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Abstract

Using mobile robots in rehabilitation is an upcoming trend in the field of robotic healthcare. A possible application
is robot assisted self-training after orthopedic knee or hip endoprosthesis surgery. In this scenario, it is particularly
important to be able to continuously observe the patients movements in order to give timely feedback on the ongoing
exercise. This paper presents a complementary approach separately taking care of two fundamental prerequisites of an
application scenario where a user performs gait retraining in rehabilitation under supervision of a mobile robot: driving
at a certain constant distance in front of the user and keeping the user at a suitable position in the sensor’s field of view.
We show the applicability of our approach under laboratory and real-world conditions.

1 Introduction

Immediate feedback plays a vital role in gait retraining af-
ter hip or knee joint endoprosthesis surgery to avoid fall-
backs into prior, unnatural and possibly damaging move-
ment patterns. Since this type of surgery becomes more
common nowadays, due to an aging population and im-
provements in medical techniques, fully supervised gait re-
training is often not feasible with the available resources.
One possible solution is to provide assistance using mobile
robots, that may offer such a feedback during normally un-
supervised self-training sessions.

Such a training session is usually initiated by the patient
who seeks out the robot at a known location in the rehabil-
itation center. The patient then can watch an introduction
video and selects a training duration according to its daily
form. Now the patient can start to walk at whatever pace
he feels comfortable at while the robot drives in front of
him as shown in Fig. 1. The robot observes his gait and
posture and should provide immediate feedback on how to
improve the movement pattern whenever there is a signif-
icant deviation. For this approach to work, it is crucial to
continuously keep the patient visible by the sensor needed
to evaluate the ongoing exercise.

Therefore, this paper focuses on the aspect of controlling
the robot’s drive and a pan-tilt mounted camera in order to
continuously keep a good view on the user during the train-
ing session, laying the foundation for autonomous robot-
assisted self-training in this specific rehabilitation scenario.
In the following, we describe related state-of-the-art ap-
proaches (Sec. 2) before introducing our target platform
(Sec. 3) and deriving our system design based on the plat-
form’s capabilities and the requirements of our scenario
(Sec. 4). After that, we present results obtained while vali-
dating our design in controlled circumstances as well as un-
der real-world conditions in an orthopedic clinic (Sec. 5).

*This work has received funding from the Thuringian Ministry of
Economy, Science and Digital Society and Thiiringer Aufbaubank as part
of project ROGER (grant agreement no. 2015FE9088) using financial re-
sources of the European Regional Development Fund.

Figure 1 Patient during robot-assisted self-training where
the robot drives in front of the user while observing his
gait pattern and posture.

2 Related Works

To the best of our knowledge, there are no publications
which focus on employing a mobile robot with a pan-tilt
unit in orthopedic rehabilitation scenarios. However, using
pan-tilt units for person tracking in addition to the robot’s
driving capabilities is a known concept in the robotics field.
There are early publications like [1, 2, 3], which predate
most of the modern techniques in computer vision and sen-
sor development, already describing a control design for
mobile robots with pan-tilt units to track humans in con-
strained laboratory environments.

Later approaches like [4] and [5] employ similar tech-
niques but include depth sensor data in order to determine
the tracking target position with higher accuracy while be-
ing computationally more efficient. Nevertheless, these ap-
proaches are still limited to laboratory environments, and
in case of [4] to a static target.

In [6], the authors build upon the general trend of using
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low-cost depth sensors such as Kinect or Kinect2 in fall
and gait assessment scenarios and place a Kinect sensor on
a small mobile robot. Their robot is able to follow the user
autonomously using a gradient-based control-design [7].
The Kinect can then be used to evaluate the user’s gait
pattern, building the base to make predictions whether the
user is about to fall. However, they explicitly state that an
obstacle-free environment is assumed.

Following this line, the authors in [8] describe a custom-
built six-wheeled mobile robot with a Kinect2 mounted
on-top to perform gait analysis on subjects with Parkin-
son disease while driving in front of them. However, their
focus is mostly on general requirements of such a scenario
with a strong emphasis on describing design details of the
platform and basic preprocessing steps, such as transfor-
mation into a fixed reference frame. As a consequence, the
system lacks the necessary autonomy required in a com-
plex scenario like ours. For example, the platform has to
be controlled remotely to drive in front of its user at the
desired distance and does not seem to be equipped with
sensors which would allow autonomous navigation and ob-
stacle avoidance.

3 Robot Platform ROGER

Our target platform is a customized SCITOS G3 robot (see
Fig. 2) that is based on the robot platform presented in
[9] and [10]. The robot’s compact footprint of approxi-
mately 45cm x 55cm at a total height of 1.5m makes it
well suited for operating in crowded public environments.
It is equipped with a camera module with four separate
RGB cameras for 360° all around view, as well as two Sick
S300 laser scanners and two ASUS Xtion RGB-D cam-
eras. In addition to the basic setup, a rear-facing Kinect2
RGB-D sensor is mounted on a Directed Perception pan-
tilt unit (PTU).
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Figure 2 Sensors and actuators of our robot platform.

Laser and depth data are primarily used in 2D/3D map-
ping and localization [11] allowing navigation in unstruc-
tured real-world environments. Sensor information from
color cameras and laser sensors are fed into independent
person detection modules (e.g. [12, 13, 14]) whose results
are combined in our person tracker [15] allowing us to de-
tect and track people with and without walking aids up to
a distance of 10m with high confidence [13]. To be robust
against tracking errors caused by occlusions, the platform

uses an appearance-based person re-identification closely
linked to the tracking module as described in [16].

The robot middleware MIRA [17] is used to control the
platform hardware and to exchange data between sensors
and all software modules.

4 System Design

Because our robots operate in a wide range of environ-
ments ranging from supermarkets, over public spaces in
rehabilitation clinics to senior homes, we need a flexible
local path planning algorithm able to navigate even in nar-
row or human populated environments. Therefore, we use
a versatile motion planner based on evolutionary generated
trajectories [18] (EMP) developed at our lab. The evolu-
tionary optimization of hypothetical movement trajectories
generated by EMP can be controlled through the given ob-
jective function. To ease the design of motion behaviors,
the objective function is decomposed in multiple less com-
plex objectives representing aspects of the desired behav-
ior. This decomposition allows reoccurring aspects, e.g.
obstacle avoidance, to be reused and enables a rapid de-
ployment of our robots in new scenarios.

To accomplish the task of observing users while guiding
them to a goal, the motion planning of robot and pan-tilt
camera is decoupled (see Fig. 3):
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Figure 3 Guide behavior and camera control in system
context. Raw sensor observations are processed in person
tracking and navigation components, including the guide
behavior. High-level data from both instances are then
used in the camera control.

The EMP-based motion planning is used to control the
robot’s drive, implementing a guide behavior and keeping
the user at an optimal distance to the camera (lower branch
in Fig. 3). Details on the guide behavior implementation
follow in section 4.1.

Hence, the camera control problem is reduced to keeping
the user in camera view horizontally. Therefore, we de-
signed a camera control algorithm based on a PID con-
troller. We take the user hypothesis delivered by the person
tracker and used by the drive behavior and compute the di-
rect line of sight from the pan-tilt unit’s mount frame to the
user’s position. Now the angular difference between cur-
rent and desired pan angle is computed and used as track-
ing error in the PID implementation which is detailed fur-
ther in Sec. 4.2.
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4.1 Evolutionary Motion Planning to Keep
Optimal Distance

When considering motion planning as an optimal control
problem, EMP is best described as a model predictive con-
trol approach optimizing over the space of motion com-
mand sequences given the objective function and the phys-
ical constraints of the robot’s drive. To keep EMP adapt-
able, aside from the robot’s dynamics, no restrictions are
imposed on these sequences nor the objectives’ form. This
leads to a high-dimensional optimization problem gener-
ally not solvable in closed form. Thus, we rely on evolu-
tionary algorithms to find near optimal solutions. However,
we experimentally showed that for our scenarios the qual-
ity of the found solutions results in good motions [18].

To implement the desired guide behavior, we build upon
our base objective functions, which already realize a goal-
oriented movement while avoiding obstacles and keeping a
personal space to people, and extend them with a constraint
for keeping the distance to a user. Overall, this results in a
mutual movement of the user and robot to the goal, i.e. the
robot is only moving when the user moves too. The base
objectives comprise:

1. a path objective responsible for the movement to
the goal by approaching the minimum in a globally
planned navigation function (using E* planner [19]),

2. a heading objective turning the robot towards a given
goal orientation when in proximity to the goal posi-
tion,

3. a direction objective preferring forward motion ac-
counting for the motor’s limitation with a slower
speed when driving backward,

4. adistance objective for avoiding collisions with static
and dynamic obstacles,

5. a personal space objective to keep distance to people
in the close proximity of the robot by predicting their
movements with a linear model.

Each objective returns a cost value for a given motion com-
mand sequence, or can even deny a sequence preventing it
from being executed by the robot’s motor controller. For
optimization, a global cost value is calculated by means of
a weighted sum.

Each sequence can be expressed as a vector (c(!),..., ¢(7))
with T’ being the planning horizon and ¢\¥) the command
specific to the robot’s drive. Further, a sequence can be
transformed into the predicted robot’s motion trajectory
TR = (xg), e 7X1(3T)) consisting of poses xg) = (x,y,¢) in
a planar world. By using a linear motion model, a simi-
lar trajectory Ty = (ng1 ), e ,Xg>) can be predicted for the
user. The keep distance constraint is realized as an addi-
tional objective function

fkp (TR, ) =

where 8 is the Euclidean distance from the robot to the
user, and ol¥) is the angle of the user in the polar coordi-
nate system relative to the robot at time i. The parameters
d and 7 control the distance kept to the user with d being
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Figure 4 Visualization of the cost terms of fxp by keep-
ing the robot pose Xg constant and varying the user pose
xy. The robot is centered at (0,0) and 0° is describing the
backward direction of the robot.

the desired distance and 7 the acceptable error tolerance.
Additionally, fxp introduces a circular sector with open-
ing angle 8 behind the robot where the user is preferably
kept. This ensures that the user is kept in the controllable
pan limits of the PTU. The parameter M controls the cost
of user positions outside of the defined sensor cone. To
prefer user positions inside the sensor cone, M should be
set to a high value. For our scenario, we set M = 10. A
visualization of fxp and the used polar coordinate system
is depicted in Fig. 4.

4.2 Camera Control

Maintaining a defined distance as aspect of keeping the
user in good view of the sensor is already covered by the
guide behavior of the robot. However, due to the con-
sidered application scenario and limitations of the non-
holonomic platform, there are situations where the user
cannot be kept directly behind the robot, e.g. because the
robot has to drive around obstacles or keep the personal
space of oncoming persons. Because of the required mini-
mal distance between robot and user, the robot has to start
its evasion maneuvers quite a bit earlier than the user. Even
though this situation would still allow for an ongoing gait
assessment, a fixed sensor might not cover the user suffi-
ciently. Fortunately, a sensor mounted on a pan-tilt unit can
compensate the relative orientation as long as it is within
reasonable limits, i.e. the user is not occluded by the robot
itself or an obstacle.

Since the user’s position in respect to the robot in the x-y-
plane changes dynamically based on the current scene con-
figuration, the camera control needs to recompute the suit-
able pan angle as well as the speed at which these changes
occur at runtime.

4.2.1 Angle Computation

Baseline approach The most straightforward approach
to determine the pan angle is to use the direct ,,line of sight*
from the PTU’s mount frame to the user’s position as esti-
mated by the person tracker. In our system, this allows up-
dates at 10 Hz, which is the update frequency of the tracker.
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Figure 5 Schematic view of the robot platform and its
reference frames. Red indicates the x-axis, green the y-
axis, the z-axis is not shown for reasons of clarity.

New estimations of the user’s position are transformed in
the coordinate frame defined relative to the PTU’s mount
frame (PTUMountFrame in Fig. 5) using the capabilities
of our middleware.
The pan angle can then be computed by simple geometric
means:

¢ = arctan2 (yuseraxuser) ()

with x5, and y,., describing the user’s position relative to
the PTU’s mount frame. Due to the way the PTU has been
placed on the robot, we additionally limit the pan angle to
be between 90° and —90°.

Including prediction Though the baseline approach al-
ready provides compelling results in our application sce-
nario, it has some limitations often encountered in simple
control problems. Most apparent is the systematic delay
in the tracking response caused by physical limitations,
like inertia and actuator speed and power limits. To im-
prove the tracking response, it is beneficial to include addi-
tional knowledge of the system’s dynamics in the compu-
tation. As noted in Sec. 4.1 and further detailed in [18], our
evolutionary motion planner features characteristics com-
monly associated with model predictive control. Using
the planned trajectory as selected in the cost optimization
process, we can obtain a reliable prediction of the robots
movement for a limited planning horizon.

While looking at recordings from previous tests in simi-
lar applications [9], we found that translational movement
only plays a minor role when it comes to changes of the
relative pose between robot and user. Of course this only
holds true if the time span under consideration is relatively
short, like 250 ms in our example.

To include those trajectory data in the pan angle computa-
tion, the user position has to be transformed to robot co-
ordinates first. Then, the rotational movement associated
with the trajectory is applied. Since the transformation be-
tween the PTU mount point and the robots reference frame
is fixed, it can easily be applied before the hypothesis is
passed to the baseline algorithm, computing the pan angle
as described before in Eq. (2).

4.2.2 Angle Trajectory Computation

After the pan angle ¢ is determined according to the pre-
vious section, the camera control has to define the speed
trajectory used to reach the desired angle. The approach
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Figure 6 The PID structure used in our implementa-
tion. The clamping component [20] to counter integration
windup is only shown as black box.

presented in this paper utilizes a PID controller for this
purpose. Therefore, the current pan orientation is retrieved
from the hardware controller and used to compute the con-
trol deviation Qo

Derror = @ — Qcurrent (3)

Since only the range £90° is considered, problems due to
angle periodicity do not occur.

The control deviation is passed to a standard parallel PID
structure (for implementation details see Fig. 6), which
outputs a speed value m that is then passed to the PTU in-
terface. As the hardware can only realize a limited range of
speeds and accelerations, additional output saturation and
rate limiting are employed. Because this can lead to a phe-
nomenon known as integration windup [21, 22] when the
actuators are in saturation, an additional anti-windup com-
ponent is included. In our implementation, we decided in
favor of integrator clamping [20] which is reported to have
good performance in a wide range of applications while
being relatively easy to implement.

Controller parameters To determine the controller pa-
rameters P, I, D and N, we used the PID Tuner in MAT-
LAB Simulink. The Simulink PID block has the same
structure as shown in Fig. 6 without the rate limiting block.
So the rate limiting block was supplemented to the model
as well as an integrator block to have a rudimentary sim-
ulation of the PTU hardware. Using this model, selecting
250 ms response time, and a robustness factor of 0.65, the
PID Tuner tool determined the following set of parameters:

P =28.1778,1=0.6035, D = —0.1284, N = 9.4601

However, some preliminary testing showed that our pan-
tilt unit becomes relatively noisy using this parameter set
and sometimes looses track of its pan orientation. After
iterative testing (stability validation in Simulink and testing
with the real hardware), the final configuration used in the
experiments was selected as:

P =6.5131,1=0.0000, D =0.4480, N = 12.0345

As can be seen, the integral gain was eliminated com-
pletely, but since the PTU hardware itself has an integrat-
ing character, permanent control deviation is not expected
to occur.
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(a) Test environment in our faculty building

(b) Test environment in the orthopedic hospital

Figure 7 Excerpts from the grid maps of both test environments. Waypoints for robot and user are marked in red, a
possible path in orange, and static obstacles, e.g. chairs for patients to rest on, in light blue.

5 Experiments

This section describes how both parts of the proposed sys-
tem were evaluated. Similar to the previous section, we
address them separately: first the guide behavior in sec-
tion 5.1, followed by the camera control in section 5.2.
First performed extensive tests in our lab’s building
(Fig. 7a) which shows great similarity to the later appli-
cation area in rehabilitation facilities. For the evaluation,
we recorded several trials for each of the eight test persons
while the robot guided them between two fixed navigation
points on a U-shaped track, leading to a total of 30 recorded
tracks. Some artificial obstacles were added to mimic typ-
ical situations encountered during gait training in a public
hospital hallway. In addition to these tests, we also per-
formed a smaller study with six patients in a orthopedic
clinic (Fig. 7b) under real world conditions. Each partici-
pant chose the duration of the test trial as it was appropriate
for its state of health. This resulted in trials with a duration
of about 10 minutes each (including short pauses if needed)
where the patients walked 200 m on average while being
guided by the robot.

5.1 Guide Behavior

The desired distance between robot and user for the guid-
ing behavior was set to 2.5 m with a tolerance of 0.5m,
providing a good trade-off between sensor coverage and
depth measurement quality.

5.1.1 Faculty building

As Fig. 8 shows, the empirical distribution of the distance
between robot and users over all trials shows a clear peak
at the desired distance of 2.5 m. In summary, the guide ap-
proach is able to keep the desired distance to the user most
of the time (82.6%) while driving in our faculty building.
A detailed excerpt of the time profile of the distance and
speed is shown in Fig. 9 for a single test trial. As can
be seen, the driving speed is adapted when the user slows
down (phases II) and increases slightly while the user ac-
celerates again (phase III).

5.1.2 Clinic environment

Applying the same evaluation procedure on data recorded
during tests in the clinic environment delivers results as

82.6% within tolerance
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Figure 8 Distance between user and robot over all trials
in our faculty building.
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Figure 9 Distance and speed of user and robot over time
(example trial). To keep the desired distance, the robot
adapts its speed to the user’s speed. (I) The robot and user
move at an equal pace. (II) The user slows down. A short
reaction time is needed where the distance slightly devi-
ates from the tolerance. (III) The robot has adapted to the
new speed.

presented in Fig. 10. While still keeping the user within
the selected tolerance most of the time (81.0%), there is a
slight tendency to drive at the maximum distance allowed
(3 m), whereas the peak at the desired distance is much less
pronounced. This might be caused by the fact that patients
often tend to walk a lot slower than healthy persons.

5.2 Camera Control

For evaluating the camera control in the horizontal plane,
the field of view of the Kinect2 depth camera is assumed to
be narrower than specified (50° instead of 70°). This def-
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Figure 10 Distance between user and robot over all trials.
In general, the distance is within the desired tolerance,
though there is a tendency to max out the selected toler-
ance.

inition mirrors our practical observation that depth values
near the image border are distorted by increasing noise and
are thus less suited to be used for training evaluation pur-
poses. Based on these definitions, the user is assumed to be
visible by the sensor when being within a £25° cone with
its center line following the x-axis of the oriented PTU.

5.2.1 Faculty building

As can be seen in Fig. 11, the camera control algorithm
(Keep In View, KIV for short) is able to increase the proba-
bility that the user is within the sensor field of view signif-
icantly from around 82% to over 99%.
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Figure 11 Angular position of the user in the horizontal
sensor field of view, with (KIV) and without (static) our
camera control algorithm in our lab’s building. The num-
ber in parentheses describes the proportion of positions
within the £25° boundaries.

We also evaluated the variance of the values and were able
to show that our camera control approach indeed leads to
variances that are significantly smaller compared to the
static setting. Significance was shown by Levene’s test for
equal variances [23], using p < 0.01.

5.2.2 Clinic environment

As can be seen from Fig. 7b the clinic environment is less
challenging in terms of navigation. This claim is supported
by the fact that even with no active camera control the user
is kept at a suitable position relative to the sensor signifi-
cantly more often (89.5% instead of 81.7%). Nevertheless,
the proposed control algorithm is able to keep up the good
performance achieved in our faculty building in the clinic

environment as well (see Fig. 12).
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Figure 12 Angular position of the user in the horizontal
sensor field of view, with (KIV) and without (static) our
camera control algorithm in the clinic environment. The
number in parentheses describes the proportion of posi-

tions within the +25° boundaries.

Similar to the experiments in our faculty building, the vari-
ance of the angular position of the user relative to the robot
was evaluated. As expected, the test under the same condi-
tions as in section 5.2.1 found the difference in variance to
be significant even in the less challenging environment.

6 Conclusion

This contribution presented an efficient approach to control
the robot’s driving behavior as well as an on-board pan-tilt
mounted camera in order to achieve a reliable and continu-
ous user observation in a gait retraining use case in ortho-
pedic rehabilitation.

The experiments have shown that our active camera control
approach together with the designed guide behavior is able
to satisfy the requirements expected to occur during typical
training sessions in our application scenario.

With this system in place, future works are supposed to
focus more on autonomous gait and posture analysis tasks
based on the sensor data provided by the Kinect2 RGB-D
camera, which is the actual core of the robot-based gait
training in rehabilitation.
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