IRON-BAG: Fast Classification of Humans and Objects in 3D
NDT-Maps using Structural Signatures

Thomas Schmiedel and Horst-Michael Gross

Abstract— We propose a real-time algorithm for the generic
classification of humans and objects in 3D scenes. The algo-
rithm does not depend on color information and works with
depth data alone, making it very flexible for a wide area of
applications. Further, we will show that it is very resistant
to occlusion and will give correct classification results even in
cases, where only a fraction of a full human or object can be
captured by the depth sensor. Opposed to current approaches
based on deep networks, training the IRON-BAG classifier (a
bag-of-words model for IRON-features) can be done within
minutes, making it easier to add new object classes, to fine-
tune parameters and to adapt it to new operational scenarios.
The system is easy to use, as it does not impose any constraints
on the objects to detect, e.g. there’s no limitation regarding
shape, height, orientation, or position of humans and objects -
knowledge of the sensor-pose or ground plane is not required.
Instead of using depth images or point clouds as inputs for
our classification pipeline, we solely operate on the Normal-
Distribution-Transform-map (NDT-map) data structure. NDT-
maps provide a highly memory-efficient representation of depth
data, and we show that the information contained within them
is sufficient to accurately classify humans and objects from real-
world 3D scenes with a speed of around 180 classifications per
second on a single CPU core.

I. INTRODUCTION

The classification of humans is an important task for a
robot to accomplish: a service robot cannot communicate
with its owner, or deliver any services, if it cannot find out
where he or she is. On the other hand, when people cooperate
with robots or autonomous machines, e.g. in production
environments, it is crucial for human safety to have fast
algorithms for person detection available. The detection and
classification of 3D objects is equally important, as it enables
a mobile robot - or vehicles of any kind - to identify and
avoid obstacles and to make human-robot-interaction even
more comfortable by including semantic knowledge of the
environment and the objects the user is interacting with. For
instance, it’s much easier to ask a service robot to wait next
to the couch and have it detect that position automatically,
than to store each and every set of coordinates manually
beforehand.

Since there are lots of different scenarios for person and
object detection, our intention is to propose a flexible clas-
sification approach that does not put too many constraints
on the sensor setup and the environment. A technique that
operates on 3D depth data alone has those advantages: it

All Authors are with Neuroinformatics and Cognitive Robotics Lab,
Technische Universitit Ilmenau, 98694 Ilmenau, Germany.

This work has received funding from the German Federal Ministry of
Education and Research (BMBF) to the project SYMPARTNER (grant
agreement no. 16SV7218)

HUMAN

Fig. 1: Correctly classified NDT-map of a standing person.

works independently of illumination, there are many different
sensors available for indoor/outdoor use, and it can potenti-
ally be faster than a RGB-D setup, simply because no color
information must be processed (for a classification example
see Fig. 1). The classification of persons and objects in 3D
scenes generally requires a prior segmentation step to iden-
tify regions of interest. The novelty in this work, however,
primarily concerns the classification step after a segmentation
has been conducted. Therefore, persons and objects will be
treated as isolated regions during the course of this paper.
We will show in the evaluation section, however, that IRON-
BAG will readily work with arbitrary segmentation methods
in order to classify complete 3D scenes in real-time. The
paper is organized as follows. At first, we briefly introduce
the state-of-the-art in terms of 3D person detection and object
detection techniques and explain why IRON-BAG is different
(and why we named it that way). Afterwards, in section V-
F, the full classification pipeline is elaborated. Section V-G
will then demonstrate a simple and fast statistical measure
for rejecting 3D objects that do not belong to any object
class trained before. The final part of this paper will contain
experimental results on a publicly available 3D object dataset
using more than 25,000 depth images as well as a final
evaluation of classification and training speed.

II. STATE-OF-THE-ART

Most use cases for 3D classification procedures can be
divided into four major categories: those who focus on
humans, those who focus on objects, those who utilize fused
RGB-D information, and those who classify with depth data

alone. Of course, the final algorithm selection depends on the
specific application and the available sensor systems. When
persons should be detected in indoor environments with
somewhat constant illumination, many publications focus
on RGB-D data acquired from a PrimeSense device [1][2].
Likewise, when small-scale objects must be detected, fused
RGB-D is often the preferred type of input data, as many
small-scale objects can only be distinguished by color (e.g.
different brands of breakfast cereal packages) [3][4].
However, there are also some cases where additional color
information is not available (or not reliable due to strong
changes in illumination), and the detection algorithm has
to work on depth data alone [5]. Spinello et al. [6] have
published an approach to pedestrian detection in range scans
with good results. They took range scans from a Velodyne
LIDAR device, divided them into segments which were then
associated with 17 explicitly defined features, such as width,
circularity, and PCA ratio. The final classification was then
carried out using AdaBoost.

IRON-BAG is based on the “Fast Interest Point Descriptor
for Robust NDT-Map Matching (IRON)”[7] and is inspired
by the popular bag-of-words model in computer vision.
IRON-BAG expresses each object by a compact structural
signature that implicitly contains information about object
shape, dimensions, and surface curvature. Those signatures
are the only data needed for classification; no information
about position, orientation, dimensions, sensor pose, and
reference frames must be given explicitly.

Those properties make IRON-BAG very easy to use: training
samples do not need any ground truth or sensor pose attached
to them, saving plenty of time for sensor setups. Opposed to
deep learning based approaches [4], training is a matter of
minutes even for large datasets comprising several thousands
of point clouds. And finally, the actual classification will only
take a few milliseconds to complete, as our approach utilizes
the efficient NDT-map data structure [8] for representing all
depth information.

III. MOTIVATION

Our main incentive, driven by low-cost oriented service

robots, is to deliver real-time performance on consumer
hardware without GPU utilization while at the same time
achieving very good classification and detection performance
in depth data alone. Our understanding is that training must
also be fast to enable quick tuning of training parameters for
new scenarios and additional object categories.
The algorithm we describe should be widely usable, as it
does not depend on RGB camera data and, therefore, is
insensitive to illumination. Moreover, our aim is to classify
persons and objects in real-time even when strong occlusions
are present and only object fragments are visible. This all
should be achieved without external knowledge of a ground
plane or any other predefined circumstances, such as people
normally standing up straight on the ground, or that they
have a certain height and so on.

IV. OUR APPROACH

To tackle the demand for a high processing speed, we build
upon recent work about the IRON descriptor for NDT-maps
[7] which has shown very good real-time performance.
Normal-Distribution-Transform-maps (NDT-maps) provide
an efficient representation of 3D depth data by dividing the
scene into voxels and storing a multivariate normal distribu-
tion for the points within each cell [8]. The raw points are
discarded afterwards, enabling fast further processing, since
the amount of data is severely reduced. As the covariance
part of each voxel’s normal distribution N ({7,) is positive
semi-definite, NDT-maps can be visualized as collections of
ellipsoids (see Fig. 2).

Fig. 2: NDT-map representation of 3D data obtained from a
box and a chair (sensor: PrimeSense)

The eigenvector corresponding to the smallest eigenvalue

of one NDT-cell V; can with certain restrictions (see [7]) be
assumed to be equal to the surface normal in the point ji;.
This is the basis for the construction of IRON-descriptors for
each NDT-cell of an NDT-map. The descriptor D; = {4, S}
for NDT-cell N; consists of an angular part A and a shape
part S which are both 2D histograms of equal size, storing
surface curvature and shape of the spherical neighborhood
around cell AV;. IRON is locally defined within the 3D map,
it is invariant to rotation and invariant to the direction of
NDT-cell normal vectors, making it independent of a global
reference, such as ground plane and sensor pose.
For the actual classification task, we have adapted the famous
bag-of-words model to IRON-descriptors. We show that it
is sufficient for good classification results to represent an
NDT-object via its similarity to a few NDT-code-words. No
external object shape information is needed, as the IRON-
descriptors contain that implicitly.

V. CLASSIFICATION PIPELINE

In this section, we discuss the steps necessary to transform
a 3D point cloud into the final feature vector that is used for
classification. The actual classifier as well as a fast outlier
measure will be outlined afterwards. We will also briefly
discuss a procedure for quickly obtaining plenty of training
point clouds from an object. Please note that all the pre-
processing steps are fully unsupervised, they do not require
label information, but merely exist to find a descriptive and
lower-dimensional representation (= a “structural signature”)
of a collection of NDT-cells. This signature will finally be
classified in a supervised fashion.

A. Data Acquisition

On our robots, we use a calibrated Asus Xtion PrimeSense
device for capturing depth images - the RGB information
is discarded. Then, by means of the previously obtained
projection parameters we can reconstruct the 3D point cloud
from it. For the recording of training data, a straightforward
approach is to put the object on a flat surface and to move
around it with a depth camera by hand, or with it mounted
on a robot. This will easily record more than 1,000 depth
images a minute. Depending on object complexity and size,
2,000 — 5,000 images per object category are preferable.
Since IRON-BAG does not require knowledge of the sen-
sor pose, this procedure is already sufficient. Afterwards,
the ground plane can be automatically identified by using
RANSAC algorithm and be subtracted from the scene. This
is done to ensure that training samples do contain pure object
data only.

B. Computing the IRON-Descriptors

The actual TRON-BAG processing starts with a given
training set of point clouds captured from persons and/or
different object classes. As a first step, the point clouds
are transformed into NDT-maps (see Fig. 2). The size of
NDT-cells was chosen to be 5em X 5em X 5em, as this is a
good tradeoff between a high algorithmic speed (large NDT-
cell size) and a fine detail for classification accuracy (small
NDT-cell size). The next step includes the computation of
IRON-descriptors for all NDT-cells in all given training
NDT-maps. For this to work, the IRON keypoint detector
must be disabled by setting the IRON entropy threshold to
zero [7]. Otherwise, only descriptors from salient surface
regions would be extracted. Since it is required to detect
objects with flat areas on them (such as desks, tables,
and boxes), however, all NDT-cells must be included for
good classification performance. The last step of the data
acquisition routine is feature standardization. Therefore, we
compute the mean of each descriptor’s histogram values and
subtract it, afterwards the results are divided by their standard
deviation.

C. Whitening

Coates et al. [9] have shown a significant increase in
classification accuracy when whitening is enabled and the
K-means clustering algorithm is used for code book gene-
ration for data from RGB image patches. An explanation
for this phenomenon is the fact that K-means is blind to
variable correlation. It will therefore tend to under-represent
dimensions with low variance within the data and distribute
its centroids along those dimensions with high variance (see
Fig. 3). As a result, we apply simple PCA-whitening to the
training set, the steps are the following:

o All IRON-descriptors from all object classes will form a
feature space (R2%axd where ¢ is the number of histo-
gram bins to store angular information within the IRON-
descriptor and d is the number of bins to represent
different distance levels within the IRON-descriptor).

o Ensure the data has mean zero and compute the cova-
riance X5 over all data samples (IRON-descriptors).

« Apply eigenvalue decomposition ¥, = U;A U, .
 Receive whitened feature vectors: & = Ay Y U ST ;.
The full feature space is now white - the eigenvalues of ¥

are one and all data dimensions are represented equally.

Fig. 3: An outline how whitening can benefit a subsequent
K-means clustering step by enabling it to spread centroids
(blue) more evenly along all feature dimensions.

D. Code-Book Generation

Now that the descriptors from all NDT-cells of all
training NDT-maps have been transformed into a white
feature space, we need to find cluster centers (we also call
them NDT-code words) within that space. The intuition
is that those centers represent IRON-descriptors that are
significant and common in many NDT-maps.

For the computation of NDT-code words, the completely
whitened training set is required. We use K-means for
clustering, but employ an improved seeding strategy
somewhat similar to K-means++[10]. We will randomly
draw 100 times the required amount of initial seeds and then
iteratively remove the seed which is closest to any other
seed until K seeds are left. This will favor seeds that are
more evenly distributed over the feature space. After that,
K-means is repeated until convergence. This is the most
computationally expensive part of the presented IRON-BAG
technique, however, this step has to be done just once during
training. K-means generally needs to know the amount of
centroids K beforehand. Depending on the number of object
classes and problem difficulty (it is difficult to distinguish
between very similar object classes, e.g. a person and a
coat stand), we have determined a reasonable range of K
between 20 and 100 centroids.

To put the clustering more formally, the set of whitened
feature vectors X' is partitioned into K disjoint subsets
X1, X}, ..., X} in such a way that they have minimal withinz-
cluster variance: minimize Y5, Ywex; |2 — fin||
where i}, denotes the mean of subset X ,’c After convergence,
the code-book B’ consists of the computed cluster centers

B = {ﬁhﬁ?a 7ﬁK}

E. Object Signatures

NDT-code-words can be thought of as IRON-descriptors
inside the whitened feature space that mark distinct parts of
surface curvature and shape within the training set. Given an
NDT-map, it is now required to express all IRON-descriptors
from that map in terms of their similarity to the previously
computed code-words {fi1, o, ..., fixc }. There are several
approaches to this [9], however, the common idea is to build

a histogram of K code-words and increment those histogram
bins for each new incorporated feature vector according to
a certain similarity measure (comparable to sparse coding
known from many neural network approaches). The standard
“one-hot”-assignment, where only the histogram bin of the
closest code-word is incremented, has shown to produce sub-
optimal results [11]. We therefore employ a smooth assign-
ment procedure using the simple RBF kernel: f(Z, i) =
exp(—sig * ||Z; — fix||%). The steps for processing a single
NDT-map are as follows:

e Given an NDT-map as well as the code-book B’ and
the whitening parameters obtained during training
A2 U, Bapace).

o Compute the standardized (see V-A) IRON-descriptors
for each NDT-cell.

o Transform the obtained feature vectors into a set of
whitened feature vectors X’ using the given transform.

o Create an empty histogram with each bin &k correspon-
ding to the code-word [if.

o For each feature vector ' € X’ and each code-word
fir, compute the value of f(Z,ji}) and store it in the
k-th component of a temporary vector .

o Normalize ¢ using L;-norm and add it (component-
wise) to the histogram.

o After that, for normalization purposes, divide each final
histogram bin value by the number of incorporated
vectors 1.

We are left with a histogram (= structural signature) 55 of
the complete NDT-map that consists of just K values. Other
than the number of clusters K, the only other variable to
choose for signature construction is 7s4. A high 44 gives
more weight to code-words that fit very well, which might
lead to a stronger sensitivity to noise. When ,;, becomes
too small, all code-words will be weighted equally, leading
to unexpressive signatures [11].

FE. Classification

After the unsupervised generation of signatures for each

object, a supervised classification step must follow. Classi-
fication is solely done with signatures, no other information
is required. To get an impression how the signatures of two
different object categories are distributed within the signature
space (R¥), Fig. 4 shows a plot for K = 4 code-words.
It is already visible for this small amount of code-words
that the object classes form easily separable clusters within
the signature space. Also, from 2D t-distributed stochastic
neighbor embedding (t-SNE) images [12] of several different
signature spaces, we can conclude that histograms from the
same object category are oftentimes grouped together, for-
ming dense clouds with some slight overlap to neighboring
classes. To keep classification simple, as well as the number
of classification parameters low, we decided to implement a
weighted nearest neighbor classifier for this task. It operates
as follows:

o Given the signature sets 57, Ss, ..., Sy and class labels
l1,12, ..., for N different object classes.

e Training is done by simply building a k-d-tree from
all signatures in all signature sets (we are using the
fast library for approximate nearest neighbor search -
nanoflann - with Lo metric for this purpose [13]).

o To classify an unknown signature S, we query the
k-d-tree for its (K peign + 1) nearest neighbors (K peigh
is user-defined and should not be confused with the
amount of code-words).

e The Ly distance between query point (Sy,¢,) and each of
the K,,ciqn nearest neighbors is divided by the distance
to neighbor (Kpeign + 1), normalizing them to 0 <
di <1.

o For each neighbor up to K,,.i4, a weight wy, is compu-
ted according to wy = exp(—7Yneigh * di) and added
to the entire weight of the object class this specific
neighbor stands for (as denoted by his label).

o After all K4, neighbors have been processed, the
class with highest weight is selected.

The advantage of this method is simply that close neighbors
to the query point are weighted stronger than neighbors
further away. The affinity to the query point can be tuned
via parameter ypeign, We normally set it to 2.0.

Fig. 4: Signature space (R*, first 3 dimensions visualized)
of 13 full motorbikes (green) and 13 full humans (blue) (see
Fig. 5 for raw object point clouds). Both object classes form
easily separable clusters.

G. Outlier Detection

Up to now, only scans from those objects can be handled
that have actually been trained before. In such a case the
nearest neighbor classifier will just select the object class
that has highest weight. However, when unknown objects
are present, we need a way to reject them. To keep IRON-
BAG as general as possible, we did not intend the use of
any negative training data, as this would mean to collect
depth images from a huge amount of shapes and objects
just to indicate that they should not be classified. Eventually,
this would also sacrifice training speed and inflate general
memory consumption. A different approach, however, is to
find a statistical model for the already trained object classes
and to decide whether a given sample is an outlier or not.
For this to work, we must make some general assumptions
regarding the distribution of signatures within the signature
space:

o« We assume the signatures for one object class to be

normally distributed.

o If we have K code-words, there remain K — 1 degrees
of freedom, since all signatures have been normalized
using Lj-norm (or to put it differently: if we vary K —1
components of a signature, the last one is always fixed).

Making those assumptions has some pleasant side ef-
fects. We can compute a multivariate normal distribution
N (i, Y.) for the signatures of each object class, and we
can check for a new signature § whether it is significantly
away from our class distributions. Here’s the procedure:

o Precompute a fi;. and X! for each object class.

« Receive a result from the nearest neighbor classification.

o For the signature 5, compute the squared Mahalanobis
distance to the proposed object class:

2 = (5)75 (5 -).

e The CDF (cumulative distribution function) of the chi-
squared distribution with K — 1 degrees of freedom
x?(K — 1) gives the probability p of observing a
signature closer or equal to the object class than the
given signature S.

o Using the inverse CDF (quantile function), we can
therefore compute a squared distance dz,,., which is
further away from the object class than (p x 100)% of
valid signatures that originate from that object class.

« Now we simply check whether d? > d%,, ., and discard

the new scan if the expression is true.
This technique has the advantage of being very fast.

Parameters of all A (g, X.) as well as the inverse cova-
riance matrices X! can be computed during training. The
threshold d?, .., will be also calculated beforehand according
to parameter p. The outlier rejection therefore boils down
to a Mahalanobis distance computation and one variable
comparison.

V1. EVALUATION
A. Baseline for Parameter Selection

This section is providing the IRON-BAG parameter setup
that we used for the subsequent classification tests. This is
generally a good baseline, and the algorithm should work
well with it.

e lots of training data: 2,000 — 5,000 point clouds from
one object category should be sufficient and are easily
obtained (see section V-A)

o« NDT-map construction: cell-size: 5 cm, entropy filte-
ring: disabled

o IRON-descriptor computation: the number of histogram
bins used for angle representation is 8, the number
of bins used for encoding distances within the IRON-
descriptor is 3, the radius of the spherical region around
the descriptor base is 0.5 m

¢ code-book construction: 50 code-words/K-means cen-
troids, K-means iterations: until convergence

e signature generation: 7y,;, = 0.01

o nearest neighbor classification: yei9n = 2.0, number
of neighbors to query (Keign): 17

« outlier rejection: p = 0.999

B. Classification Accuracy

To test the classification accuracy, a publicly available
3D object dataset was used [14]. We selected five general
object categories: humans, chairs, tables, motorbikes and

containers (as the given dataset did not contain humans, we
supplemented our test set with recordings from five different
persons, see Fig. 5 for an example). Each of those categories
comprised of about 5,000 3D depth images obtained from
five different objects per class, giving a full data set size of
about 25,000 point clouds. All recordings were made using
a PrimeSense device [14]. Pre-processing of the depth scans
obtained from the dataset:
o All depth images were transformed into point clouds.
o Using RANSAC, we removed the ground plane from
all point clouds to ensure they contain just object
points. Please note that this is not a step within IRON-
BAG (which has no knowledge of a ground plane),
but a preparation to ensure equal conditions in the
classification test.
We did not combine any scans to get a more complete
model. This strongly raises classification difficulty. As the
PrimeSense device has a small viewing range and generally
cannot look behind an object, point clouds obtained from
a single depth image mostly show object fragments only.
With this in mind, the actual task becomes to classify
object categories from object fragments (or severely occluded
objects). Fig. 5 gives an impression of the typical appearance
of point clouds from single PrimeSense scans.

Fig. 5: Example objects from all selected categories: contai-
ners, motorbikes, chairs, tables and humans. The upper row
(blue) contains the full models as reference. The bottom row
(red), however, shows the typical appearance of single depth
scans from those object categories. This can sometimes be as
little as a single wheel from the motorbike, but classification
must cope with that.

Testing procedure:

o Training was done for all categories using a random
sample containing 70% of all available scans.

o The other 30% of all samples were used to verify the
classification accuracy.

o The whole process was repeated 10 times, training
and validation point clouds were drawn randomly each
round.

Table I gives the confusion matrix after completing about
75,000 classifications. Those results basically show that the
IRON-BAG classification in over 93% of all cases was able
to correctly determine the object category from a single
occluded point cloud. There was some minor confusion
between fragments of humans and fragments of motorbikes

TABLE I: Confusion matrix of classification results in per-
cent after about 75,000 classification procedures. The left
row contains the object category under test.

Human Bike Chair | Table | Container
Human 93.83 5.51 0.01 0.32 0.32
Bike 0.28 97.14 1.51 0.71 0.36
Chair 0.01 0.84 98.03 0.53 0.59
Table 0.01 0.17 0.28 99.42 0.11
Container 0.02 0.21 1.30 0.01 98.45

which can be attributed to their similar size and surface cur-
vature which is generally curved in both cases. As a severe
difficulty (and/or advantage), the IRON-BAG algorithm does
not depend on any additional information, such as object
dimensions, sensor pose, or ground plane. E.g., it cannot
distinguish a standing human from a motor bike just by
looking at their orientation with respect to the ground plane.
It must carefully consider surface curvature and local shape
in order to make a decision.

C. Rejection of Outliers

In this section, we are evaluating how the IRON-BAG
classifier behaves if scans are presented that do not belong
to any known class and must be rejected. Table I shows
the same classification procedure as before, however, this
time for each scan an outlier check is executed. Also, about
12,000 point cloud fragments from three classes (toy, rock
and plant) were presented, which the classifier has never seen
before.

TABLE II: Confusion matrix of classification results in
percent after about 87,000 classifications. In addition to
previously trained object categories, also unknown object
fragments were presented.

Human Bike Chair | Table | Container
Human 87.01 7.14 0.01 0.02 0.02
Bike 0.09 87.57 1.25 0.36 0.18
Chair 0.01 0.09 87.77 0.01 0.18
Table 0.01 0.00 0.23 87.10 0.17
Container 0.01 0.05 1.50 0.09 90.57
Toy 0.00 14.92 0.64 0.00 0.00
Rock 0.00 2.21 0.34 4.88 1.93
Plant 0.00 1.11 0.04 0.00 0.00

Fig. 6: Full model of the test object "toy”.

As can be seen in this second test run, when the outlier
rejection step is done after classification, results for trained
object categories are slightly impaired (as some correct
results were regarded as outliers). However, they are still
constantly in the range between 87 — 91% accuracy. On the
other hand, unknown objects could be successfully rejected.

The only exception being the toy bicycle (see Fig. 6) which
was in 15% of all cases classified as “motorbike”, though it
can be reasoned that this is not a fully misguided decision,
as both objects share many similar features and basically
portray the same general device.

D. Speed Assessment

There are two major factors that can be measured here:
classification speed and training speed. During evaluation
section VI-C, about 87,000 classifications were done -
including the previously unknown test object classes. We
measured the average time for the following procedures,
which have to be done for every single point cloud clas-
sification:
« construction of the NDT-map (see section IV)
o computation of IRON-descriptors for the obtained map
« standardization of those descriptors (see section V-A)
o transformation of the descriptors into the whitened
feature space (see section V-C)

« computation of an object signature from the whitened
IRON-features (see section V-E)

« classification of that signature (see section V-F)

o fast outlier check using a threshold obtained from the
chi-squared distribution (see section V-G)

On average this whole process took only 5.54 milliseconds
on a single core of an Intel Core i7-4770 CPU. This translates
to about 180 point cloud classification procedures per second
on one CPU core and can be considered real-time.
It should be noted that this time does not include the time for
loading a point cloud from hard disk, as this would be very
different depending on the hardware setup. However, once it
is in memory, all the steps depicted above take about 5.54 ms
to complete. This is an average value for point clouds from
the tested dataset (containing humans, motorbikes, chairs,
tables and containers) and will be slightly different for other
object classes. The other important measure is training speed.
The following steps were taken into account:

« construction of NDT-maps from all training point clouds

(see section 1V)
o computation of IRON-descriptors for all obtained maps
« standardization of those descriptors (see section V-A)
o computing the whitening transform from all features
(see section V-C)

o K-means clustering (until convergence) for code-book
generation (see section V-D)

o generation of signatures for all training maps (see
section V-E)

o construction of a k-d-tree for the nearest neighbor

classifier using all training signatures

The full training process (without the time for loading
point clouds from disk) for about 17,500 training point
clouds (a single round in evaluation section VI-B) took 17
minutes on average. K-means clustering was executed until
convergence which generally amounted to more than 300
iterations. Limiting this number to 20— 50 will in most cases
not impair classification accuracy, but will further improve
training speed.

E. Classification of Segmented Scenes

While this paper has covered the complete classification
pipeline of isolated objects, there was not much focus on
scene segmentation. To show that IRON-BAG can be readily
used in combination with an arbitrary prior segmentation
step, we have implemented the density-based DBSCAN
clustering algorithm [15] as an example. It will divide a full
NDT-map into disjoint clusters that are classified afterwards.
This process runs in real-time as well (DBSCAN average
runtime complexity: O(nlogn)). See Fig. 7 for a segmented
and correctly classified domestic scene consisting of three
different objects.

Chair

Seat

Box

Fig. 7: Example of a segmented and classified 3D scene with
some occluded parts.

VII. CONCLUSION AND OUTLOOK
A. Discussion

In this paper we have presented a new algorithm, IRON-
BAG, for the robust classification of persons and objects
from 3D scenes. The approach is fast (see section VI-D),
and therefore well suited for real-time applications.

Due to its generic design, it can be used to classify arbitrary
objects and works even reliably when just fragments of the
full object can be captured by the depth camera. However,
as the algorithm does not make use of color information,
objects must have at least some slight distinction in shape
and/or surface curvature. In contrast to deep-learning based
classification methods, IRON-BAG can be trained on a
traditional CPU and training itself will only take a few
minutes to complete even for large datasets (see section
VI-D). The structural signatures used for classification are
constructed from IRON features (see section V-E), which
in turn are invariant to rotation, ground plane position, and
sensor pose. IRON-BAG inherits those properties, making
it equally easy to use. To name an example: a training set
might contain just chairs standing upright, but the classifier
will also recognize a chair if it is lying on the side, as long
as a few relevant features are not occluded.

For proper classification performance, it is nevertheless
advised to have lots of training data. This is easily achieved
by putting the object on a flat surface and moving around it
with the depth sensor until 2,000 — 5, 000 images have been
captured (see section V-A) - meanwhile, there is no need
to keep track of or estimate the sensor pose, since it is not
required for IRON-BAG classification or outlier rejection.

All in all, due to its high speed of about 180 full
classifications per second on a single CPU core (about
720 per second on one quad-core CPU) and its very
high accuracy of more than 93% in 75,000 NDT-map
classification procedures, the presented technique enables
even low-cost platforms, equipped with little computing
power and a simple depth camera, to robustly classify
persons and objects in the environment. On the other
hand, when strong computing capabilities are available,
IRON-BAG will not have a noticeable impact on CPU
utilization, leading to lower power consumption, and
potentially extending the time a mobile platform can operate
without having to recharge its battery.

As the algorithm is able to classify persons and objects
at the same time, it has many applications in human-
robot-interaction scenarios. Detecting the user is naturally
an important step for a mobile robot. However, it is also
possible to recommend a seat for the user, to wait at object
“couch”, or to handle obstacles in a smart way.

B. Outlook

NDT-maps provide interesting properties for the fast seg-
mentation of depth-scenes. As a reference, we have just
implemented a simple density-based clustering method (Fig.
7). It shows that IRON-BAG can be easily combined with an
arbitrary segmentation procedure which enables it to classify
complete scenes in real-time. We will explore further in that
direction.

REFERENCES

[1] L. Spinello and K. O. Arras, “People detection in RGB-D data,” in
IROS, 2011.

[2] M. Munaro and E. Menegatti, “Fast rgb-d people tracking for service
robots,” Auton. Robots, 2014.

[3] K. Pauwels, V. Ivan, E. Ros, and S. Vijayakumar, “Real-time object
pose recognition and tracking with an imprecisely calibrated moving
RGB-D camera,” in IROS, 2014.

[4] S. Gupta, R. B. Girshick, P. Arbelaez, and J. Malik, “Learning rich
features from RGB-D images for object detection and segmentation,”
ECCV, 2014.

[5] D. Mitzel and B. Leibe, “Close-range human detection and tracking
for head-mounted cameras,” in BMVC, 2012.

[6] L. Spinello, K. O. Arras, R. Triebel, and R. Siegwart, “A layered
approach to people detection in 3D range data.” in AAAZ 2010.

[7] Th. Schmiedel, E. Einhorn, and H.-M. Gross, “Iron: A fast interest
point descriptor for robust ndt-map matching and its application to
robot localization,” in IROS, 2015.

[8] M. Magnusson, T. Duckett, and A. J. Lilienthal, “Scan registration for
autonomous mining vehicles using 3D-NDT,” JFR, 2007.

[9] A. Coates, H. Lee, and A. Ng, “An analysis of single-layer networks
in unsupervised feature learning.” in AISTATS, 2011.

[10] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of careful
seeding,” in SODA, 2007.

[11] J. C. Gemert, J.-M. Geusebroek, C. J. Veenman, and A. W. Smeulders,
“Kernel codebooks for scene categorization,” in ECCV, 2008.

[12] L. van der Maaten and G. E. Hinton, “Visualizing high-dimensional
data using t-SNE,” JMLR, 2008.

[13] J. L. Blanco-Claraco, “Nanoflann library for fast approximate nea-
rest neighbor search,” https://github.com/jlblancoc/nanoflann, acces-
sed: 2016-09-29.

[14] S. Choi, Q. Zhou, S. Miller, and V. Koltun, “A large dataset of object
scans,” ECCV, 2016.

[15] M. Ester, H. peter Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in AAAI, 1996.

