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Abstract— Aging public roads need frequent inspections in
order to guarantee their permanent availability. Using deep
neural networks, the process of detecting pavement distress
can be automated to a high degree. However, evaluations show
that they perform relatively poor on road images, that are
significantly different from training data. Therefore, we show,
how the performance can be improved with a human in the
loop. The basic idea is to enlarge the training dataset. Luckily,
many unlabeled road images from previous inspections are
available. Nevertheless, annotating all of them is labor-intensive,
and thus, not feasible. Since only diverse data enable an increase
in performance, selecting the right subregions of the images
for annotation is the key. To achieve this goal, we model the
network’s uncertainty and incorporate it for selecting new
subregions. Our experiments show that we are able to improve
the network’s performance with only a fraction of data that
would usually be necessary to get the same performance.

I. INTRODUCTION

Public infrastructures suffer from aging and therefore need
frequent inspection. Road condition acquisition and assess-
ment are the keys to guarantee their permanent availability. In
order to maintain a country’s road network, millions of high-
resolution images have to be analyzed annually. Currently,
this requires cost and time excessive manual labor. Therefore,
the time span between the actual inspection and the final
evaluation may be up to several months. In the meantime,
small damage, like cracks, can lead to substantial downtimes
with a high impact on the population.

In previous work [1], [2], as part of the ASINVOS1

project, we started to automate this visual inspection process
to a high degree by applying deep neural networks for dis-
tress detection. The basic idea is to train a self-learning sys-
tem with manually annotated data from previous inspections,
such that the system learns to recognize underlying patterns
of distress. Once the system is able to robustly identify intact
infrastructure, it can reduce the human amount of work by
presenting only distress candidates to the operator. This helps
to significantly speed up the inspection process and simulta-
neously reduces costs. Furthermore, inspection intervals can
be shortened, which helps to remedy deficiencies in time.

The evaluation in [1] shows, that the developed
ASINVOS net (see Sec. III-A, Fig. 4) performs very well in
segmenting road images, such that distress can be discovered
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Fig. 1. Incremental boosting of distress detection performance. During
inspections, lots of data are collected, that could help to improve the
performance of a neural network. Since annotating these high-resolution
images is very time consuming and labor-intensive, the neural network
should decide by itself, which data would help to improve its performance.
Therefore, a human operator has to annotate only small amounts of data.
If the network has learned to handle these data, it will continue selecting
different images for annotation, that currently lead to uncertain decisions.

easily. Nevertheless, the evaluations also showed that the
performance drops on road images that are significantly
different from training data. Therefore, the aim of this paper
is to show, how the performance can be improved by a human
in the loop while keeping the amount of manual labor low.

For deep neural networks, we know that more diverse
training data will improve their performance. Therefore, it
might be a good idea, to train on a lot of data. Luckily,
we can get many high-resolution road images from previous
inspections. Each image shows ten meters of a lane. Based on
German federal regulations, all high-resolution road images
are coarsely annotated as intact or defect. The requested
labeling is very coarse, in order to reduce the extent of
manual labor. Every meter of the lane is divided into three
parts of equal width (left, middle, right), resulting in a
10×3 grid for the whole image (Fig. 2). For each part not
containing intact road, it is annotated which of five distress
types (Fig. 3) is present in that subregion of the image.
This means, the annotated subregion is ca. 1×1 meters large,
even if a small crack within is only five centimeters long.
Additionally, many annotations are spatially inaccurate or
missing. Thus, this labeling is not sufficient for training
or improving a neural network, that should segment the
road image in detail (see [1]). Therefore, in order to be
useful for training, each image needs to be annotated in
detail. Annotating high-resolution road images, however, is
very labor-intensive. Additionally, annotating many images
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Fig. 2. Labeled high-resolution road image (7883×3498 pixels) as defined
by German federal regulations. The label grid is highlighted in orange, and
distress in terms of cracks is overlayed in light red. Even if a crack is very
small, like the one on top, not even visible in this figure, the entire grid cell
is labeled as distress. Thus, the labeling cannot be used to train a neural
network for detailed segmentation.

is error-prone due to exhaustion. Thus, the strategy for fast
improvement should be annotating only data that are diverse,
instead of annotating as much as possible.

In our setting, deciding which images to label is crucial
(Fig. 1). We need to evaluate when the neural network is
uncertain in its decision. Therefore, it is important to know
what the neural network does not know. We will show, how
to achieve this requirement. Given a neural network that can
decide which images are worth annotating, and even more,
which parts of it, the human in the loop can concentrate
on annotating these subregions in order to help the neural
network to improve. If the neural network has learned to
adapt to the new data, it will tell the operator that it is certain
now. Hence, we do not need to annotate more data of this
kind. In the next iteration, the neural network will focus on
different data.

In summary, the contributions of this paper are as follows:
• We show how to train a neural network for distress

detection such that we can determine what it does not
know.

• We show how to select data that are worth annotating.
• We show that labeling only diverse parts of the data can

be sufficient to improve a neural network as much as if
it was trained on all data available.

II. RELATED WORK

In this paper, we show how deep learning based pave-
ment distress detection can be improved. Therefore, in the
following, we first report the state-of-the-art approaches for
distress detection. Afterward, we present related work for
incrementally boosting neural networks and estimating a
network’s uncertainty in order to select data worth to be
annotated for training.

Fig. 3. Types of distress that can be detected.

A. Pavement Distress Detection

Automating distress detection has already attracted a lot
of interest in the literature. Besides depth-based detection
methods [3], [4] which are out of the scope of this paper, the
main research is focused on image-based distress detection
and can roughly be divided into two groups.

The first group of algorithms is focused on detecting
cracks only and relies on the explicit assumption that
crack structures can be identified as local intensity minima.
Therefore, these methods are based on image thresholding,
followed by crack refinement. The refinement algorithms are
diverse. Some are based on morphological image operations
and the search for connected components [5], [6], [7], [8].
Other approaches use graph-based crack candidate analysis
for further refinement [9], [10], [11], [12], a multi-scale
curvelet transform instead of a binary threshold [13], or
Gabor filters in order to find crack candidates [14].

The algorithms of the second group apply different types
of classifiers to patches of the image in order to extract crack
or distress regions. For example, a support vector machine is
applied to histograms of oriented gradients (HOG) features
[15] or local binary patterns (LBP) [16], [17]. Convolutional
neural networks have gained a lot of interest more recently.
Starting with [18], a lot of different approaches with varying
network structure have been proposed [1], [19], [20], [21].

Besides the different detection methods, the work pre-
sented in [22] already addresses the problem of presenting
only these image patches to a human operator that are most
crucial to increase the classifier quality. However, they have
chosen the non-calibrated softmax output as a measure of the
network’s uncertainty which is inappropriate in most cases
as explained in [23], [24] and further discussed in Sec. II-C.

Although a lot of different methods have been presented
so far, there is a lack of publicly available datasets, with
the majority of datasets only containing up to 500 im-
ages [8], [6], [12]. The German Asphalt Pavement Distress
dataset (GAPs dataset) [1], that we made publicly available2,
is the first freely available pavement distress dataset of
a size large enough to train high-performing deep neural
networks. Although the dataset already has a decent size,
it comprises only three different roads. Therefore, it still
lacks the required diversity to represent all road surfaces and
damage characteristics that are present in the German road
network.

B. Incremental Boosting

One way to address a lack of data is incremental learn-
ing [25], [26], [27]. Incremental learning refers to contin-
uously extending the network’s knowledge by adapting to
new data. In online incremental learning scenarios, new
data are available only for a limited period of time due to
memory restrictions. In contrast, we can access a persistent
data storage containing lots of high-resolution road images
from previous inspections. Unfortunately, these images are

2The GAPs dataset is publicly available at
http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/
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provided with a coarse and partially inaccurate labeling,
which is not sufficient to incrementally improve a neural
network (for segmentation) in a supervised manner (see
Sec. I). Therefore, a further challenge arises in our setting:
We have to decide automatically which high-resolution road
images are worth annotating by a human in the loop.

The overall process is closely related to active learn-
ing [28]. The primary goal of active learning is to train a
neural network with as less labeled data as possible [29],
[30]. The way to achieve this goal can be adapted to our
scenario as well. In active learning, a system is created that
is able to decide on its own which data to annotate and
to process next. Following an initial training with a small
amount of data, an acquisition function is used to select
new samples based on the network’s decisions. Usually, this
acquisition function utilizes the network’s uncertainty.

C. Uncertainty Estimation

By default, most deep learning based classifiers, as well as
our ASINVOS net, are not capable to represent uncertainty.
This is due to the parameter optimization with standard
backpropagation, that results in a single best parameter con-
figuration, containing only a point estimate for each network
weight, and thus, throwing away any uncertainty information.
Hence, the output of the final softmax layer, which is often
treated as a class probability distribution, is rather a poorly
calibrated mapping to a vector of relative class affiliations
than a theoretically grounded measure of the network’s
certainty [23], [24]. Furthermore, recent work on adversarial
examples [31], [32] has shown that neural networks are easily
fooled. Applying imperceptible perturbations may lead to
misclassification with erroneously high softmax output.

To obtain meaningful uncertainty estimates, it is nec-
essary to consider the full posterior distribution over the
network’s weights. Unfortunately, exact Bayesian inference
is intractable for complex neural networks. Therefore, several
approaches have been proposed, approximating the posterior
distribution by means of Markov Chain Monte Carlo [33],
[34] or variational inference [35], [36], [37]. All these ap-
proaches have in common that they introduce additional over-
head during training or do not scale properly in deep learning
scenarios. With Dropout variational inference (DVI) [38],
Gal and Ghahramani recently proposed the first practical tool
to obtain uncertainty estimates even for complex networks.
The only requirement for using DVI is the necessity of
training the neural network with Dropout applied before
each layer with weights. Dropout [39] is a frequently used
regularization technique to reduce overfitting. When using
Dropout, at each training step randomly selected neurons are
removed from the network. This way, Dropout samples from
an exponential number of different networks and prevents
co-adaption. At test time, in contrast, all neurons are kept
and the outgoing weights are scaled with respect to the
Dropout probability in order to approximate an averaging
effect similar to an ensemble. In [38], Gal and Ghahramani
examine a further, so far unknown, link between Dropout
and approximated Bayesian inference. They propose an inter-

pretation of Dropout as Bernoulli approximated variational
inference. This means, we can sample from the posterior
distribution by applying Dropout at test time as well in order
to obtain uncertainty information. For further details on DVI,
we refer to [23], [40]. In addition, [41] proposes different
measures to quantify the uncertainty, appropriate to be used
as acquisition function.

Given an uncertainty estimate for each unknown, yet not
accurately labeled, part of the image, we can easily decide
whether it should be annotated by a human in the loop or
not, reducing the labeling effort dramatically.

III. INCREMENTALLY BOOSTED DISTRESS DETECTION

To incrementally boost the performance of our distress
detector, we need to evaluate when the detector is uncertain
in its decision. We decided in favor of Dropout variational
inference since it allows us to extract theoretically grounded
uncertainty estimates while being easy to integrate.

In this section, we first revisit our ASINVOS net, the con-
volutional neural network we conceptualized in [2] specif-
ically for distress detection. Then, we describe the modifi-
cations needed to obtain uncertainty estimates, and discuss
various measures to quantify the uncertainty.

A. Distress Detection

For distress detection, we conceptualized the ASINVOS
net, a convolutional neural network with eight convolutional
layers, three max-pooling layers, and three fully connected
layers (see Fig. 4). The network architecture is inspired by
the VGG-models [42] (spatial feature extraction using mul-
tiple units of two convolutional layers followed by one max-
pooling layer) and AlexNet [43] (classification using fully
connected layers with final softmax output). Except for the
last layer, all neurons are ReLUs [44]. For implementation,
we used Keras [45] based on Theano [46].
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1Fig. 4. Neural network for distress detection (ASINVOS net) [1]

The ASINVOS net has 4.0M weights in total. Thus,
regularization is the key to perform well on unknown data.
Dropout is known to be a very good regularization technique
that prevents co-adaption and also improves generalization
abilities. Therefore, we make extensive use of Dropout before
all weight layers except the input layer.

After patch-based training, the network is converted to a
fully convolutional network as described in [47] in order
to be applicable as segmentation network. Fig. 5 shows
segmentation results of the ASINVOS net on unknown data.
Obviously, it performs very well in segmenting road images,
such that distress can be discovered easily. Nevertheless,
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Fig. 5. Distress detection results on unknown data for images similar and
dissimilar to training data. Besides the raw image and the network’s output,
the uncertainty in terms of variation ratio (see Sec. III-B) is depicted.

evaluations also showed, that the performance drops on road
images, that are significantly different from training data.

B. Incremental Boosting

In order to select image subregions that will help to
improve the performance of a neural network, we need to
determine its uncertainty. A convenient technique to estimate
a network’s uncertainty is Dropout variational inference as
explained in Sec. II-C.

According to [38], Dropout variational inference can
be applied to every neural network that was trained with
Dropout. Since our ASINVOS net already makes extensive
use of Dropout before every weight layer, we do not need
to modify its structure. Given a single patch x ∈ X of an
input image, represented by a set of sliding-windows3 X,
we can transform the uncertainty in the network’s weights
to predictive uncertainty by marginalizing over the approx-
imate posterior distribution using Monte Carlo integration.
[38] shows that this can be done by averaging multiple
stochastic forward passes through the network with Dropout
enabled at test time as well.

Given the output including predictive uncertainty, we
need to quantify the uncertainty. In [41] various measures
have been proposed, including intuitive measures, such as
predictive entropy, mean standard deviation or variation
ratio, and a more complex measure based on the mutual
information between predictions and the model posterior
distribution. In our setting, all measures performed similarly,
with the variation ratio slightly ahead. Therefore, we decided
in favor of the variation ratio as acquisition function. The
variation ratio r(x) describes a lack of confidence through
the deviation from the mode c∗ (most common predicted
label):

r(x) = 1− 1

N

N∑
n=1

δ(yn) with: δ(yn) =

{
1, yn = c∗

0, yn 6= c∗

(1)
with yn being the predicted label at forward pass n.

Given an uncertainty estimate for each patch, and even
more, for whole subregions of an input image, we can easily
determine parts of an image that are worth annotating by
a human in the loop by repetitively selecting those patches
with the highest variation ratio. Since we do not have label
information in advance, we select patches that maximize the
acquisition function solely.

IV. INTEGRATION INTO IMAGE ACQUISITION PROCESS

In order to assess the usefulness of image subregions,
the high-resolution road images have to be preprocessed
first. Following German federal regulations, each road image
contains ten meters of a road composed of several HD pic-
tures. Unfortunately, during previous inspections, the lane’s
position in each image was determined manually by the
operator in order to fit the label grid (Fig. 2), but not stored.
To ensure that only valid image patches can be selected
as training data, we have to detect the lane again. Patches
outside the lane may contain non-road structures like grass
or gravel. Since these structures are excluded from training,
the neural network would be uncertain in its decisions and
preferably select these subregions for annotation. Including
these regions would complicate the decision process and may
worsen the performance of the neural network. Furthermore,
as shown in Fig. 2, the road images contain clearly visible
stitching edges. Patches at stitching edges may be confused
with cracks and should be excluded as well. Therefore, in the
following, we describe how we preprocess the high-quality
road images to ensure that only useful patches are selected
during incremental boosting.

A. Detecting Stitching Edges

Following German federal regulations, the single images
that compose a high-resolution road image have to be
stitched unaltered. Therefore, the radially symmetrical light
drop-off in the single images causes different light intensities
at stitching edges. These artificial structures are likely to
distract the classifier, and therefore, need to be detected and
handled separately.

Since stitching edges occur almost regularly within a high-
quality road image, the basic idea is to use frequency analysis
to find them. We take this into account to keep our approach
as simple as possible in order to ensure fast processing
times. For detecting the vertical edges, we apply a vertically
oriented Sobel filter to the entire image, and sum up the
results within every single row to obtain a one-dimensional
edge candidate vector. This vector is transformed into the
frequency domain using a fast Fourier transform, and the
maximum amplitude within a reasonable frequency spectrum
is obtained. This maximum is transformed back to the pixel
domain in order to set up a minimum distance between two
stitching edges. The final edge detection is performed by
repeatedly taking the maximum of the edge candidate vector
and setting the surrounding pixels at a distance smaller than
the minimum distance to zero. To further improve the results,

3Due to the conversion to a fully convolutional network, our
ASINVOS net is able to process images of any size. Each pixel in the
final output volume corresponds to a region of 64×64 pixels in the input
image as this was the input shape during patch-based training. Since we
do not use zero padding in convolutional layers, this fully convolutional
approach is equivalent to applying a sliding-window of size 64×64 pixels
with a stride equal to the product of the strides in all spatial layers. However,
the segmentation approach is several times faster due to the elimination of
redundant computations. For simplification, all explanations in this paper
rely on the sliding-window approach, but the extension to entire images is
straightforward.
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the vertical edge detection is performed separately for the
left- and right side of the image. If the extracted stitching
positions disagree due to heavily structured elements like
gullies, the result with a higher regularity is favored.

Horizontal edges can be detected in an analogous manner.
Since the horizontal stitching position was fixed and known
in advance for the data used in the experimental section, this
step could be omitted.

B. Lane Detection

To detect the lane, we need to extract information about
limiting structures. For example, road markings, curbs, side-
walks, bikeways and other limiting elements are of relevance.
Since these structuring elements occur in various appear-
ances, we decided in favor of a neural network to robustly
detect them. Luckily, we had a neural network, already
trained on these data, so we were able to apply transfer
learning. We adapted the ASINVOS net architecture (see
Sec. III-A, Fig. 4) by changing only the output coding. This
convolutional neural network is able to distinguish between
road markings, roadsides, and regular road (Fig. 6). It was
trained on the GAPs dataset (see Sec. II-A) with additional
annotations for road markings and roadsides. After training,
it was converted to a fully convolutional network for image
segmentation.
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Fig. 6. Workflow to distinguish regular road from road markings and
roadsides. First, an adapted ASINVOS net is applied. Subsequently, to get an
accurate segmentation, the network’s output is postprocessed and upsampled
considering the network’s properties.

To detect the limits of the lane, we follow the workflow
shown in Fig. 6: First, we apply the neural network to the
image. Then, a threshold is applied to get binary masks.
Finally, these masks are upsampled considering both the
input shape and the overall stride of the neural network.
Since the mask representing regular road is not sufficient
to detect the entire lane, we follow a fusion strategy. The
masks representing road markings and roadsides are fused
as shown in Fig. 7 to get a single mask of lane limiting
structures. Road markings can appear at every part of the
image, while roadsides are expected to be at the outer borders
of the image. Both facts are taken into consideration in our
fusion strategy.

Given the fused mask containing all lane limiting ele-
ments, we can estimate the lane’s position. First, we sum
up the elements along the driving direction to get the cross
section of the road. Next, the cross section is divided into
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Fig. 7. Workflow for combing the masks representing road markings and
roadsides. While roadsides are supposed to appear at the outer borders only,
road markings can appear everywhere due to road narrows on both sides.

several segments using a threshold. Since road markings,
like arrows, may lead to disconnected segments, we start
from the largest central segment and follow a rule-based
fusion strategy incorporating the specifications for legitimate
roadway widths to finally detect the lane.

V. EXPERIMENTS

In this section, we evaluate the performance of our
proposed system to incrementally boost pavement distress
detection with a human in the loop. We start by evaluating
the preprocessing steps since they are both a necessary
prerequisite to be able to use high-resolution road images
from previous inspections. Then, we conduct experiments
on our GAPs dataset to evaluate the idea of incremental
learning using patches the network is most uncertain about.
Finally, we show how the overall system can be used to
incrementally boost the performance of our ASINVOS net
using road images from previous inspections.

A. Preprocessing

For evaluating the preprocessing steps, we used 1,637
manually annotated high-resolution road images, showing ten
meters of a lane each. The images are taken from several
German federal highways. Since preprocessing steps are not
the main focus of this paper, we only briefly report the
respective results in the following.

1) Detecting Stitching Edges: Fig. 8 shows visualized
results for stitching edges detection. In 1,610 images, all
edges could be detected correctly (98.35%). An error analy-
sis showed that in six images, a single edge at the very left
or right was missing. 20 images showed errors in the middle
due to image structures from gully covers and the like. In
one image the detection failed completely.

Fig. 8. Results for stitching edges detection. Heavily structured elements
like gullies (right) do not cause problems.
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Fig. 9. Results for lane grid detection (green). Road markings in the middle
of the lane (right) can be handled correctly. The mask showing potential
lane limits is highlighted red.

2) Lane Detection: Fig. 9 shows exemplary results for
lane detection. In 1,541 images, the lane could be detected
correctly (94.14%). Road markings in the middle of the lane
can be handled correctly. Errors were mainly caused by faded
road markings leading to missed lane limits.

Additionally to the detection results, we recorded certainty
measures to judge if an image is suitable for further process-
ing. According to this evaluation, more than 90% of recorded
high-resolution road images can be used for incremental
boosting.

B. Incremental Boosting

For evaluating the proposed system, we conducted several
experiments on our GAPs dataset. In order to make the ex-
periments feasible at all, we used a subset of the training and
validation set only. For training and validation, we randomly
sampled 50,000 and 10,000 patches, respectively. To further
enhance the expressiveness of the subsets, sampling was
done at a ratio of six patches showing intact road to four
patches showing distress.

In all experiments, we used stochastic gradient descent
with a fixed learning rate of 0.01, momentum of 0.9, and
weight decay of 0.00005. At each training step, we presented
a batch containing 256 patches while randomly flipping them
horizontally and vertically. In order to obtain meaningful
uncertainty estimates, we follow the recommendations in
[41] and used 100 stochastic forward passes for each patch.
Nevertheless, 25 stochastic forward passes already seem to
perform similarly.

To ensure reporting meaningful results only, we repeated
each experiment three times with different random seeds for
Dropout and sample presentation order, averaging the results.

1) Evaluating the Idea of Incremental Learning: In a
first experiment, we evaluated whether it is possible to
improve the performance of our ASINVOS net incremen-
tally. To do so, we first trained five reference classifiers
with 10,240, 20,480, 30,720, 40,960, and 50,000 randomly
selected patches3, respectively. For all reference classifiers,
the best weights configuration was chosen within 400 epochs
based on the performance on the validation set. Next, we
trained classifiers while incrementally expanding the training
set from 10,240 patches to 50,000 patches. To ensure a
stable weight initialization, we always used the weights of
the reference classifier trained with 10,240 patches as initial
weights configuration. In each step, we added 1,024 patches4

3multiples of the batch size (256), except for the last one
41,024 patches are equivalent to 4 new batches of 256 patches

to the training set and trained the classifier for further
40 epochs. For selecting new patches, we compared our
acquisition function to random choices.

Furthermore, to examine a potential loss of precision
due to incremental training, we repeated the experiment
and trained the classifiers after each acquisition step for
400 epochs from scratch. Results of this first experiment are
depicted in Fig. 10.
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Fig. 10. Performance on the validation set while incrementally expanding
the training set with patches taken from remaining GAPs training subset.
Patches are selected either randomly or based on the variation ratio.
Classifiers trained from scratch after each acquisition step are depicted with
dash-dotted lines. For further details, we refer to Sec. V-B.1.

Fig. 10 shows that the performance of our ASINVOS net
can be improved incrementally. Furthermore, it is obvious
that selecting new patches based on the variation ratio
constantly leads to better results. Both incrementally trained
classifiers (solid lines in Fig. 10) do not reach the perfor-
mance of the reference classifier trained with all 50,000 sam-
ples. The results for the classifiers always trained from
scratch (dash-dotted lines in Fig. 10), show that this is most
likely due to the incremental learning. Unfortunately, training
from scratch is not feasible when dealing with large datasets.
However, we later show how to choose suitable points to
trigger a full retraining.

Independently of the way the classifier is trained, we
observed that, when selecting new patches based on the
variation ratio, the performance remains the same and does
not increase anymore after about 22 acquisition steps (32,768
patches in total). Fig. 11 visualizes the mean variation rate at
each acquisition step. All uncertainty seems to be explained
away after 22 acquisition steps since the mean variation rate
reaches almost zero. In subsequent steps, only redundant
samples not providing any additional information, are added.
Thus, the performance remains the same.

Consequently, we conclude that we could have selected
a better subset with less patches based on the variation
rate. Furthermore, as both curves have a similar trend, this
is a good point to trigger a full retraining. As shown in
Fig. 10, the retrained classifier (red star in Fig. 10) reaches
the performance of the classifier that was always retrained
from scratch.
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Fig. 11. Mean variation ration at each acquisition step as a function of
the number of patches used for training both the incremental classifier and
the classifier always trained from scratch.

2) Application to high-resolution Road Images: Now that
we know we are able to obtain meaningful uncertainty
estimates, we can apply the overall system to high-resolution
road images from previous inspections. Unfortunately, in
such an early stage of development, experiments with real
humans are not feasible. Therefore, we made use of the high-
resolution road images that have been used to create the
GAPs dataset. These images have been annotated manually
by trained operators such that an actual damage is enclosed
accurately by a bounding box, and thus, are perfectly suitable
for simulating a human in the loop.

Again, we trained classifiers while incrementally expand-
ing the training set from 10,240 patches to 50,000 patches. In
contrast to the previous experiment, new patches are directly
sampled from entire images. Thus, we have to assign the
label automatically. A patch is labeled as distress candidate,
if at least a region of 32×32 pixels in the center of the
patch was annotated as distress. In each step, we applied the
network to three randomly selected high-resolution road im-
ages in order to select new patches and trained the classifier
for further 40 epochs. We decided in favor of selecting a
fixed number of 1,024 patches again, to be able to compare
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Fig. 12. Performance on validation set while incrementally expanding the
training set with patches taken from entire high-resolution road images of
the GAPs dataset. Patches are selected either randomly or based on the
variation ratio. For comparison, the best classifier incrementally trained on
GAPs training subset is depicted as well.
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Fig. 13. Mean variation ratio at each acquisition step as a function of the
number of patches used for training for all incrementally trained classifiers
in comparison.

the results to the previous experiment. However, selecting
patches up to a minimum threshold for the variation rate
is also possible. Results of this experiment are depicted in
Fig. 12.

Fig. 12 shows that the performance of our ASINVOS net
can be improved constantly when selecting patches based
on the variation ratio. Randomly selecting new patches
performed worse even if we forced the same ratio of six
patches showing intact road to four patches showing distress
as in the initial training set. Furthermore, since we are not
limited to the randomly drawn subset of 50,000 patches, the
improvement continues after 22 acquisition steps as well.
As shown in Fig. 13, this constant increase is caused by the
ongoing selection of patches the network is most uncertain
about.

VI. CONCLUSION

We showed how the performance of a neural network for
pavement distress detection can be improved with a human
in the loop. The basic idea is to use a large number of
images from previous inspections for retraining. However,
this includes an annotation step, that is labor-intensive.
Therefore, we showed how to select data, that are worth
annotating. In order to decide which images would help to
improve the performance, we trained a neural network such
that we can determine what it does not know and utilized its
uncertainty information for selecting new training patches.
Using this technique, we were able to significantly improve
the performance of our ASINVOS net with only a fraction
of data that would usually be necessary to get the same
performance.

Using this approach, as part of the ASINVOS project, our
industrial partner enlarged the GAPs dataset with images
from many types of German federal roads. This enables
the employment of the neural network on a larger variety
of roads, and thus, helps to further automate the yet labor-
intensive road inspection process.

In future work, we plan to integrate more advanced
techniques for uncertainty estimation, like Concrete Dropout
[48]. This may improve the selection of training images, and
thus, may allow for annotating even less data.
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[15] R. Kapela, P. Śniatała, A. Turkot, A. Rybarczyk, A. Pożarycki, P. Ry-
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