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Abstract

Being responsible for over 50,000 death per year within the U.S. alone, colorectal
cancer (CRC) is the second leading cause of cancer related deaths in industry
nations with increasing prevalence. Within the scope of personalized medicine,
precise estimates on future progress are crucial. We thus propose a novel deep
learning based system using deep convolutional sparse autoencoders for estimating
future lesion growth for CRC liver lesions based on single slice CT tumor images
for early therapy assessment. Furthermore, we show that our system can be used
for one-year survival prediction in CRC patients. While state of the art treatment
assessment (RECIST) is premised on retrospective lesion analysis, our proposed
system delivers an estimate on future response, thus prospectively allowing to
adapt therapy before further progress. We compare our system to single-lesion
assessment through RECIST diameter and Radiomics. With our approach we
archieve a φ-coefficient of 40.0 % compared to 27.3 % / 29.4 % and an AUC of
.784 vs .744/.737 for growth prediction, as well as a φ-coefficient of 44.9 % vs
32.1 % / 18.0 % and an AUC of .710 vs. .688/.568 for survival prediction.

1 Introduction

In industry nations, cancer is the second leading cause of death following cardiovascular diseases, 
being responsible for approximately 21 % of all deaths. With increasing rates in industrial nations,

∗The concepts and information presented in this article are based on research and are not commercially 
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CRC is responsible for over 50,000 deaths in 2017 within the US alone, making it a leading cause
of cancer-related deaths worldwide (Ame (2017)). When diagnosed in an early stage, colorectal
cancer can be treated well, whereas curing chances for the metastatic disease decrease rapidly.
While overall mortality has decreased in the last years, 5-year survival for patients with metastatic
CRC is still poor with approximately 12 % (Mody & Bekaii-Saab (2018)). At the initial diagnosis
distant metastases are present in approximately 25 % of the patients, and another half of the patients
develop metastases within the treatment Vatandoust et al. (2015). Thus, treating colorectal cancer
commonly involves systematic treatment of liver metastases by chemotherapy, surgical intervention
and continous observation.

For solid tumors, the Response Evaluation Criteria in Solid Tumors (RECIST) provide „a standardized
set of rules for response assessment using tumor shrinkage” (Eisenhauer et al. (2009); Schwartz et al.
(2016)). However, RECIST requires a large increase in lesions, as well as a long delay to detect

disease progression. Also tumor growth may not neccessarily be linked to disease progression, as e.g.
immuno-oncologic therapies are linked to a pattern called pseudoprogression, marked by temporary
lesion growth under treatment response Chiou & Burotto (2015). Oxnard et al. (2012) conclude
that current criteria for progression may not adequately capture disease biology. Thus, having a
high precision early lesion estimate on future growth would be of high clinical value, allowing to
prematurely double-check, and thus potentially even prepone treatment decisions.

We demonstrate that sparse lesion characterizations generated through deep convolutional dimension-
ality reduction are significantly predictive for future lesion’s and patient’s outcome. We therefore
propose an early response assessment based on deep convolutional neural networks, showing sig-
nificant correlation with outcome parameters, as well as predictive power for future lesion therapy
response. Therefore...:

• We present a novel approach for CT liver lesion assessment, capable of predicting tumor
growth with significant superiority to assessment through RECIST diameter and hand-crafted
Radiomics features
• We show, that the same approach can be used for patient survival prediction, again outper-

forming prediction through RECIST diameter and Radiomics features
• We present a reasoning mechanism based on saliency maps, allowing to determine tumor

growth patterns and possibly allow to gain new insights on tumor growth patterns

2 Data

The used data stems from two sources, one clinical and one radiologic data set. The radiologic data
(Dataset A) is available for 116 patients, while clinical data could only be provided for 78 of these
(Dataset B). For the presented algorithmic approaches we utilized the radiologic data exclusively, as
well as a combination of both datasets (Dataset C):

• Dataset A - the radiologic base dataset. It consists of 1235 computed tomography images
in DICOM format as well as high-quality, fully-volumetric segmentations of liver lesions.
An example lesion segmentation can be found in Fig. 1. The dataset further contains
radiologically extractable information, e.g. longest tumor diameter, longest diameter in one
slice (referred to as RECIST diameter) and tumor volume. Since RECIST based labels get
extracted from the radiologic ground truth (see below), at least two consecutive timepoints
per structure get merged into one sample (Dataset A1) for prediction. Since we expect
the extrapolation of previous growth as likely predictive for future progress, using two
consecutive timepoints for prediction plus another for label extraction we receive another
set which is used for our experiments on tumor growth estimation (Dataset A2).
• Dataset B - the clinical base dataset. It is acquired from a variety of sources and thus

contains demographic data, blood values, tumor markers (e.g. Ca19.9), histologic data (e.g.
K-RAS & B-RAS status), tumor staging and grading (TNM, UICC), therapy documentation,
as well as lifetime statistics (overall/progression free survival). Documentation is provided
on patient, not lesion level. However, this dataset only covers 78 of the patients of the
radiologic dataset.
• Dataset C - the combined intersection of dataset A and B. While survival may theoretically

be predicted from one timepoint (TP) only (Dataset C), again we expect prior progress to be
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predictive, too. Thus, we assume to have at least two timepoints (Dataset C1). When taking
into account only patients whose overall survival status (OS) is known, the dataset further
reduces (Dataset C2). Experiments for survival prediction were made on this dataset.

As clinical data was only acquired once per patient (Dataset B) the lifetime data in dataset C was
calculated relatively to the scan date for patients with multiple radiologic observation timepoints.
Table 1 gives an overview on the used datasets.

Table 1: Overview on used raw dataset

Dataset Description N Npatients Timepoints Lesions

Dataset A Radiologic Raw Data 1235 116 315 458
Dataset A1 Radiologic Raw Data (TP+FU) 777 94 198 360
Dataset A2 Radiologic Raw Data (TP+FU+FU2) 417 55 104 218

Dataset B Clinical Raw Data 135 135 - -

Dataset C Combined Intersection 800 78 211 304
Dataset C1 Combined Intersection (TP+FU) 496 61 132 231
Dataset C2 Combined Intersection (TP+FU+OS) 302 33 78 131

2.1 Target Variables

We propose the importance of structural image information for two classification targets:

• Tumor Growth - Tumor growth is an important indicator of tumor progression, as well as
the overall clinical presentation. This is reflected by the RECIST guideline, which is based
on lesion growth assessment, by in turn being the gold standard for solid tumor assessment.
• One-Year-Survival - Survival rates are often based on a large number of previous outcomes

for other patients. However, they are influenced by a multitude of factors, e.g. tumor location
and genetics, comorbidities and the patient’s overall status, which are usually not covered
in average survival rates, making it impractical to lock on a concrete estimate. Having an
algorithmic assessment which covers the lesion’s specifics might be a first step towards a
more substantiated estimate.

Labels for tumor growth are assigned according to the RECIST guidelines from Eisenhauer et al.
(2009), thus assigning a sample xi with diameter ∅i,t at timepoint t a label yi as follows:

yi =

{
1 if ∅i,t+1/∅i,t ≥ 1.2

0 otherwise
(1)

Opposed to RECIST, this definition uses the current diameter ∅i,t as a reference, while RECIST
uses the diameter at best response. One-year-survival labels are extracted from the clinical data set
relatively to the lesion’s scan date. The data distribution can be seen in table 2. Both cases suffer
from highly unequal label distributions which has to be considered in algorithm and metrics design.

3 Methods

3.1 Lesion extraction & preprocessing

First, the dataset was unified by resampling all images to isotropic voxel size (1.25 mm) using
bicubic interpolation. With respect to signal-theory, applying the Lanczos-filter might be better

Table 2: Overview on used raw dataset

Dataset N Positive Negative

Tumor Growth 417 63 354
One-Year-Survival 302 124 178
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Figure 1: Extracted lesion before (left) and after (right) applying histogram equalization.

substantiated. However, due to the hard segmentation edges we faced disadvantageous harmonics
at the tumor borders. The tumor diameter quantiles in our dataset were ∅Pr(∅)≤.1,∅Pr(∅)≥.9 =
11.3 mm, 53.3 mm. Thus, we decided to extract windows of 80 x 80 x 80 mm. As we did not perform
a systematic evaluation of voxel and window size with respect to the classification performance,
other values might perform better. However, in our first analysis this did not seem to have a major
impact on classification performance as long as the lesions are fully contained and sufficiently
represented. Segmentation was needed to reduce variability within the dataset with respect to
surrounding structures. All lesions did undergo a histogram equalization after extraction. An example
lesion is shown in Fig. 1.

3.2 Metrics

Within the medical domain high quality demands and precisely known error bars are expected, as
errorneously classified samples can have serious consequences for the patient. Thus, choosing the
right classifier is a crucial task and we expect this decision to be taken case-by-case. Therefore we
provide a variety of measures with different properties (Table 3). The expressiveness of algorithmic
metrics depends on a variety of variables. Accuracy, being one of the most often used metric, is only
applicable to problems with equal label distributions. As described in sec. 2, we face highly unequal
label distribtions, dismissing the use of unbalanced metrics. The F1-/Sørensen-Dice coefficient
is widely common, but overweights the positive class, making it prone to changes in the problem
definition. Within the clinical setting often sensitivity (TPR) and specificity (TNR) are preferred.
However, these metrics are highly influenced by the classifier’s class weight, as an algorithm can be
more conservative, hence preferring the negative class, or more optimistic, which in turn privileges the
positive class. As a metric with high invariance regarding class imbalances and problem formulation
is highly preferable, we propose the use of the φ-/Matthews correlation coefficient, as it a) provides
these invariances, b) is robust over a wide range of class-weight choices, and c) is highly common
in various scientific domains, as for dichotomous problems it reduces to Pearson’s product-moment
correlation coefficient r.

Table 3: Determined classifier metrics

metric abbreviation formula

true positive rate, sensitivity, recall TPR tp
tp+fn

true negative rate, specifity, inverse recall TNR tn
tn+fp

positive predictive value, precision PPV tp
tp+fp

negative predictive value, inverse precision NPV tn
tn+fn

F1 score/Sørensen-Dice coefficient F1 2·tp
2·tp+fp+fn

Informedness, Youden’s J statistic IFD TPR+ TNR− 1
Markedness MKD PPV +NPV − 1

Matthews correlation coefficient/r/Φ-Score MCC
√
IFD ·MKD
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3.3 Classification with RECIST diameter

Currently there is no established state-of-the-art measure regarding the prediction of treatment
outcomes. However, for the radiologic assessment the clinical treatment protocol is based on the
Response Evaluation Criteria for Solid Tumors (RECIST). For single lesion assessment, RECIST
requires the measurement of the longest lesion diameter within one tumor slice. RECIST in itself
is a retrospective measure, only stating wheather a treatment was responding hitherto. However, as
this assessment is used for therapy adaption based on future expectations, it implies a direction of
treatment response, too. It is thus arguable that the RECIST diameter, although being a retrospective
measure only, of course is and can be used predictively. Thus, for each lesion xi,t with diameter mi,t

at timepoint t in Dataset A we define a new sample x′i,t as follows:

x′i,t =


mi,t

mi,t−1
mi,t −mi,t−1

mi,t

mi,t−1

 (2)

This definition encodes the absolute size and size differences for one timepoint and its successor, as
well as the relative growth of the lesion up to the second timepoint. The ground truth is deduced by
analyzing one additional successor. As described in sec. 2, the resulting set consists of 417 samples
(Dataset A2).

3.3.1 Classifier design

For the final classification a pipeline design is used. The pipeline consists of a z-normalization fol-
lowed by an ANOVA k-best forward feature selection. Afterwards, the selected features are classified
by a random forest (RF). Feature selection and random forest have a variety of hyperparameters, thus
classification performance is strongly influenced by their concrete choice. We therefore used 10,000
iterations of 10-fold randomized search cross validation (RSCV) to find the optimal parameter set
for all classification pipeline’s elements. The classifier metrics are then obtained doing another fit of
10-fold cross-validation with the optimal found parameter set. The metaoptimization includes the
number of features k used for RF-classification, the number of estimators n, the maximum amount of
features used for split at each node, the maximum tree-depth, and the use of balanced vs. unbalanced
class weighting.

One could rightly argue, that most parameter sets would perform quite similar in this case, especially
as the RECIST-based feature design is quite simple with only 4 dimensions. However, this pipeline
design allows for use on much more complex problems. Thus, it can equally be applied to the
Radiomics setting without the neccessity of modifications and, in turn, with higher comparability.

3.4 Radiomics analysis

For comparibility reasons we also analyze the classification via application of Radiomics feature
analysis, as most state-of-the-art approaches utilize Radiomics features for medical image analysis
like originally proposed in Kumar et al. (2012) and Aerts et al. (2014b), or derived variants like Fave
et al. (2017). We utilize the Radiomics reference implementation from van Griethuysen et al. (2017)
and further apply the classification pipeline proposed in sec. 3.3.1 on the fully-volumetric segmented
lesions from Dataset A2 for tumor growth prediction, respectively Dataset C2 for survival prediction.
Again, we introduce difference and ratio features utilizing the definition from eq. 2, overall leading to
4836 features per lesion.

3.5 Sparse Characterization through Deep Convolutional Autoencoders

Medical scenarios often suffer from very few data as compared to classical machine vision scenarios
datasets are harder to obtain due to data privacy and regulatory issues. Thus, for the application of
deep learning a sufficient reduction of data dimensionality is required. Hinton & Salakhutdinov (2006)
proposed a sparse encoding based on Restricted Boltzmann Machines which was further adapted
and successfully utilized for use with deep convolutional neural networks (DCNNs) (Krizhevsky
& Hinton (2011); Krizhevsky et al. (2012)). We therefore propose an architecture based on deep
convolutional sparse autoencoders for reducing the radiologic lesion image to a minimal sparse vector
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representation, which drastically reduces the number of trainable parameters in the classification
stage. Additionally, the number of parameters can be limited by classifying single tumor slices
instead of fully-volumetric lesions. This, however, assumes that single slices contain enough textural
information for classification. While fully-volumetric images likely contain more information, hence
volumetric classification presumably would perform better, in our analysis it lead to overfitting and
poor test set performance as too few data was available for sufficient training.

3.5.1 Network architecture

The training for the final classifier actually employs two architectures, one for the autoencoder
pretraining, and one for the final classifer. The autoencoder’s general network design requires an
input of one lesion at two timepoints. The network itself is divided into two processing columns, where
each column represents either the first or the second timepoint. Features are extracted independently
from both timepoints and get combined as inputs to the sparse representation layer. After this, the
images get split again to form the original column design in reverse order. This two column design
performed superior to direct convolution of both images in the first, respectively deconvolution in
the last layer with respect to the final performance of the classifier stage. The autoencoder’s full
architecture is presented in table 4.

After finishing the autoencoder’s training, all layers beyond the sparse representation are removed and
a simple two-layer classification stage is appended. We analyzed various classifier architectures with
alternating numbers of layers and neurons but found one layer with 8 neurons followed by an output
layer of 2 neurons with one-hot-encoding to be adequate. This architecture introduces only 218
parameters and, as shown in sec. 4, prove feasible for our scenario to provide sufficient classification
and generalization performance.

3.5.2 Training methods

Based on the data from sec. 2, overall 417 samples were available for tumor growth prediction
(Dataset A2), respectively 302 samples for one-year survival. Thus, the number of free parameters
- as mentioned above - is magnitudes higher than the amount of available training samples. We
therefore apply Batch Normalization after each convolutional layer, as according to Ioffe & Szegedy
(2015) it was shown to be comparably regularizing like dropout and superior in terms of final
classification performance. For training we applied Adam-optimization with Nesterov momentum
(Nadam) from Dozat (2016), using a batch size of 128 samples. As discussed in sec. 2.1, the class
distribution in our datasets is highly imbalanced. To tackle this problem, the training process is
stratified by applying class importance sampling. Therefore each sample xi ∈ X = {x1, ..., xm}
was assigned a sampling probability p(xi) with:

p(xi) =

1
Pr(y=yi)∑n

k=0
1

Pr(y=yk)

(3)

Additionally, we applied a modified version of the exact important sampling algorithm from
Katharopoulos & Fleuret (2017), transforming the exact importance into a logarithmic equal distribu-
tion across all training samples at the end of each epoch, as this modification showed higher stability
in the training process. For the final results we used 4 splits of grouped cross validation with the
patient being the grouping parameter.

3.5.3 Reasoning

A major difficulty when using deep learning for medical image classification arises from the non-
interpretability. Neural networks alone are intangible, intransparent and incomprehensible. This
applies particularly for end users without deeper technical knowledge, but nevertheless stays true
for computer scientists with a well-substantiated knowledge base in machine learning and neural
networks, as neural networks apply an intuitively nearly unmanageable amount of nonlinear func-
tions and embeddings. Therefore, it is neccessary (and demanded) to visualize, which factors are
responsible for the network’s prediction. We propose a visualization of indicative regions based on
the algorithm from Simonyan et al. (2013). The visualization is created with guided backpropagation
of the network activation from the output layer back to the network’s input. This allows to visualize
regions which are indicative for specific labels, e.g. tumor growth. An example visualization can be
found in Fig. 2.
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Table 4: Autoencoder neural network design

type filters stride regularization output # parameters

input – – BN 2x64x64x1 0
lambda – – BN 0: 64x64x1

1: 64x64x1
0

2x

conv 5x5 1x1 BN 64x64x32 960
pool 2x2 2x2 – 32x32x32 –
conv 5x5 1x1 BN 32x32x48 38640
pool 2x2 2x2 – 16x16x48 –
conv 3x3 1x1 BN 16x16x64 27968
pool 2x2 2x2 – 8x8x64 –
conv 3x3 1x1 BN 8x8x96 55776
pool 2x2 2x2 – 4x4x96 –
conv 3x3 1x1 BN 4x4x128 111232

reshape – – – 4096 –
dense – – BN 20 82020

2x

dense – – BN 2048 51200
reshape – – – 4x4x128 –
deconv 3x3 1x1 BN 4x4x96 111072

up 2x2 2x2 – 8x8x96 –
deconv 3x3 1x1 BN 8x8x64 55616

up 2x2 2x2 – 16x16x64 –
deconv 3x3 1x1 BN 16x16x48 27888

up 2x2 2x2 – 32x32x48 –
deconv 5x5 1x1 BN 32x32x32 38560

up 2x2 2x2 – 64x64x32 –
deconv 5x5 1x1 BN 64x64x1 932

out – – – 2x64x64x1 –

Table 5: Classifier neural network design

type filters stride regularization output # parameters

input – – BN 2x64x64x1 0
lambda – – BN 0: 64x64x1

1: 64x64x1
0

2x

conv 5x5 1x1 BN 64x64x32 960
pool 2x2 2x2 – 32x32x32 –
conv 5x5 1x1 BN 32x32x48 38640
pool 2x2 2x2 – 16x16x48 –
conv 3x3 1x1 BN 16x16x64 27968
pool 2x2 2x2 – 8x8x64 –
conv 3x3 1x1 BN 8x8x96 55776
pool 2x2 2x2 – 4x4x96 –
conv 3x3 1x1 BN 4x4x128 111232

reshape – – – 4096 –
dense – – BN 20 82020
dense – – BN 8 200

softmax – – – 2 18
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Figure 2: Saliency map based reasoning of classifier decisions with a modified version of the
algorithm from Simonyan et al. (2013). Left: Lesion image (top) and overlay visualization of input
regions predictive for future tumor growth (bottom). Expectedly, lesion marginalization and contrast
enhancement are important predictors for future progress. However, inner structure is marked as
predictive, too. Right: Raw saliency map (top), highlighting the importance of inner structure, with
only the most inner necrosis being non-predictive for growth. Bottom: Intensity influence adjusted
saliency map, again highlighting the predictive inner structure.

4 Results

We systematically analyzed the predictive performance of all mentioned classifiers with respect to the
metrics discussed in sec. 3.2. The results for tumor growth prediction are shown in table 6, results for
one-year-survival prediction can be found in table 7. Significant improvements with respect to all
reference classifiers (p < 0.05) are marked with a star (*). The confidence intervals were computed
using 10,000 iterations of bootstrapping as proposed by Efron (1992). Significance was tested by
employing a two-tailed Z-test.

Metric DL RECIST Radiomics Informed Guess sig.

TPR .743 [.648,.831] .430 [.302,.552] .363 [.245,.483] .154 [ .082,.237] *
TNR .768 [.730,.806] .864 [.827,.901] .912 [.881,.940] .847 [ .815,.879]
PPV .366 [.292,.439] .359 [.250,.468] .425 [.292,.560] .153 [ .077,.235]
NPV .944 [.918,.965] .894 [.861,.926] .890 [.858,.922] .847 [ .813,.880] *
F1 .490 [.412,.561] .390 [.280,.490] .390 [.268,.505] .152 [ .081,.226] *

IFD .511 [.405,.606] .296 [.167,.425] .277 [.153,.404] .000 [-.083,.080] *
MKD .311 [.239,.390] .258 [.148,.383] .318 [.183,.452] -.002 [-.083,.092]
MCC .400 [.314,.480] .273 [.159,.400] .294 [.166,.420] .000 [-.075,.082] *
AUC .784 [.735,.833] .744 [.674,.810] .737 [.669,.803] .500 [ .461,.545]

Table 6: Results on tumor growth prediction using our proposed deep learning approach, RECIST
diameter, Radiomics or informed guessing (H0).

Regarding tumor growth prediction, our approach performed significantly better than any other
tested classifier in terms of TPR, NPV , F1, IFD and MCC. Regarding AUC, it also provided
the best results (.784, CI95 = [.735, .833]), though these results were not significantly better than
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RECIST-based or Radiomics prediction (.744/.737). All classifiers were significantly better than H0

for all tested metrics, except TNR, which follows from the unequal label distribution (see table 2).
Expectedly, the concrete class weight choice had a major impact on TPR, TNR, PPV , NPV and,
while being less severe, F1-score for all tested classifiers.

Regarding one-year-survival prediction, again all tested classifiers were significantly better than
H0 for all tested metrics, except TNR. Our proposed deep learning approach, however, provided
significant superiority to any other tested classifier with respect to TNR, PPV , IFD, MKD and
MCC. While the results for IFD andAUC were the best among all tested classifiers, the differences
were not significant better than RECIST-based prediction (IFDDL = .387, CI95 = [.290, .484] vs.
.332 for RECIST diameter; AUCDL = .710, CI95 = [.645, .773] vs. .688 for RECIST diameter).
Radiomics classification was highly inferior to DL- and RECIST-based prediction. However, as the
dataset contained lesions from only 33 patients and group split was done along this axis, the results
for random forest classification with Radiomics are likely not representative for larger datasets and
partly caused by our classification pipeline definition including a feature selection step, leading to
intense overfitting on the training subset. This is especially likely as m� n holds true, with m being
the number of features and n being the number of samples. Also the modification of split numbers
or split sizes did not lead to significant improvements, while the reduction on 2D-shape features
expectedly lead to results comparable with RECIST-based classification. The receiver operating
characteristic for growth and survival prediction with our deep learning approach are shown in Fig. 3.

Metric DL RECIST Radiomics Informed Guess sig.

TPR .462 [.368,.547] .717 [.593,.638] .566 [.482,.648] .411 [.328,.496]
TNR .927 [.882,.963] .612 [.538,.683] .620 [.550,.689] .589 [.514,.661] *
PPV .815 [.721,.902] .561 [.482,.646] .507 [.425,.592] .412 [.331,.496] *
NPV .712 [.655,.768] .756 [.684,.830] .670 [.599,.739] .590 [.511,.668]
F1 .586 [.497,.667] .630 [.557,.695] .534 [.459,.608] .410 [.336,.487]

IFD .387 [.290,.484] .332 [.225,.434] .182 [.072,.288] .000 [-.114,.113]
MKD .528 [.419,.634] .321 [.218,.426] .178 [.069,.277] .000 [-.108,.109] *
MCC .449 [.344,.541] .321 [.219,.423] .180 [.063,.288] .000 [-.102,.102] *
AUC .710 [.645,.773] .688 [.629,.740] .568 [.504,.628] .500 [.440,.557]

Table 7: Results for one-year-survival prediction with our deep learning approach, RECIST diameter,
Radiomics and informed guess (H0).

Figure 3: Receiver Operating Characteristic for tumor growth (left) and survival prediction (right)
with our proposed deep learning approach.

5 Discussion

Radiomics was shown to be beneficial for tasks like lung or head and neck cancer assessment,
prediction of lymph node metastases or breast cancer risk Aerts et al. (2014a); Huang et al. (2016);
Li et al. (2016). However, in our experiments Radiomics did not provide significant benefits over
RECIST-based prediction for liver lesion assessment. More sophisticated Radiomics approaches
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might perform better on the given problem. Additionally, our data contained various scanners and
their respective configurations, e.g. varying kernels, image resolution or slice thicknesses, as well
as some differences in contrast agent phase. Considering the data heterogeneity, the used dataset
may be too small for the given problem. It was also shown that many Radiomics features are highly
influenced by different scaner configurations (e.g. Mackin et al. (2015); Leijenaar et al. (2013)).
We expect the Radiomics results to be significantly better assuming the use of unified scan protocols
and/or feature correction.

The results for our proposed deep learning approach imply that the radiologic tumor phenotype itself
encodes information beneficial for predicting tumor progress, as well as the patient’s final outcome.
While predicting the lesion’s growth seems possible from structural information, growth itself still is
only an intermediate result, as it is often, but not neccessarily, linked to the patient’s final outcome. It
is rather of clinical value to understand which structural specifics actually are predictive for tumor
growth or the final outcome, and how to practically acquire and interpret these values within the
clinical workflow. The visualization proposed in sec. 2 may be a first step in this direction.

Our results give at least some indication that prediction of overall survival may be possible and
feasible using deep neural networks, which may have high clinical value. Similar approaches for
other clinical domains include the work from Yao et al. (2016, 2017) and Nie et al. (2016). While
the accuracy of these approaches is still far away from a to-the-day estimate, the prediction of the
patient’s survival, whether for clinical application or other domains, could have substantial ethical
implications which have to be discussed publicly, as the media attention on the paper from Avati et al.
(2017) has shown.

One major drawback of the used datasets is data heterogeneity, which applies to the radiologic as well
as the clinical presentation. The lesions in our dataset underwent a wide range of therapies, including
5FU, FOLFOX, XELOX and surgical intervention. As it is very likely that different therapies show
different growth patterns and/or textural structures, training the classifier on a more homogenous
dataset could presumably provide better performance. Additionally, like many clinical datasets, our
dataset is considerably small for a deep learning task. Hence, at least some architecture rethinking and
regularization is required, again impeding the actual training problem. Large, standardized datasets
like Armato et al. (2011) or Aerts et al. (2015) might help to face these problems, and thus, have the
potiential of leading to an overall improved patient healthcare.

6 Conclusion

Our study shows that decision support for oncologic assessment is continously developing, benefitting
from the integration of new methods and technologies. (Semi)-Automatic treatment assessment
remains a highly interesting research field, promising further improvements within the next years.
The automatic radiologic assessment with deep neural networks might give additional, valuable
information based on textural information, which in turn might enhance patient treatment and thus
overall healthcare. With the rise of new methods, ultimately, neural networks might even be able to
give a new insight into biological processes.
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