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account. Thus, the potential benefits of shared workspaces
stay unutilized.

In order to enable goal-driven, sensible behavior in un-
known situations, an agent has to answer the following
question: which parts of the environment are actually rel-
evant to me right now? To find an answer the agent will
usually build a partial model of the environment and the
effects actions will have. In the presence of other agents,
their intentions, beliefs and capabilities have to be included
as well. Furthermore, if a goal requires cooperation, the
participants have to synchronize their actions and beliefs.
This is one of the reasons why communication plays a major
role in teams [1] and is a major challenge in HRC.

In this work we present a novel approach to make the con-
cept of Situation Awareness (SA) available for autonomous
agents. SA plays a prominent role in human factors research
and is aimed at identifying parts of the environment relevant
to a problem. Depending on the definition it might describe
a process or a product. It has been used to improve human
performance in many areas, e.g. aviation. In a nutshell,
having SA allows to find an apropriate answer to the question
”what should I do?”. However, we find that - since SA was
designed with humans in mind - the definitions available are
not directly applicable to a technical system. To alleviate
this, we construct a general concept based on the work
by Smith & Hancock [2] and integrate Dey’s definition of
Context Awareness [3] as well. Based on our concept, we
also propose an online way to estimate whether an agent has
SA by measuring their surprise. Our approach follows a top-
down design, and thus is not bound to a specific application.

To evaluate our concept we have built a physical HRC
setup with high task abstraction. To this end, we employ
task graphs and placeholder actions in the form of button
presses. This has the added benefit of keeping manipulation
complexity and action recognition simple.

II. RELATED WORK

There exists plenty of research into how humans evaluate
situations and make their decisions. One highly influential
term in human factors research is the concept of Situation
Awareness (SA). Coined in the 1980s, SA was initially used
to optimize user interfaces and has seen adoption in a host
of different domains, e.g. aviation and health care [5]. SA
is a concept tailored to humans: it describes a complex set
of mental capabilities, which enable beneficial decisions. It
can be said that having SA leads to good decisions, while
bad decisions can be a sign of lacking SA (the reverse is not
necessarily true, i.e. even without SA good decisions can be
made). Since its rise to fame, many definitions have been
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Abstract— Situation Awareness is a prominent concept in the 
human factors community. It is used to analyze and eliminate 
common sources of human errors in complex tasks and has 
seen wide-spread use in many fields, s uch a s a viation, health 
care or ergonomics. Humans who are situation aware are able 
to reliably generate competent performance, a skill that is also 
highly desired for other autonomous agents. Yet, the concept 
has seen only limited use in robotics. We attest this to a lack of 
clear definitions which would allow assessing an artificial agents 
capacity for Situation Awareness. Our major contribution 
is an application-agnostic definition o f t he t erminology and 
the processes involved in acquiring Situation Awareness. By 
integrating our definitions i nto t he p erception-action-cycle we 
provide a connection to the agent’s observable behavior. Our 
second major contribution is a way to estimate, whether an 
agent has lost Situation Awareness based on surprise. This 
measure can be used online and does not require explicit 
or implicit knowledge of the task. We evaluate our concept 
on a physical workspace built for abstract Human-Robot-
Cooperation scenarios.

I. INTRODUCTION

Intelligent agents have become an indispensable part of 
modern everyday life. Drones deliver packages, factory 
robots assemble and paint cars, and (somewhat) smart home 
devices play music or tell jokes on demand. Still, these 
systems are fundamentally limited in their capability to act
within the real world. Delivery drones will casually drop their 
package right on your new ant colony, assembly robots will 
fervently weld on while the factory is on fire, a nd Alexa 
will happily play the Star Wars theme at your Star Trek 
evening. It is apparent that these systems lack the ability to 
take into account parts of the environment their designers
did not consider.

This is especially detrimental in situations, where such a 
system has the potential of posing a risk to human safety.
This becomes obvious when considering Human-Robot-
Cooperation (HRC). Regarding the robot, there are two basic 
requirements for successful HRC: adequate robot hardware
and intelligent control software [4]. As of today shared 
workspaces for humans and robots only exist in constrained
research scenarios. To ensure the human workers’ safety 
the robots are separated through spatial and/or temporal
separation (e.g. cages). But even if the safety issues could
be solved, actually being helpful to a human is notoriously 
hard. This can be attributed to a lack of software that is
able to control a robot while taking human intentions into
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proposed [5]. While most works refer to the definition by
Endsley [6], we base our approach on the definition by Smith
and Hancock [2]. Although less known, this model has the
advantage that it integrates with the well-known perception-
action cycle, which we will expand upon as well. They define
SA as follows:

[Situation awareness] is the capacity to direct
consciousness to generate competent performance
given a particular situation as it unfolds.

This definition also shows why SA is interesting for
autonomous agents in the first place: it is a means to evoke
repeatable, optimal behavior. For more details on competence
and performance we refer the reader to [2].

While some work exists where SA is applied in robotics,
it is usually the designer who strives to become situation-
aware and then transfers their model to the implementation.
Naturally, since the system will lack the capability to exhibit
this process, it will not be able to cope with situations not
considered by the designer.

In robotics and human-computer-interaction, a frequently
occuring and quite similar concept is Context Awareness.
In fact, existing literature seems to suggest that these two
terms are used for the same underlying concept, but in dif-
ferent contexts. Working on context-aware human-computer-
interaction, Dey provides the following definition [3]:

Context is any information that can be used to
characterise the situation of an entity. An entity
is a person, place, or object that is considered
relevant to the interaction between a user and
an application, including the user and application
themselves.

solvable ones. There is no indication in this paper of how
SA itself can be acquired.

The Situation Aware FEar Learning (SAFEL) [10] model
is a human-brain inspired system to classify and react to
”aversive” and ”safe” situations. The system is planned to
be able to learn, which aspects of the environment are
relevant (indicative of aversive situations). This would allow
it to more easily achieve SA, improving the reliability of
its behavior over time. Currently, the situation assessment
module still seems to be missing.

In [11] the authors present a system, which extracts
features and relations from its environment and connects
these through an ontology. HRC is facilitated by explicitly
taking the human’s capabilities and even their perspective
and beliefs into account. This is demonstrated in simple
cooperative tasks like cleaning up a table or getting a bottle
from a shelve. While the system appears to reach a high
degree of agency, the lack of an overarching concept makes
it difficult to transfer it to other contexts (e.g. is perspective
taking always required?).

[12] proposes a framework for creating situation-aware
systems using a layered structure for data abstraction. The
framework heavily relies on experts, which have to provide
situation decompositions, sensor placement and -abstraction
as well as an application-specific ontology. The level of SA
thus depends on the expertise of the system designer.

An application of this work can be found in [13], where a
shared workspace for a human and a robot is presented. By
applying the concept of SA the authors classify situations
and identify relevant features. This information is then used
to adapt the robot’s behavior.

Instead of designing for specific applications, we wanted
to go one step further and look into the underlying cognitive
requirements. In the following section we present a novel
conceptual framework to apply SA to robotics. Our approach
is not tailored to a specific application and thus does not rely
on expert knowledge. Instead we see expert knowledge as a
means to fill gaps in a system’s cognitive abilities to enable
its use in a specific application.

III. DEFINING SITUATION AWARENESS

A. Definition

Although there are numerous definitions of SA [5], none
of them are directly applicable in a technical context. This
is due to the fact that at least the general meaning of SA is
easily understood by humans without ever requiring a clear
definition. This makes it about as tangible as intelligence
or creativity. As an example, we found that most theories
of SA lack a definition of what a situation actually is (e.g.
[6][2][14][15]). For an implementation this is insufficient.

To provide a comprehensive definition of SA, we will first
define our core terms. Since our definitions are compatible
to those by Dey [3], our concept not only covers Situation
Awareness, but also Context Awareness. These terms will be
used as defined here throughout the rest of the paper.

The author also defines a  s ituation a s ” a d escription of 
the states of relevant entities”. We agree, but also note that 
these definitions fall short several steps by failing to provide 
a clear guidelines to base an implementation upon. They also 
don’t provide an answer to the question of how an agent can 
achieve Context/Situation Awareness.

As mentioned above, SA has already been applied in 
robotics, albeit mostly as part of the design process (what 
does the robot need to know?).

In [7] the authors apply the concept of SA to analyze 
problems human operators had at the DARPA Robotics 
Challenge. Albeit robotics-related, this marks yet another 
application of SA to analyze human factors. The application 
to the participating robots stays unconsidered.

[8] identifies various capabilities robots would need in or-
der to achieve SA. These include reasoning about unknowns, 
deliberative sensing and spatiotemporal reasoning. While this 
approach is not application-specific, the relation between the 
individual components is left open. This makes it difficult to 
derive a concrete system from it.

In [9] commonsense reasoning is proposed as a way to 
enable robots to achieve SA. The authors propose to use 
default assumptions to fill gaps in the robot’s representation. 
This would allow the robot to fulfill tasks similar to already
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1) Aspect: a logical statement describing part of the
environment at a certain point in time. Aspects may describe
properties (”A is yellow”) as well as relations (”A is on top
of B”). What an aspect describes (”the color of A”) is distinct
from its instance value (”yellow”).

2) Representation: the set of aspects an agent is aware
of. We sometimes use the term ”internal representation” to
underline that it’s usually not accessible from the outside.

3) Goal: a set of aspects desired by an agent. This may
include constraints, e.g. a time by which the goal has to be
reached or the maximum number of steps in the solution.

4) Solution: a sequence of actions, which change aspects
in order to reach a goal.

5) Decision-Making-Process (DMP): generates a solution
for a goal from the representation passed to it. Crucially, this
involves a model of how aspects change and relate to predict
future situations.

6) Relevant Aspects: an aspect is relevant if including it
in the DMP changes the solution (selected actions, quality,
confidence. . . ).

7) Situation: a set of relevant aspects given a goal.
For a situation-aware agent this will be a subset of the
representation.

8) Evolution: given a goal, a situation is said to have
evolved if at least one of its relevant aspects have changed.

9) Completeness: given a goal, a representation is com-
plete if it includes all relevant aspects.

10) Minimal: given a goal, a representation is minimal if
it includes only the relevant aspects.

The question remains how a robot (or any agent really) can
acquire SA. Complementing the definition of SA by Smith
and Hancock above, we state that:

Given a goal and a situation, an agent is situation-
aware, if it can build a complete representation
before the situation evolves.

problems when talking about SA and does not weaken the
definition.

Smith and Hancock define SA as ”externally directed con-
sciousness” [2]. The process pushing consciousness towards
an agent’s inner state is called introspection and creates
self-awareness. In a similar fashion, the process pushing
consciousness outwards could be called extrospection and
creates Situation Awareness. This is depicted in Fig. 1a.

The terms defined above integrate with the well-known
perception-action-cycle, as shown in Fig. 1b. A similar
application to this cycle has been shown in [2], although
we employ a more detailed configuration. Our SA-cycle
includes four nodes internal to the agent: perception of the
environment, cognition of relevant aspects, decision making,
and execution and monitoring of actions. In addition, we
can determine the types of data passed between these nodes
using the terms defined above. The perception node applies a
filter to the aspects present in the environment. This filtered
perception is passed to the cognition node which assembles
a representation using the goal. The solution generated by
the DMP from the representation is passed to the execution
node, which in turn alters the environment through actions.
It is worth pointing out that the world (and thus the situation)
may evolve even when no action is executed by the agent.

Since the representation is the output of the cognition node
and the input to the DMP, these nodes are of special interest
to us. To achieve SA, the cognition node must provide the
relevant aspects through means of abstraction, inference,
embedding and so on. To act situation-aware the DMP must
be able to take all relevant aspects into account. Ideally, the
cognition node would provide a minimal representation and
the DMP would ignore all non-relevant aspects.

B. Estimating Situation Awareness

In [16] various techniques to measure SA in human
subjects are analyzed. While a subject will always try to
stay situation-aware, in the face of challenging tasks, periods
of SA will typically be mixed with non-situation-aware
intervals. Based on how this temporal dynamic is evaluated
we identify three fundamental measurement techniques.

The simplest one, which is employed by e.g. SART, uses
a post-trial survey to assess the subjects’ SA. While this
does not influence subjects during the trial, subjects might
have difficulty remembering individual situations and their
reaction to them. It is also not possible to estimate the
subjects’ SA online.

A more involved approach is to administer queries at
specific points during the trial. For this the task is frozen
and the subject is asked targeted questions. This has the
advantage that SA can be checked online and is used by
one of the best known techniques, SAGAT. On the other
hand, interrupting the trial has the potential to influence the
subjects’ performance. Furthermore, freezing a task requires
a strictly controlled environment which limits the possible
use cases.

The third approach is to make use of a subject matter
expert. This expert has to rate the subjects’ SA, which

Akin to [2], we stress that SA only makes sense in relation 
to a goal. An agent also only ever has access to their own 
internal representation, so they can never know that they 
are situation-aware: there may always be a relevant aspect 
unknown to the agent. On the other hand, an agent may know 
that they are not situation-aware, e.g. by knowing that some 
relevant aspects are missing. That is, the agent cannot know 
that it knows everything, but it can know that it knows not 
enough. SA thus has to be assessed either from the outside 
or in hindsight.

We stated that to become situation-aware, an agent must 
be able to take into account all relevant aspects. Since the 
agent’s capabilities matter in this context, this also limits the 
goals for which an agent can achieve SA. While taking more 
relevant aspects into account usually improves the solution, 
missing just one relevant aspect may lead to complete failure. 
This implies that a solution’s quality is not directly linked 
to the number of relevant aspects correctly represented. 
As such, for us SA is binary: one either has it or one 
doesn’t. Saying that e.g. an agent is ”90% situation-aware” 
is an invalid statement. We found that this alleviates many

668IEEE Int. Symp. on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, pp. 666-671 , IEEE 2018 



(a) (b) (c)

Fig. 1: (a) Situation Awareness depicted as outwards extending consciousness as described in [2]. (b) Extension of the
perception-action-cycle using our terms. This process allows the agent to expand their consciousness into the environment
and act within it. (c) Solution generation and model adaption inside the Decision-Making Process. The difference between
representation and prediction is the system’s surprise.

can be done at arbitrary points mid- or post-trial. Although
formalized techniques are rare (SABARAS being one exam-
ple), this approach can be recognized in most task-specific
implementations, e.g. [12][13]. While subject bias is not an
issue with this technique, the quality of the measure is limited
by the expert’s expertise. It is also questionable to what
extend an external observer can rate a subject’s internal SA
construct.

All measurement techniques require extensive knowledge
of the task at hand. Furthermore, the application of surveys
requires human-like mental capabilities, which disqualifies
them for use in present-day robots. While using a subject
matter expert alleviates this requirement, this introduces
another highly task-specific element.

In order to assess a technical system’s SA, we propose
a new way to do so based on surprise. While surprise has
already been used in machine learning (e.g. [17]), we are the
first to use it to assess SA. Surprise has been defined in [18]
as a stimulus that disagrees with one or more expectations.
For agents which predict future states (e.g. those using
autoamted planning algorithms), we can assess the agent’s
surprise as the difference between predicted and actual situ-
ation (remember that a situation is the set of aspects relevant
to a goal at a certain point in time). Not correctly predicting a
situation can have two reasons: the agent’s prediction model
was flawed and/or the representation was not complete. In
either case the agent knows that they were not situation-
aware when they encounter an unforeseen situation. As a
result the agent could schedule actions to attain SA again
(e.g. acquiring additional information). A learning agent
could also take this as a cue to improve their internal routines.

Since we defined a situation as a set of relevant aspects, we
can use set operations to verify predictions. We say that an
agent was situation-aware in t− 1, if the minimal prediction
R̂t

min made in t − 1 is a subset of the actual complete

and depicted in Fig. 1c.

SAt−1 = R̂t
min ⊆ Rt

complete (1)

In implementations the prediction may of course include non-
relevant aspects (it would be complete, but not minimal).
However, this would also mean that these aspects have to
be predicted correctly in order to keep the surprise strictly
related to the goal.

This method of estimating SA through surprise is limited
in that it can only assess whether an agent is not situation-
aware. If some relevant aspects are not included in the repre-
sentation, they will neither be part of the prediction, and thus
will not lead to surprise. Although one might assume that an
incomplete representation will lead to flawed predictions and
changes in the solution, this can not be expected in general
since the effects of (erroneous) decisions can be delayed.
On the other hand, evaluating (non-)SA through surprise has
the benefit of being applicable independent of the actual
application. Since situation prediction is already an integral
part in many systems doing automated planning, this measure
can be made explicit in these with very little effort.

In chapter V we will give a first look at our approach to
utilize surprise in order to allow a system to acquire SA in
the face of novel situations.

IV. EXPERIMENTAL SETUP

A. Workspace

Since most of today’s robot arms are non-compliant,
humans put themselves at risk if they occupy the same spatial
and temporal space as a robot. But even if robots can move
collision-free, this is not enough for a successful cooperation;
the robot must also consider that other agents will take part
in the task and alter the world around them. We believe that
SA can act as an enabler for these scenarios.

In order to evaluate our concept, we have built a physical
workspace for generic HRC tasks. We split the workspacerepresentation Rt

com made in t, as shown in equation (1) 

669IEEE Int. Symp. on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, pp. 666-671 , IEEE 2018 



into dedicated areas, which are assigned to either the robot
or the human. In the future, we will also introduce a shared
workspace area where either agent may act. The human’s
cooperative partner is a UR5 robot. All systems have been in-
tegrated into the Robot Operating System (ROS). By relying
on data being provided by the subsystems (Perception) and
leveraging the ROS/MoveIt! library for trajectory generation
and execution (Execution & Control), we are able to focus
on the Cognition and the DMP.

We employ a multitude of subsystems, which already do
major data abstraction, producing high-level data-streams
like gaze vectors or hand positions. In order to extract the
human’s pose and skeleton, we use a markerless multi-
camera motion tracking system called CapturyLive1. To
better understand the human’s actions and intentions, we
added a Pupil Labs eye tracking headset2. Since CapturyLive
does not provide a reliable body part orientation we needed
a way to get the human’s head orientation so we could map
their gaze into the scene. To solve this we added numer-
ous augmented reality markers to our workspace. Using a
perspective-n-point algorithm, we are able to calculate the
position of the front facing scene camera of the eye tracking
gear in relation to these markers. For recordings and future
research two Microsoft Kinect 2 depth cameras have been
added as well. A photo of our setup can be seen in Fig. 2.

Fig. 2: Photo of our experimental setup. To the left the UR5
is about to press one of its buttons. Meanwhile, one of the
authors is waiting for the robot to finish, wearing the eye
tracker. In the background several augmented reality markers
and a screen showing a visualization of our scene are visible.

B. Task Graphs

In order to keep the system generic and improve trace-
ability we wanted to avoid physical object manipulation.
Instead, we represent actions within our tasks by pressing
large color- and position-coded buttons. Pressing a button
can represent complex actions like tightening a screw or

1http://thecaptury.com/
2https://pupil-labs.com/

assembling a controller, but does not make any assumptions
about the actual level of detail. By representing our tasks as
abstract branching sequences of button presses, we are able to
exchange the underlying generative model without changing
our implementation. This has the added benefit that control
of the robot, as well as human action recognition, are sig-
nificantly simplified. This comes in handy in a related work,
where we estimate the human’s SA from their actions [19].

Since we don’t have a shared workspace area yet, all task
steps are assigned to either the robot or the human. Each
of the agents has access to a board with nine large buttons.
Depending on the length and complexity of the task not all
of them might be needed. A visualization of a sample task
can be seen in Fig. 3.

Fig. 3: Example of a branching task as used in our setup. The
steps have been color-coded according to the corresponding
button. Circles code for steps the human has to execute,
squares depict steps assigned to the robot.

To keep our tasks simple, we generate sequential total-
ordered tasks, with no dead ends and a single terminal state.
There are also no concurrent or synchronized actions. As our
system becomes more complex, so will our tasks, removing
these constraints one by one.

V. UTILIZING SURPRISE

We designed a simple HRI experiment to showcase the
current state of our system and outline where we want to
go. In this experiment our system is confronted with tasks
as seen in Fig. 3. The tasks always have a path which
can be executed by the robot without human help, but also
offer several shortcuts which only the human can execute.
The DMP is designed to always choose the option with
the smallest distance to the goal from those available. We
visualized one instance of our experiment in Fig. 4.

Initially our system does not know about the human’s
capabilities and so always follows its own path, predict-
ing state transitions accordingly. This is implemented as
a rule (”<action.type == robot>”) which is applied in the
Cognition to provide the available options to the DMP.
Now, whenever the human triggers a shortcut for the first
time, the system observes an unexpected state transition
- it was not situation-aware. In order to adapt, it adds a
new rule which explains the transition from the previous
situation to the current one. For this experiment we pro-
vide a pool of predefined rules specific to human actions
(e.g. ”<action.name == r[ed]>”) from which the system can
choose. The new rule allows the system to take additional
human actions into account when deciding what to do. It will
thus experience less surprise and can be considered situation-
aware more often.
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In a simple human-robot-cooperation experiment, we gave
a first look on how we plan to utilize surprise to improve the
robot’s behavior. We plan to expand on the ideas presented
here in the future. Specifically, we aim to make our system
more general by improving its ability to explain and reason
about situations. We would also like to evaluate our concepts
in more complex scenarios that closer resemble real-world
applications.
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Fig. 4: Actions taken by the robot and the human for the 
example task shown in Fig. 3. Squares and circles correspond 
to robot and human actions, respectively. Whenever the 
system is surprised by a human action it adds a new rule 
to explain it, allowing the system to account for this action 
in the future and thus improve its SA.

Obviously this experiment is still very limited in its scope. 
The point we want to make is that explicit surprise can 
be used to drive behavior adaption, allowing a system to 
acquire SA in novel situations. In the future we plan to cover 
more complex tasks and improve the system’s capabilities to 
reason about situations.

VI. SUMMARY

To reliably evoke competent performance, we proposed 
a novel way of implementing autonomous agents based on 
Situation Awareness. Since the application of this human-
centered concept is difficult i n t echnical a pplications, we 
provided clear definitions o f t he t erms w e i dentified as 
essential. This also allowed us to define the process through 
which an agent can become situation-aware. Our concept 
integrates Context Awareness with Situation Awareness and 
provides a link to the perception-action-cycle often used 
in robotics. Since we followed a top-down approach, our 
definitions a re n ot b ound t o a  s pecific ap plication or  use-
case.

Based on our concept, we proposed a new way to find 
out when an agent was not situation-aware by measuring 
the agent’s surprise. This can be done online and even by 
the agent themselves, albeit only in hindsight. We find that 
a direct comparison between surprise and other techniques 
for evaluating SA (such as SART, SAGAT or SABARAS) is 
misleading due to fundamentally different purposes. While 
the mentioned techniques aim to make an objective statement 
over a subject’s SA, surprise only triggers when the subject 
notices that they are not situation-aware, and thus is subjec-
tive. This also means that a false assumption of SA can be 
detected by SART and cohorts, but not by surprise. However, 
its ease of use and applicability to technical systems allows 
suprise to be used in different areas and with much higher 
evaluation frequency.
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