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Abstract

As a long-term goal, robots should be able to interact with humans in multiple forms in order to assist them in everyday
life. Over the course of several projects with public operational environments, for our mobile robots equipped with
touch displays as primary input/output device, we found an intuitive way to interact with the robot is in a seated position
and being approached by the robot, so that the user can physically operate the robot. Sitting down is also a signal for
interaction intention which is easily conveyed and even visible from afar, as opposed to speech recognition systems. To
realize this behavior, we propose a succinct yet effective method of recognizing a seated person by utilizing the height
estimation of a person detector, as well as a method of finding an interaction pose to approach the user and navigating to
that pose even in dynamic unstructured environments. The proposed approaches are evaluated in an experimental setup
similar to the dynamic hospital environment of our project ROGER where a robotic gait training coach for orthopedic
rehabilitation of patient with hip prosthesis is developed.

1 Introduction

In our ongoing project ROGER1, we aim at developing a
robotic rehabilitation assistant for patients with newly im-
planted hip prosthesis. The robot is used as personal trainer
and helps to regain the patient’s normal gait pattern. A
training consists of analyzing and correcting the patients
gait while guiding her/him through the hospital hallways.
For optimal analyses the robot needs to keep the patient
at a distance of 2 - 3 m to completely perceive the body.
Despite this distance, the patient has to be able to signal
her/his intention to interact with the robot’s primary in-
put/output device - a touch display mounted at the front
of the robot. Commonly, a training is prescribed one or
two days after the implantation. To avoid overstrain and
possible injuries, the patients are required to use crutches.
In addition, chairs are setup along the hallways providing
resting places. Since both the patient’s hands are occupied,
and the hospital can be very noisy at rush hours, remote
controllers or speech recognition systems are not reliable
options for the patient to signal interaction intentions. An
intuitive way for signaling such intentions is the transition
from standing to seated. After the recognition of this tran-
sition, the robot would start approaching the patient, i.e.
closing the distance to her/him, to create the necessary dis-
tance to physically engage with the robot’s touch display.

*This work has received funding from the Thuringian Ministry for
Economic Affairs, Science and Digital Society (TMWWDG) within the
project ROGER (grant agreement no. 2015 FE 9088) and the German
Federal Ministry of Education and Research (BMBF) to the project 3D-
PersA2 (grant agreement no. 03ZZ0460) in the program Zwanzig20 Part-
nership for Innovation as part of the research alliance 3Dsensation.

1http://bit.ly/ROGERRehab (in German)

Figure 1 A typical situation of a seated patient before being ap-
proached by his training robot.

When working with recently operated hip patients, un-
necessary movements have to be avoided for the patients.
To present the display to a seated patient, the robot have to
choose a pose as close as possible while heading towards
the patient, so that s/he can comfortably reach and look
at the touch display without repositioning herself/himself.
This can be difficult for highly dynamic environments such
as hospitals. Patients and hospital staff are moving in the
corridors with beds, supply and cleaning carts, or wheel-
chairs occupying the hallways. This results in more or
less restricted space conditions. Furthermore, the crutches
putted aside after the patient sat down to operate the dis-
play, pose a permanent obstacle for the robot.

To realize the human-robot interaction behavior of rec-
ognizing seated persons and consecutively approaching
them, we propose a succinct yet effective method of de-
tecting the seated state by utilizing a person detector which
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is able to estimate a person’s height, as well as a technique
to approach the person by solving two optimization prob-
lems: First, the best interaction pose is found given the cur-
rent environmental state. Second, to navigate to the found
interaction pose, motion commands hast to be determined
which avoid obstacles and bystanders in a socially accept-
able manner.

The remainder of the paper is organized as follows.
Sec. 2 addresses related work regarding the seated estima-
tion and methods for approaching persons. Sec. 3 gives
a brief overview of the robot platform of project ROGER
used in this work. In Sec. 4, our approach for recognizing
seated persons is presented. Sec. 5 presents our technique
of approaching a person. In Sec. 6, the performance of our
proposed approaches are evaluated in experiments. Sec. 7
concludes the paper.

2 Related Work

2.1 Seated Estimation
In medical applications, a wide variety of approaches

use intrusive sensors, like accelerometers, to classify the
event of sitting down. The overview given in [1] states
that with an increasing amount of sensors, detection rates
up to 100% can be achieved. Nevertheless, these highly
precise sensor setups come with the price of becoming un-
comfortable for the wearer. Since our task is to analyse
unaffected gait pattern, these approaches using intrusive
sensors seem to be impracticable for our scenario. Ap-
proaches, which make use of data from external sensors,
like RGB [2] and depth images [3], rely on learned back-
ground models. This facilitates the feature extraction from
data generated by persons and improves the classification
output. However, because the dynamics of the scenery are
changing very quickly, such background models can not be
generated on a mobile platform. Other approaches [4, 5]
use estimated skeletons of the user to estimate the state
of seated. The drawback of these methods are, that they
rely on the Kinect SDK, which was developed for gaming
purpose in a static sensor setup. Unfortunately, our tests
revealed that even small vibrations cause the skeleton esti-
mation to stop. At this time, such approaches are unlikely
to work on a mobile platform and further investigations of
the Kinect sensor are needed. In this paper, we will present
a simple approach which is based on a time series of height
estimations generated from RGB images. It is able to esti-
mate the seated state of a person on a mobile robot and can
be applied on every platform with a minimalistic sensor
setup which provides images from at least one camera.

2.2 Approaching Persons
The publications regarding approaching a person can

roughly be divided in investigative work analyzing how to
best approach a person by using Wizard-of-Oz-like exper-
iments and more technical work presenting how to realize
an approach behavior.

The approach parameters primarily considered in inves-
tigative publications are the relative position and distance

to the human partner, as well as the driving speed. To the
best of our knowledge, no work has been published yet
investigating the approaching parameters for presenting a
display to a person. The scenario most similar to ours is
a handing over task performed by a robot with arms [6].
In these works, the participants preferred to be approached
from the front with a stopping distance of about 0.5 m.
However, these parameters can not be generally transferred
to different settings, since they are strongly dependent on
the robots appearance, behavior and the interaction task
[7]. We thus propose a parametric approach able to adapt
to different requirements of relative position, stopping dis-
tance and speed.

Most technical publications consider the scenario of ap-
proaching moving persons to intercept them and start a
conversation. In [8], an approaching pose is inferred from
a graph-based human movement prediction model to inter-
cept the moving person. The model was learned from real
trajectories. Instead of a learned model, [9] used a linear
movement model to find the best approaching pose in an
outdoor scenario. The robot motion planning is formulated
as optimal control problem and solved approximately. In
contrast to our scenario, where the robot has to get close
enough to allow a seated person to access the touch dis-
play, moving person scenarios have a weaker restriction on
the reached distance, since a person already in motion is
also able to close the distance to the robot by her/himself.

In [10], a framework for approaching persons is de-
scribed. As motion planer the Dynamic Window Approach
[11] is used. Among other scenarios a seated person is ap-
proached. However, the focus lies in finding poses which
do not violate the personal space. In [12], another work
focusing on the personal space but approaching standing
persons is presented. Since our goal is making the robot’s
display reachable, it is inevitable but acceptable to enter
the personal space in this situation.

Recently, learning from expert demonstration is used to
teach a robot to approach a person. In [13], Inverse Re-
inforcement Learning [14] is utilized to learn a cost func-
tion to guide the robot motion planner. This work show
promising results but was only evaluated in simulations or
restricted environments leaving the generalization ability
unanswered. Furthermore, training data need to be gen-
erated by an expert which can be a cumbersome work for
real-world scenarios.

3 Robot Training Platform ROGER

Our robot is a customized SCITOS2 platform with a rel-
ative small footprint of 45 x 55 cm and a height of 1.5 m
(Fig. 2). Its differential drive is balanced by a caster and
can reach driving speeds of up to 1.4 m/s. For perception of
the environment and communication, the robot is equipped
with various sensors and two touch displays. The displays
are mounted at different heights allowing the patient to op-
erate while seated or standing. The sensors consist of two
SICK laser range finders covering a 360◦ field of view, two
Asus RGB-D cameras directed forward and a panoramic

2http://bit.ly/MLSCITOS
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Figure 2 Sensors and actors of our robot training platform.

color vision system on the top of the head. Additionally,
a Kinect2 facing backward is mounted on a pan-tilt unit
allowing to freely move the line of vision.

For person perception, a multi-hypothesis and multi-cue
tracking system is used. The tracker is based on a 7D
Kalman filter and is able to estimate the positions and ve-
locities from different detection cues (Sec. 4.1). To guar-
antee a gait training, tracking alone is insufficient. The pa-
tient also has to be re-identified among all tracked persons.
For re-identification, a metric-learning approach with color
and texture features is used [15].

To safely navigate in dynamic environments, the sub-
tasks of localization, obstacle detection and motion plan-
ning need to be addressed. At their cores, our localization
and mapping system are an adaptive Monte Carlo approach
respectively an occupancy grid mapping approach, but are
generically designed to process both 2D laser scans and 3D
informations [16, 17]. For generating motion commands,
an objective-based motion planner using evolutionary op-
timization is utilized (Sec. 5.2).

The complete robotic system was developed with MIRA
[18]. A detailed overview of all implemented interaction
and navigation skills, along with behaviors of our robot
coach is given in [19].

4 Recognition of Seated Persons

4.1 Person Tracking and Reidentification
The presented approach to detect the seated state of

a person is integrated in the person tracking- and re-
identification framework described in [20] (see Fig. 3).
Data from multiple sensors are processed by different de-
tection cues. We use the 2D laser-based detector from [21]
to detect persons using walking aids, which is a crucial
precondition in the target scenario. Additionally, the part-
based approach from [22] is used for detections from the
panorama camera system. Each detection from the differ-
ent cues is transformed into global coordinates for further
processing in an consistent reference frame. A Kalman-
filter based tracker assigns detections to already existing
person hypotheses or create new ones if a certain distance
to these hypotheses is exceeded (0.8m in our case). After-
wards, a person re-identification module determines which
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Figure 3 Schematic overview of the processing pipeline of our
approach.

one of the hypotheses corresponds to the user who is inter-
acting with the robot. This user hypothesis is than used by
the seated recognition module, to assign detections for the
estimation of the seated-/ standing state of the user, which
is described in the following.

4.2 Height-Based Seated Estimation
4.2.1 Height Estimation

As mentioned, the estimation of a person seated in the
surroundings of the robot, can be done with any person
detector, which is able to estimate the height of a person.
In our case, the detector from [22] delivered the best rates
in the target scenario for the person detection task. This
detector delivers rectangles around the person in a given
color image. From this rectangle, a pinhole camera model
is used, to create a 3D detection in the image coordinate
system. The distance D of the detected person to the cam-
era is estimated by the intercept theorem (see eq. 1), where
Ow is the estimated real object width, Rw is the width of
the detection rectangle and f is the focal length of the cam-
era model. The resulting scalar value D is then multiplied
with the a vector from the origin of the coordinate system
to the center of the detection rectangle in the image plane.
This yields a 3D point which corresponds to the center of
the person in the camera coordinate system. This point
is transformed into global coordinates using the extrinsic
parameters of the camera. Afterwards, an offset is added
to the z-coordinate, to align this 3D detection to the head
of the person. This z-coordinate represents the current es-
timation of the persons height and is further processed to
learn this height while standing and to determine the height
when a person is seated.

D =
Ow · f

Rw
(1)

4.2.2 Standing Height Learning
To classify the seated state of a person using the cur-

rent height estimation, first of all the person’s height while
standing has to be learned. For this task we use the as-
sumption, that when a person is moving the current height
represents the standing height. Therefore, when the current
user hypothesis’ movement speed is larger than 0.5m/s, we
collect the z-coordinates of the incoming detections. To
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Figure 4 Visualization of the desired distance cost by keeping
the user pose xU constant and varying the robot pose xR. If the
distance of a robot pose to the user pose equals the desired dis-
tance, the resulting costs will be zero. Deviations from the desired
distance result in increasing costs where poses outside of the tol-
erance will take cost value greater than 1.

filter outliers, the median of these z-coordinates is used to
estimate the standing height Hs of the user.

4.2.3 Seated Hysteresis

St =


UNKNOWN if t = 0
STANDING if Hc > Tstanding

SEAT ED if Hc < Tseated

St−1 otherwise

(2)

The current standing/seated state is estimated using the cur-
rent height Hc of the user. It is calculated like the standing
height, but without the restriction of a moving hypothe-
sis. Since the seated state estimation has to be available as
soon as possible, a smaller filter horizon for outlier reduc-
tion is applied. Therefore, the mean of a sliding window
of the last ten height detections is used to create the cur-
rent height estimation Hc. Since outliers may be correlated,
Hc is then fed into a dual threshold hysteresis St at time t
(see Eq. 2) . The outcome of this hysteresis is the current
seated/standing state of the user, where the thresholds T
are determined by the estimated standing height Hs, where
Tstanding = Hs−10 cm and Tseated = Hs−30 cm. In Fig. 7,
a visualization of the hysteresis behavior can be seen.

5 Approaching Seated Persons

In this section, our technique for approaching a seated
person is presented. To accomplish this task, the problem
is decomposed into finding an appropriate interaction pose
and navigating to the found pose. It is noted that the pro-
posed technique is also applicable for standing persons.
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Figure 5 Visualization of the relative position cost by keeping
the user pose xU constant and varying the robot pose xR. The rel-
ative position cost defines a circular sector where the robot pose
preferably should be. This visualization is also valid for the head-
ing cost, since the Eq. 6 of the heading cost can be rearranged
from Eq. 4 by reversing the role of the user pose and the robot
pose, and setting ω = 0, ωtol = λtol .

5.1 Finding Approriate Approaching Poses
As stated in Sec. 2.2, relevant parameters for determin-

ing good approaching poses are the relative position and
the distance to the interaction partner. To present the dis-
play, the robot’s heading direction also has to be consid-
ered. Furthermore, in a dynamic environment, obstacles
might stand in the vicinity of the user, restricting the pos-
sible approaching poses. To find poses respecting these
restrictions, we formulate a multi-objective optimization
problem over the search space of robot poses x=(x,y,φ) in
a planar world. Each objective is a cost function represent-
ing one of the mentioned restrictions. Given the current
obstacle configuration as grid map m, the robot’s current
pose xR and the user’s pose xU to be approached, the global
cost function

f (x|m,xR,xU ) = w1 · fposition +w2 · fdist

+w3 · fheading +w4 · fobstacles (3)

is defined as the weighted sum of these objectives. The
given inputs m, xR and xU are generated by the map-
ping, localization respectively person re-identifiction mod-
ule (Fig. 3). Since the objectives are not differentiable,
Particle Swarm Optimization [23] is utilized to find near-
optimal solutions. In the following, the objectives are ex-
plained in more detail.

Relative Position

fposition(x|xU ,ω,ωtol) =
|αx→xω

U
|

ωtol
(4)

defines the circular sector where the robot should prefer-
able reside. To freely control the direction of this circular
sector, xω

U is determined by changing the orientation of xU
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Figure 6 The test track at our lab’s building and three chairs (stool, office chair, normal chair) set up along the track. The height of the
chair seats was kept constant at 0.45 m. The shortest path from the starting to the end was approx. 75 m long. Each trial took about 15
minutes to finish.

by ω . αx→xω
U

can now be defined as the angular coordinate
of x in the polar coordinate system centered at xω

U . ωtol is a
parameter controlling the tolerance for deviating from the
circular sector. For a visualization of this cost, see Fig. 5.

Desired Distance

fdist(x|xU , d̂, d̂tol) =
|d̂−δ (x,xU )|

d̂tol
(5)

determines at what distance relative to the user the robot
should stop approaching. In this cost, δ (x,xU ) defines
the euclidean distance of the planar position of x and xU ,
whereas d̂ and d̂tol are parameters controlling the desired
distance respectively the error tolerance. See Fig. 4 for a
visualization of the desired distance cost.

Heading

fheading(x|xU ,λtol) =
|αxU→x|

λtol
(6)

defines a cost forcing the robot to orientate its front side
along the line of sight to the user. Here, αxU→x is the angu-
lar coordinate of the user’s pose xU in the polar coordinate
system centered at x, and λtol a parameter controlling the
tolerance.

Obstacles

fobstacles(x|m,xR,dmax) =
∆(x|m,xR)

dmax
(7)

determines the reachability of the pose x from the current
robot pose xR given the obstacle configuration m by using
the distance function ∆(x|m,xR) calculated with Dijkstra’s
algorithm [24] and normalized by the parameter dmax. The
distance function is calculated with the current robot pose
as the source and obstacles being marked as unreachable.
This allows the robot to find the closest position minimiz-
ing the driving time.

5.2 Evolutionary Motion Planning
After an approaching pose was found, the Evolutionary

Motion Planner (EMP), developed at our lab, is used for
navigation. EMP is a versatile motion planner enabling
the optimization of motion command sequences under var-
ious combinations of criteria. Since we do not restrict
these criterion nor the motion sequences, the optimization
is high-dimensional and generally not solvable in closed
form. Therefore, the EMP relies on an evolutionary algo-
rithm for optimization.

Evolutionary algorithms regard solutions as individu-
als. In our case, an individual equals a motion com-
mand sequence. A sequence can be expressed as a vector
(c(1), . . . ,c(T )) with T being the planning horizon and c(t)

the command specific to the robot’s drive. Starting with an
initial population of command sequences, the population is
improved over multiple iterations with operations inspired
by biological evolution mechanisms. An iteration consists
of, first, assigning a fitness value to each individual of the
current population according to the given objective func-
tion, second, in a reproduction process two parent individ-
uals are selected and combined to create a new individ-
ual, whereby individuals with better fitness have a higher
chance to be selected. These new individuals form a new
population and replace the current population for the next
iteration.

For creating new individuals, the ideas of genetic re-
combination and mutations are used. A new individual is
recombined by copying the motion command for each time
step from one of the selected parent. In each time step,
the chosen parent is switched with a predefined probabil-
ity. For more diversity, the new individual is further mu-
tated by systematically perturbing its elements with a nor-
mal distributed value. More details on EMP can be found
in [25].

The robot’s navigation behavior is controlled by the
given objective function. Similar to finding approaching
poses, we decompose the objective function into multiple
sub-objectives. For approaching a user, we utilize the ob-
jectives presented in [25], which realize a goal oriented
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Figure 7 Time profile of height estimation (ground-to-nose) and
classifications results for a 1.6 m tall test subject. The ground
truth conforms with our results except for the transition from
standing to seated since during the brown marked time the subject
left the sensor’s field of view.

movement while avoiding obstacles and keeping a social
acceptable space to detected bystander. Furthermore, since
the driving speed is a relevant parameter when approach-
ing (Sec. 2.2), we extend the base objectives with a speed
objective limiting the robot’s driving speed. Overall, the
used objectives comprises of

1. a path and heading objective responsible for the
movement to the goal by approaching the minimum
in a globally planned navigation function (using E*
planner [26]) and turning the robot towards a given
goal orientation when in proximity to the goal posi-
tion,

2. a direction objective preferring forward motion ac-
counting for the motor’s limitation with a slower
speed when driving backward,

3. a distance objective for avoiding collisions with static
and dynamic obstacles,

4. a personal space objective to keep distance to people
in the close proximity of the robot by predicting their
movements with a linear model,

5. a speed objective denying motion sequences which
exceed a given speed limit.

6 Experimental Evaluations

6.1 Experimental Setup
To evaluate the performance of our approach, five sub-

jects were guided by the robot through a test track installed
on the hallways of our lab’s building (Fig. 6). Similar to
the hospital environment, chairs were set up at walls along
the track. In total, three chairs of different types were
used. Around two chairs, additional obstacles were placed
to mimic the confined hospital space. During a trial, the
subjects were asked to use crutches. At each chair, the sub-
ject had to sit down and place the walking aid aside, so that
the robot could approach to present the front touch display.
The place where the crutches were placed could freely be
chosen by the subject. The state transition between seated
and standing was manually triggered by a staff member
from a distance, which was also recorded as ground truth
to evaluate our seated estimation. After the robot finished

Relative Position ω = 0 (ω = 40◦), ωtol = 60◦

Desired Distance d̂ = 0.4 m, d̂tol = 1.0 m
Heading λtol = 60◦

Obstacles dmax = 5.0 m
Weights w1 = w3 = 5.0, w2 = 15, w4 = 10

Table 1 The used parameters of the approach cost function.

approaching, the poses relative to the chair have been man-
ually recorded, and the test subject was asked if s/he could
operate the touch screen. Each subject was guided from the
start to end of the track and back. Overall, 30 interaction
attempts (10 for each chair) consisting of sitting down and
approaching were recorded.

6.2 Seated Estimation
To evaluate the seated estimation in an objective man-

ner, we counted the flanks of the seated hysteresis output as
they would trigger the application. Therefore, an event of
sitting down is counted as correctly classified, if the output
of the hysteresis threshold jumps from standing to seated in
a range of ±1s from the labeled ground truth. Otherwise,
this event counts as not detected. A flank from standing to
seated which happens outside this range is counted as false
alarm. During the experiments a total of 30 events of sitting
down occurred. A true positive rate of 70% was achieved,
where 21 of the events were classified correctly while 9
were missed. Most of the missed events were caused by
the absence of detections in hard to classify person appear-
ances, especially when the person was sitting down while
the angle to the camera center was relatively large. In con-
trast, 9 false alarms happened within 60 minutes, which
corresponds to one false alarm every 7 minutes approxi-
mately. These false alarms mainly occurred when the head
of the person was not included in the detection rectangle of
the person detector. This situation is likely to happen when
the user is close to the robot, so the sensor’s field of view
could not cover the full person appearance.

6.3 Approaching Performance
For the experiments. we set the parameters of the cost

function for finding approaching poses (Sec. 5.1) to the val-
ues given in Table 1. To test the ability for approaching per-
sons from different sides, ω was set for the midway chair
(Fig. 6b) to 40◦. Furthermore, we limited the driving speed
during an approach to 0.6 m/s, and the distance and angu-
lar tolerance for reaching the approaching pose was set to
0.25 m respectively 10◦.

The manually recorded approaching poses are depicted
in Fig. 8. In 23 out of 30 approaches (76 % success rate),
the test subjects rated the robot’s stopping pose after the
approaching finished to be sufficient in distance and head-
ing orientation for operating the front touch display. Only
a slight forward leaning was sometimes necessary to reach
the display. On average, a distance to the perceived person
position of 0.47 m (±0.11) and an angular difference to the
optimal heading direction of 10.26◦ (±6.97) was reached.
In the 7 unsuccessful cases (marked as red dots), the partic-
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Figure 8 The manually recorded stopping poses (green and red dots with arrows, see above) of the robot after approaching each chair
of the experimental setup (Fig. 6). The position (dot) of a pose marks the center point of the front display projected on the ground
while the direction (arrow) is perpendicular to the front display. For the chairs (a) and (b) a bigger overview of the vicinity, containing
the whole obstacles, is depicted in a mini-map.

ipants rated the distance as sufficient, but the heading ori-
entation as unsuitable to operate the display. In these cases,
the average distance to the perceived person position was
0.59 m (±0.09), whereas the average angular difference to
the optimal heading direction was 48.27◦ (±15.33). Fur-
ther investigation showed, that in these cases the robot was
either incorrectly localized (position and orientation) or
could not turn to the proposed heading orientation without
colliding with an obstacle. The latter case occurs, when
the robot already reached the proposed position, but was
standing to close to the seated person.

During all the approaching attempts, the robot’s driv-
ing speed did not exceeded the defined value of 0.6 m/s.
The average speed was 0.45 m/s (±0.1). The end poses in
Fig. 8b indicate that most of them resides in the given an-
gular limit. Only one pose deviated and appeared in front
of the chair. This was caused by a test subject placing his
foot as an obstacle in the optimal angular sector. Thus, the
optimal region could not be reached, and the robot found
the next best pose.

7 Conclusion

In this paper, we have presented an approach applicable
on any mobile platform equipped with cameras to detect
the seated state of a person interacting with a rehabilitation
robot using a learned height of a person over several time
steps. Furthermore, a method for approaching a seated
person to make the robot’s display operable is presented.
Approaching is realized by heuristically solving two opti-
mization for finding good approaching poses and motion
commands for driving to the approaching pose.

While the proposed approach for seated estimation is
theoretically sound, the experiments showed that it is
strongly dependent on the sensor setup and the perfor-
mance of the used person detector. The results show an
acceptably high true positive rate but with too many false
alarms. These false alarms were mainly caused by the
small vertical field of view of the used camera, so that
persons standing near the robot could not be perceived
completely. To be applicable in a real-world setup, bet-

ter person detectors and cameras with a wider field of view
need to be used. Furthermore, independent from the Kinect
SDK we plan to use the high-resolution color image of the
Kinect2 to extract skeletal data to improve the seated esti-
mation.

The results of the proposed method for approaching per-
sons show a good success rate. The combination of particle
swarm optimization with the described cost function were
able to find appropriate approaching poses. However, in
some cases, shortcomings in the localization module and
driving behavior led to an incorrect alignment of the robot
to the found pose. For an autonomous application, fur-
ther improvements are needed. To improve the localiza-
tion accuracy, additional cues from color images should
be used. The mentioned disadvantageous driving behav-
ior originates from the used sub-objectives rather than the
EMP. Thus, aside from the maximum speed the driving be-
havior should be further adapted to the approaching task.
To this end, a driving direction to the approaching pose
could be imposed by a new sub-objective. This would
avoid the turning behavior near obstacles.
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