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Abstract—In tumor therapy, estimating tumor growth is
crucial to get an early information regarding tumor therapy
response and, if neccessary, adapt therapy. We propose a novel
deep learning based algorithm using deep convolutional sparse
autoencoders to find a minimal representation of tumor shape
and texture for colorectal liver metastases. Furthermore, we
provide a prediction of future lesion growth based on single slice
CT tumor images which prospectively can be used as a prognosis
for physicians. The state of the art in tumor treatment assessment
for solid tumors mainly uses tumor diameter in single CT slices as
the treatment response criterion (RECIST). However, whereas the
correlation between RECIST and final treatment outcome was
shown to be significant, its effect size is still limited. With our
approach we achieve a Matthews correlation coefficient of 52.0%
in predicting tumor treatment response compared to 28.2% with
radiologic assessment, as well as an AUC of 0.814 opposed to
0.698.

I. INTRODUCTION

In the last years, Deep Neural Networks have been applied
to a variety of medical applications, including tumor [1],
multiple sclerosis [2] and whole-organ segmentation [3], [4],
vessel tracking [5] and others. Another major field which could
highly benefit from semi-automatic treatment assessment is
oncology, as a manual assessment requires consideration and
evaluation of various variables and, therefore, a high amount of
attending oncologist’s and radiologist’s experience. According
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to [6], [7], in particular tumor treatment assessment includes,
but is not limited to, evaluation of:

• visual appearance (e.g. shape, size, density)
• blood values (e.g. haemoglobin, antibodies, tumor mark-

ers, e.g., CA19.9)
• histological assessment
• demographic data (e.g. age, gender, ...)
• patient’s medical history

Data acquisition, however, is only the first step as all infor-
mation has to be merged for giving a final state estimate, and
subsequently, to decide on an appropriate treatment plan. Most
of these estimates are based on clinical experience and require
a high amount of expertise, as they include implicit predictions
on future course of disease.
Usually these estimates also include an implicit assumption
on future tumor growth, as no growth and tumor shrinkage
correlate with higher patient survival times [8]. Acquiring
some of the aforementioned parameters, e.g. blood values, is
highly complex as it requires laboratory diagnostics and/or
additional technical and personnel resources. Having a simple,
fast and reliable first assessment could therefore be highly
beneficial, as it may enable better therapy planning, deeper
insight into tumor growth dynamics, a greater patient turnover,
a reduction of costs and waiting times and thus may have the
potential to improve overall healthcare.
Current research already has shown correlations of tumor’s
visual appearance, disease progress and survival times to a
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certain degree: Starting with the first Radiomics publications
[9], [10], semiautomatic tumor treatment assessment by using
image analytics has become a highly active field [11]–[15].
Although most algorithmical approaches still concentrate on a
combination of more classical image features like descriptive
intensity histogram statistics, wavelet features or run-length-
matrix descriptions, there is already a minor community of
scientist using various neural network approaches for image
based assessment. Most of this work, however, is focussed
on segmentation tasks, as it is easy to generate high amounts
of training data which are usually rare for medical tasks due
to data privacy regulations. Amongst various tumor entities,
colorectal cancer (CRC) is of particular interest, as it is
the second leading cause of cancer related deaths in modern
societies, being responsible for more than 50,260 deaths in
the U.S. in 2017 alone [16]. More than 50% of patients with
colorectal cancer develop liver metastases, which may lead
to liver organ failure, additional organ compression and thus
significantly reduce patient life time [17] [18].
Although late research already has shown that deep convolu-
tional neural networks (DCNN) can successfully be trained
to do familiar tasks, e.g. lung lesion malignancy classification
[19], to the best of our knowledge currently no algorithm exists
for colorectal cancer metastases assessment, especially doing
a continous assessment in time domain. Therefore:

1) ... we present a novel approach which allows predic-
tion of CRC metastases growth from single slice CT
images of two treatment timepoints (before- and within-
treatment),

2) ... we show that our approach can be utilized as a pre-
treatment assessment using one time-point only,

3) ... we further show that our approach outperforms other
approaches based on radiological assessment parame-
ters, i.e. RECIST and volume (see sec. II), only .

II. BACKGROUND

A patient with colorectal cancer usually is scanned with
CT every 2-3 months (depending, e.g. on tumor stage), to
rule out liver and/or lung metastases, being the most common
sites for CRC, as metastases are correlated with significantly
lower patient survival (non-metastatic: 53-92% depending
on stage; metastatic: 11%) [20]. The first scan is usually
called the baseline (BL), the latter followup scans (FU1,
FU2, ...). Following the the gold standard for radiologic solid
tumor assessment - Response Evaluation Criteria for Solid
Tumors (RECIST) - CRC treatment includes measuring up
to 5 (RECIST v1.0), respectively 2 (v1.1), target lesions per
organ. Measure is taken as the largest lesion diameter within
one slice [21].

According to RECIST’s single lesion response criteria,
tumor progress is described using the following rule table:

• (PR) Partial Response - shrinkage in tumor diameter of
at least 30% compared to last scan

• (PD) Progressive Disease - growth in tumor diameter of
at least 20% compared to last scan

• (SD) Stable Disease - neither significant growth nor
shrinkage

• (CR) Complete Response - dissappearance of all target
lesions and lymph node reduction to Ø < 10 mm in short
axis

In accordance with the RECIST guideline, we measure
tumor diameter as the longest diameter within one slice. We
neglect Complete Response (CR) as it can be seen as a special
case of PR. We choose computed tomography (CT) as the
image modality. Although other approaches like positron em-
mision tomography (PET) inherently provide some advantages
like direct correlations between images and cell metabolism,
in CRC treatment CT is generally seen as the gold standard,
as image acquisition is less costly, better available, easier to
use and has higher quantitative interpretability.
As shown in sec. IV-C, single lesion assessment only shows
minor correlation, both, with future tumor growth and pa-
tient survival time. A more reasonable prediction requires
acquisition and integration of blood values, histology and
demographic data into a joint model. It may therefore be
highly beneficial to have a first, minimal-invasive assessment
based on CT images, especially when CT data are standardly
acquired in treatment process. Also it is possible, that tumor
structure contains additional information which is not con-
tained in histological or blood value data.

As mentioned in sec. I, applying deep learning to medical
volume image analysis often requires multiple augmentation
techniques, as, compared to most computer vision tasks,
medical data is rare and hard to obtain. Data augmentation
often can be done efficiently by using the sliding-window ap-
proach, potentially combined with multiple other augmentation
techniques (e.g. affine image transforms). For segmentation the
amount of network parameters also can effectively be reduced
by using low-resultion images or stacked networks [4].

When having classification tasks especially image trans-
formations like varying rotation, shear, jittering, etc. can be
used. However, even when combined with dropout [22], batch
normalization [23], 2D or 3D image augmentation, the degree
to which augmentation results in additional performance is
limited, as images are still highly correlated.

The limit to data augmentation especially holds true for
our task, as the underlying theory claims that phenotypical
manifestations (e.g. specific tissue structure, size and shape of
central necrosis, etc.) correlate with image structures and/or
noise patterns. As these manifestations are currently a field of
active research, it can not be said whether larger transforma-
tions are realistic in these terms too. This reduces the amount
to which image transformations can be done, so augmentation
does not fully solve the problem of few data. Therefore, a
main goal of the proposed approach was to keep the number
of parameters as low as possible. We thus decided to use a
2D approach, as usual slice-wise CT reconstruction has much
lower spatial resolution in z-axis (∼ 1-3mm) than in x- and
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y (∼ 0.7mm) and so can more easily be ommitted while
efficiently reducing the training parameter count.

III. PREDICTING TUMOR GROWTH USING SPARSE
REPRESENTATION

We present an approach for using 2D deep convolutional
autoencoders to train sparse embeddings which efficiently
describe tumor variance. These sparse representations can
subsequently be used to create an easier-to-train network with
very low parameter count to predict future tumor growth.

A. Dataset

Our dataset consists of 321 volumetric CT scans from 135
patients taken between 12/2009 and 02/2017. The data contain
460 unique liver lesions with fully volumetric segmentations at
in average 2,92 time points per patient. Totally this results in a
dataset of 1344 liver lesion volumes. As the data were acquired
retrospectively (and so no unified scan protocol was used),
the images suffer from very high heterogeneity, resulting -
in terms of images - in various contrast levels, illuminations,
noise levels, resolutions, etc..

To unify the dataset, as a first step the volumetric image data
were resampled to isotropic voxel size using bicubic interpo-
lation. As described in sec. II, we decided to use 2D images to
train our classifier. We chose to extract windows representing
80x80mm at each lesion’s middle slice for each time point.
The window sizes represent usually expectable values of tumor
size in our dataset with quantiles of ØPr(Ø)≤0.1,ØPr(Ø)≤0.9

of 11.3mm, resp. 53.3mm.
The windows are extracted as lesion centered 256x256 pixel

bicubic resamplings of the original images. This upsampling
takes varying original voxel sizes into account, as small
and big lesions should be equally well represented. Also, to
reduce the influence of different contrast agent levels (and thus
image illumination), histogram equalization was done as an
additional step. An example of one baseline followup lesion
pair is found in Fig. 1.

Fig. 1. Lesion example images as given as input for autoencoder and
classification network. Top left: baseline image from 12/2015, followup from
04/2016. Bottom: Histogram equalized images.

B. Autoencoder Network Architecture

As already described in sec. II, a major goal was to
keep parameter count as low as possible. Nevertheless, we
experienced worse performance when using smaller images,
as our lesion data highly vary in size and resolution and either
lesions were not completely contained when using smaller
windows, or could not be fully represented when using lower
resolution. We take care of this by using 4x4 max pooling
in the early layers to quickly reduce image size. We use
batch normalization throughout all layers, as it is generally
thought to be similarly regularizing as dropout [23] and in
our experiments resulted in better generalization performance
as well as lower training times. All layers except for the output
layer use leaky rectified linear activation (Leaky ReLUs) with
a slope of 0.2. The output layer uses tanh-activation, input
and output are scaled to the interval [−0.5; +0.5]. Also mean
image subtraction was used. The complete architecture can be
seen in Fig. 2, details for every layer can be found in Table I.

TABLE I
AUTOENCODER NETWORK ARCHITECTURE

type filter stride reg. output # param

in BN 2×256×256×1

conv3d 2×1×1 1×1×1 BN 256×256×32 224

conv2d 5×5 1×1 BN 256×256×32 25760
pool 4×4 4×4 — 64×64×32

conv2d 5×5 1×1 BN 64×64×48 38640
pool 4×4 4×4 — 16×16×48

conv2d 3×3 1×1 BN 16×16×64 27968
pool 2×2 2×2 — 8×8×64

conv2d 3×3 1×1 BN 8×8×96 55776
pool 2×2 2×2 — 4×4×96

conv2d 3×3 1×1 BN 4×4×128 111232
flat (2048)

fc (20) L1+BN (20) 41060

dense (2048) BN (2048) 51200
reshape (2048) — 4×4×128

dconv2d 3×3 1×1 BN 4×4×96 111072
up 2×2 1×1 — 8×8×96

dconv2d 3×3 1×1 BN 8×8×64 55616
up 2×2 1×1 — 16×16×64

dconv2d 3×3 1×1 BN 16×16×48 27888
up 4×4 1×1 — 64×64×48

dconv2d 5×5 1×1 BN 64×64×32 38560
up 4×4 1×1 — 256×256×32

dconv2d 5×5 1×1 BN 256×256×32 25760
dconv3d 2×1×1 1×1×1 BN 2×256×256×1 69

C. Predictor Network Architecture

To reduce the chance of overfitting, we chose to append
a very simple, 2-layered network architecture consisting of 8
fully connected leaky ReLUs followed by a two neuron layer
with softmax activation. Also we use batch normalization in
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Fig. 2. Autoencoder used for training sparse representation of 20 neurons. One slice of baseline and followup images are given as input, resp. target output.
An overview of all layers can be found in Table I.

the former layer. By doing so, the number of trainable para-
meters is reduced to 218. When training the classifier, we also
analyzed more complex multi-layer-architectures with strong
regularization but did not experience significant advantages.
The final network architecture can be found in Table II.

TABLE II
PREDICTOR NETWORK ARCHITECTURE

type filter stride reg. output # param

in 2×256×256×1

conv3d 2×1×1 1×1×1 BN 256×256×32 224

conv2d 5×5 1×1 BN 256×256×32 25760
pool 4×4 4×4 — 64×64×32

conv2d 5×5 1×1 BN 64×64×48 38640
pool 4×4 4×4 — 16×16×48

conv2d 3×3 1×1 BN 16×16×64 27968
pool 2×2 2×2 — 8×8×64

conv2d 3×3 1×1 BN 8×8×96 55776
pool 2×2 2×2 — 4×4×96

conv2d 3×3 1×1 BN 4×4×128 111232
flat (2048)

fc (20) L1+BN (20) 41060

dense (8) BN (8) 200

dense (2) — (2) 18

IV. EXPERIMENTS

A. Ground truth

We labeled our data by extracting the RECIST diameter of
all lesions to any timepoint and determined the final label by:

yi =

{
1 if Øi,t+1/Øi,t ≥ 1.2

0 otherwise
(1)

As already introduced in sec. II, gold standard radiologic
assessment is based on RECIST. Our above definition matches
the RECIST single lesion assessment criteria of significant
growth. More formally our classifier goal is consistent to RE-
CIST’s discrimation criterion for progressive disease opposed
to partial response, complete response and stable disease. As
the RECIST diameter as used above is defined as the largest
lesion diameter measurable in one slice of an image, notabely
it does not take viewport into account but relies on the (usually
accurate) assumption of isotropic lesion growth. Due to the

differing target of classifying tumor growth starting from the
current time point and not to get overall clinical parameters,
opposed to RECIST we define growth or shrinkage relative
to current timepoint t where RECIST compares to the best
response tBR [21].

B. Performance Measures
Especially for medical treatment choosing the right classifier

can be crucial, as deciding whether to use a conservative or
optimistic classifier highly depends on the concrete purpose
as well as a critical cost-benefit-analysis. As we expect this
analysis to be a case-to-case decision, one goal was to choose
a measure which is invariant to this decision to the greatest
possible extent. When evaluating our classifier, we decided to
state various metrics for all trained classifiers (see Table III).
We also provide a ROC-based AUC. For the final evaluation

TABLE III
OVERVIEW ON USED MEASURES

measure equation
true positive rate,
sensitivity, recall TPR = REC = tp

tp+fn

true negative rate,
specifity,
inverse recall

TNR = tn
tn+fp

positive predictive value,
precision PPV = tp

tp+fp

negative predictive value,
inverse precision NPV = tn

tn+fn

F1 score F1 = 2·tp
2·tp+fp+fn

Informedness
Youden’s J statistic

IFD = TPR + TNR− 1

Markedness MKD = PPV +NPV − 1

Matthews correlation
coefficient/Φ-Score

MCC =
√
IFD ·MKD

Area under curve (ROC) AUC

we choose Matthews correlation coefficient as the preferred
measure, as according to [24] it has the following favorable
properties:

1) It is a common measure. Known as Φ-coefficient, MCC
also is a common measure in statistics for most scientific
domains and therefore easy to understand for most
scientists.

2) For guessing, it is zero-centered. This allows it to be
directly interpretable as an informed measure of quality
over guessing.

3) It can handle unbalanced datasets. This is important as
tumors in treatment usually shrink, meaning negative
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samples become overrepresented. Also it ensures that
results are comparable across various datasets without
being influenced by class distribution.

C. Baseline

As there is currently no real baseline for predicting future
tumor growth of colorectal cancer liver metastases, we decided
to train classifiers from radiologic assessment parameters. We
extracted tumor volume and longest diameter in one slice
(RECIST). Comparing against volume is important since lately
tumor volume is assumed to be a more accurate predictor than
RECIST [25] [26]. Based on these measures mr we defined
two new input sets Xr with xr,i,t ∈ Xr:

xr,i,t =


mr,i,t

mr,i,t−1

mr,i,t −mr,i,t−1
mr,i,t

mr,i,t−1

 (2)

with mr,i,t being the measure r ∈ {RECIST,Volume} for
sample i at timepoint t. For each Xr we trained one classifier.
Hyperparameter optimization was done using 100 iterations
of randomized search cross validation with nested 10-fold
grouped cross validation for inner validation. Train-test split
is done with outer 10-fold grouped cross validation, where
in both cases patient name was the grouping parameter. We
also compared against uninformed guess (coin-flip-model),
informed guess (stratified by label distribution), and most-
frequent-class-guess (abbreviated as MFCG). Results can be
found in Table IV.

TABLE IV
PERFORMANCE OF PREDICTORS FROM RADIOLOGIC DATA AND GUESSING

Measure RECIST Volume Infd. Uninfd. MFCG

TPR 62.9% 65.2% 23.5% 50.0% 0.0%

TNR 63.4% 60.7% 76.3% 49.7% 100.0%

PPV 35.9% 40.6% 23.3% 23.6% 0.0%

NPV 85.2% 85.6% 76.2% 76.2% 76.3%

F1 44.4% 44.0% 23.0% 31.8% 0.0%

IFD 25.0% 26.7% 0.0% 0.0% 0.0%

MKD 22.4% 21.2% 0.0% 0.0% -23.7%

MCC 28.2% 27.1% 0.0% 0.0% 0.0%

AUC 69.8% 68.3% (50.0%) (50.0%) (50.0%)

The results show high correlation between RECIST- and
volume-based prediction, as well as minor correlation between
RECIST, volume and future tumor growth. Both classifiers
were significantly superior to guessing regarding F1, MCC
and AUC with p < .001 each. The 95 % confidence intervals
were [.402, .486], [.235, .328], [.671, .726] for RECIST, and
[.398, .482], [.220, .323], [.652, .714] for volume-based predic-
tion. Significance was tested using 5,000 iterations of boot-
strapping. As Pearson correlation for dichotomous variables
reduces to MCC (or Φ-coefficient), the results for RECIST-
and volume-based prediction can be seen as an effect size of

r = .282/.271. Also the results show that, as expected, some
metrics are more error prone to unbalanced data than others.
Expectedly, F1, IFD, MKD, MCC and AUC seem to be
more robust indicators for unbalanced sets.

D. Training process

All training was done on a NVIDIA DGX-1 using Keras
with Tensorflow backend [27], [28]. As in IV-C, we divided
our dataset into two sets with no shared lesions, scans or
patients. Also we ensured similar label distribution amongst
both sets.
Training took place in two steps. First, we trained the autoen-
coder to create sparse representations, second, we trained a
classifier appended to the autoencoders sparse representation
layer. For autoencoder training binary crossentropy loss was
used. All optimization was done using Adam with Nesterov
momentum as described in [29]. Although not generally seen
as neccessary, we experienced better results when additionally
limiting optimizer’s parameter update by exponentially anneal-
ing the learning rate ηi as a function of the current epoch i:

ηi = η0 ·
(
ηn−1

η0

i
n−1

γ)
(3)

with start learning rate η0 = 3 · 10−4, final learning rate
ηn−1 = 1 · 10−7, the number of epochs n and γ = 1.2
being the learning rate exponent. For both, autoencoder and
classifier training, we used adversarial training as it was shown
to regularize training in a way similar to dropout [30]. As
our training dataset is highly unbalanced, we also employed
stratified sampling in training, assigning a sampling probability
pi for each sample i with m classes as follows:

pi =

1
Pr(y=yi)∑m

k=0
1

Pr(y=yk)

(4)

We combined this with a modified version of the exact
importance sampling from [31], multiplying the sampling
probability with the norm of the error gradient for each
sample, as we encountered huge benefits in training and test
set performance.

1) Autoencoder: The autoencoder was trained for 1,000
epochs, finding the best model after epoch 713 with respect to
train and test loss. As we chose a very sparse representation
we did not encounter a significant difference between bias
and variance. However, reconstruction quality is also very
limited, which implies that the autoencoder network is not
able to fully represent the learned dataset. Again, as our
training data were very limited for a deep learning task, this
may be preferable. An example baseline followup pair and
its deconvolved encoding can be seen in Fig. 3.

2) Classification: For analyzing whether actual appearance,
e.g. shape and texture, itself holds information on future prog-
nosis, after training the autoencoder we trained two different
models:
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Fig. 3. Baseline (top) and followup images (bottom) in false colors; left:
original image, right: autoencoder reconstruction

1) One classifier based on sparse representation of BL+FU
2) another classifier based on sparse representation of one

time point only
The input of the first classifier consists of baseline-followup-

pairs like seen in Fig. 1. For the second classifier we dupli-
cated the image of the current time point and use the same
autoencoder trained before. Training for both models was done
for 200 epochs. However, training was fully satisfied after 10
iterations. Further epochs did not provide any advantages and
lead to overfitting. Training the autoencoder was meant as
a pretraining for the sparse representation layers, so we did
not fix these in further training. When fixing the layers, AUC
results were getting worse for ∼ 5%. Not fixing the convolu-
tional layers results in a number of trainable parameters much
higher than the one of training samples, so the resulting model
is inherently prone to overfitting. The results of our training
in comparison to the tested baseline classifiers can be seen in
Table V. Fig. 4 and 5 show the ROC curves on the test set.

TABLE V
PERFORMANCE OF OUR APPROACH AND RADIOLOGIC DATA PREDICTION

Measure Classifier (BL+FU) Classifier (ONE) RECIST Volume

TPR 48.3% 86.2% 62.9% 65.2%

TNR 95.3% 62.4% 63.4% 60.7%

PPV 77.8% 43.9% 35.9% 40.6%

NPV 84.4% 93.0% 85.2% 85.6%

F1 59.6% 58.1% 44.4% 44.0%

IFD 43.6% 48.6% 25.0% 26.7%

MKD 62.2% 36.8% 22.4% 21.2%

MCC 52.0% 42.3% 28.2% 27.1%

AUC 81.4% 78.7% 69.8% 68.3%

As in section IV-C, significance was tested using 5,000 itera-
tions of bootstrapping. The 95 % confidence intervals for F1,
MCC and AUC were [.450, .726], [.356, .694], [.721, .896]

Fig. 4. Receiver operating characteristic for test set using sparse encoding
based predictor with baseline + followup.

Fig. 5. Receiver operating characteristic for test set using sparse encoding
based predictor using one timepoint only.

for the BL+FU-classifier, and [.455, .693], [.283, .540],
[.694, .865] when using baseline images only. Thus, both
classifiers perform significantly better than classification with
RECIST or volume regarding F1 and MCC with p < 0.05.
The classifier using baseline and followup image also reaches
significant superiority with respect to AUC.

V. DISCUSSION

The results show that radiologic liver lesion images con-
tain visual information which allows for the prediction of
future tumor growth. Assuming most metrics, both approaches
perform at least equally well or even better than RECIST
or volume based prediction. This holds especially true for
balanced or informed metrics, implying that not only tumor
size or diameter are important predictors, but structural image
information is even more predictive. Both classifiers outper-
form RECIST or volume based prediction in terms of F1-
score, Informedness, Markedness and Matthews correlation
coefficient. The results also show that expectedly classifier
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metrics like TPR, TNR, PPV and NPV highly depend
on the concrete choice of classifier output weighting. As our
classifier was chosen to have a high MCC, our BL+FU
classifier is much less optimistic than the BL only classifier.
Nevertheless, the ROCs implys that both classifiers could
be chosen with abritrary prioritization of classes, showing
comparable MCC-values.

VI. CONCLUSION

As already mentioned in sec. I and II, predicting tumor
growth is important to get an early assessment whether a
patient responds to therapy or not. An algorithm extracting in-
formation which is not covered by usual radiologic assessment
could be of high clinical value, eventually improve therapy
and thus overall patient healthcare. However, for now we
did not try to combine image data with clinical parameters,
though we expect it to be highly beneficial for the classification
goal. While tumor growth is known to correlate with patient
lifetime, it should be analyzed whether DCNNs are directly
predictive for patient lifetime. Also, the absence of tumor
growth does not necessarily mean tumor shrinkage. It may
thus be preferrable to separately predict shrinkage in order to
distinguish it from non-growth.
One approach which is not covered in this study is the image
based volumetric assessment of lesions, utilizing not only one
slice but the whole tumor. However, as stated in sec. III-A,
the 10% and 90% quantiles for our dataset were 11.3 mm,
resp. 53.3 mm. Assuming isotropic growth and expecting usual
slice thicknesses of 1-3mm, this results in the necessity of
segmenting between 4 and 50 slices for fully volumetric lesion
assessment. As our approach only requires segmentation of the
lesion’s middle slice, it provides high potential for practical use
as it allows an early assessment with comparable (RECIST)
or lower (volume) costs and significantly better performance
than pure radiologic assessment.
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