. With a prob-
ability of p (p = 30% in our case) the actual parent is switched after each
time step. After, a new individual has been created, a mutation operation is ap-
plied, which operates in two modes. First, to each acceleration vector a normal
distributed random acceleration is added and truncated to the physical limits.
Second, a kind of symmetric mutation is executed. Therefore, two positions in
the sequence are selected. Then a normal distributed random value is added
to the acceleration at the first position and subtracted from the second posi-
tion. This mutation is repeated for several iterations. Unlike the first mutation
which results in curves and elongations of the resulting trajectories, small lateral
translations are produced by the symmetric mutation.

Using only these operations on our robots, it showed that the resulting ac-
celeration profiles are very noisy, and sometimes consecutive values compensate
each other. Although, the evolution process would be able to find smooth trajec-
tories if smoothness would be added as an objective, we decided to bias mutation
towards smooth trajectories in order to reduce the search complexity. This has
been achieved by randomly selecting segments of the acceleration sequence and
applying a low pass filter on that part. As result, the trajectories are much
smoother but still can take on arbitrary shapes.
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The computational effort in our tests was selected to be equal to the DWA
approach. Since the main time is consumed by the costs evaluation in the objec-
tive functions, we used 5 generations with 60 individuals each resulting in 300
trajectory evaluations per time step (250 ms), which is the same amount as for a
DWA with 15x20 bins in the velocity space. On our on board Core-i5 processor,
the motion planner needs only 50% of one CPU core, which leaves enough power
for perception skills and other parts of the service application.

The presented approach is not limited to tuples of acceleration. Individuals
could be built up from arbitrary control commands, as long as a forward model
for predicting the movement trajectories exists (e.g. steering angle and accelera-
tion for car like robots). Therefore, also non-holonomic robots can be controlled
using the proposed method. Errors in the prediction model are of minor rele-
vance, since only the first command of an individual is really executed. For a
high fitness, it is sufficient to know that there exists a possible control sequence
producing a suitable trajectory starting with that first command. Deviations in
the real behavior of the robot will be compensated in subsequent optimization
cycles, since in each time step the true robot state is taken as the starting point
for rendering the candidate trajectories.

5 Experimental Results

Fig. 3. Exemplary motion trajectories of the robot in one of the test apartments, (left)
dynamic window approach, (right) evolutionary motion planner; the robot started at
point (a) facing south for a first run and ended at the end pose depicted in yellow, the
second run started at point (b), had an intermediate goal at (c) and ended at (d); color
coded for velocity (red fast, blue slow)

The expected benefit of our evolutionary approach over the classical DWA is
that it is more farsighted. The longer time horizon of locally planned trajectories
can find solutions for the motion path, which can contain local cost peaks on
a shorter scale. Therefore, the resulting movement behavior is much smoother
and more natural than the one of the DWA, which has to slow down in narrow
environments each time a fast bow trajectory would collide with an obstacle.
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Especially motion paths requiring many changes in the curvature can be driven
much faster.

Experiments with two of our SCITOS-G3 robots Max and Ringo confirmed
that hypothesis. Max [2], constructed for applications in narrow home environ-
ments, has a maximum velocity of 0.6 m/s in forward direction and 0.3 m/s in
backward direction. Rotational velocity was limited to 180°/s. Ringo [3], intended
for public environments, is also a differential drive robot but has a maximum
velocity of 0.9 m/s. Fig. 3 shows some exemplary trajectories in one of our test
apartments. The color coding the velocity shows significantly smoother behavior
of the evolutionary motion planner (right) compared to the DWA (left) using
the same objectives for voting trajectories.

Even though the used objectives were identical, the behavior close to the
goal is significantly different for the two planers. When in free space, the evo-
lutionary planner approaches the goal in a wide bow tangentially to the target
orientation, while the DWA first approaches the goal region and finally turns
in place. This allows for a much faster approaching using the EMP and causes
a significant improvement in the task execution time. For 500 random target
approaches in the home-like environment of our living lab, the DWA took 3:52
hours compared to 2:51 hours required by the evolutionary planning algorithm.
Fig. 4 shows some comparative histograms of the velocities reached by the DWA
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Fig. 4. Histograms of velocity and minimum obstacle distance during real-world ran-
dom target navigation with our robots, Max in living lab (blue, red) and Ringo in office
hallways (magenta, cyan); red and magenta: DWA; blue and cyan: EMP; dotted lines
give the mean value of the histograms

and the evolutionary motion planner during the autonomous navigation in our
experiments. From the obstacle distance histogram and the velocity histogram
one can see, that in narrow environments, like our living lab, the evolutionary
planner more often reached higher velocities (max. 0.6 m/s for Robot Max),
which explains the enormous speedup compared to the DWA. In the free space
environment of our office building the difference is not as large as in the narrow
setting. Since most of the navigation path is straight ahead, the DWA is also able
to find the best command in these situations. Only in the goal region or when
passing doors, the DWA shows little more slow movements. Besides the basic
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Fig. 5. Heat map of the robot’s position relatively to all simulated persons. The white
circle indicates the personal space of 1 m and the heading direction.

target oriented navigation, also the more complex objective functions for respect-
ing the personal space (PS) were tested in comparison of DWA and evolutionary
motion planning. Simulations were conducted to evaluate the planner’s ability
to avoid the PS of people in the robot’s vicinity. To this end, a 20 m x 6 m sized
room was constructed with eight moving pedestrians. The robot had to navigate
across the room and had full knowledge of the surrounding persons’ current po-
sitions and velocities within a radius of 5 m. To evaluate the performance, the
relative positions of the robot to all the pedestrians were recorded. From this
data, a heat map of the robot’s positions and distances to the pedestrians (in
the center) was extracted. Fig. 5 proves that the evolutionary motion planning
did not significantly violate the personal space of the pedestrians, whereas the
DWA driven robot entered the personal spaces more often by driving in front
of the people. Often it simply stops in front of an approaching person unable
to plan a suitable evasion maneuver (visible as a cumulation at the border of
the PS in front of the person), while the evolutionary planner quickly finds an
avoiding movement.

Fig. 6. Parallel parking of a vehi-
cle with Ackermann steering geom-
etry.The end position is marked in
green. EMP was able to find the
typical parking maneuver instead of
using the shortest path to the park-
ing spot.

In addition to the experiments with differential drive robots, we did simula-
tions with a holonomic robot model (vy not fixed to zero) as well. The planner
could successfully control this kind of robot too. The basic idea of the EMP
approach also seems to be applicable to control a car-like robot. Fig. 6 shows an
experimental simulation run of a car parking setup. Remarkable is the ability to
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plan a two phase movement with change of direction in order to reach the goal.
For that experiment, the planning horizon and mutation rate was set very high
in order to find satisfying trajectories within real-time constraints. Therefore,
the resulting behavior is still relatively unstable. For such complex applications,
further improvements to the algorithm are necessary.

6 Conclusion

We could show that the search problem for local motion control of a wide range of
robots could be successfully solved within real-time restrictions without giving up
flexible trajectories with a high degree of freedom. A key benefit of the proposed
evolutionary motion planning algorithm is the reusability of the population from
past time steps in order to focus the search on future promising control sequences.
Experiments showed that the resulting navigation behavior of an objective-based
motion planner is not only defined by the cost functions, but mainly depends on
the diversity of the set of sampled future trajectories.

Preliminary results in simulations give indication that the presented approach
is also able to control holonomic and car-like vehicles, which we intent to study
in our future work.
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