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ABSTRACT 
 
Aging public roads need frequent inspections to analyze their condition and guarantee 
their permanent availability. Unfortunately, condition assessment in terms of distress 
detection and classification requires manual visual inspection. This manual labor is not 
only expensive but very time-consuming if millions of high-resolution road images of a 
country's whole road network must be analyzed. The annotation quality suffers from 
people getting fatigue during the tedious process, and the results can vary a lot between 
different operators. Therefore, we developed a deep-learning based road image analysis 
system that partially automates the image inspection process. Each image is analyzed by 
a deep neural network that is trained to detect pavement distress at a very high quality. 
Potential pavement distress is highlighted, helping the operator to focus on regions most 
critical for the assessment. This speeds up the inspection process and enhances the 
operators’ concentration since they have to process only relevant information. If desired, 
the deep neural network can also be applied to pre-annotate images and making 
suggestions for the type of distress following the German standard for assessment of road 
surface characteristics. To get a deep neural network capable of doing these analyses at 
human-like performance, we did extensive studies. First, we created a high-quality dataset 
using a data acquisition system (fast driving mobile mapping system) certified by the 
German Federal Highway Research Institute (BASt). The dataset covers many variations 
of distress, road surfaces, and all kind of built-in components, like gullies, manholes, 
cobblestones, and curbs. Then we evaluated several state-of-the-art deep neural networks 
for visual image analysis, by training them on our road dataset. Lastly, we derived our 
network architecture, which is both fast and accurate and outperforms classical machine 
learning and computer vision methods by far. The deep neural network has been 
integrated into our analysis tool that follows the German standard for road condition 
assessment as proposed by the German Road and Transportation Research Association 
(FGSV). Experiments on inspections of reference tracks show that using this new tool the 
operators were able to analyze images up to twice as fast and with consistently higher 
quality. Additionally, 14% of federal highways and inner-city roads images and 30% of 
freeway images could be held out from manual inspection since they could be ensured to 
be distress free by the deep neural network at high confidence. 

1. INTRODUCTION 

Public infrastructures are suffering from aging and therefore need frequent inspection. 
Distress detection and solid management for maintenance are the keys to guarantee their 
permanent availability. Thus, condition acquisition and assessment must be applied to the 
whole road network of a country frequently. 
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Following German federal regulations, the surface characteristics must be evaluated i.a. 
regarding substance condition. The substance condition is captured with camera systems 
and has to be assessed by visual inspection of the recorded images. Current evaluation is 
done manually and therefore requires excessive manual labor. This includes tasks like 
finding very thin cracks that appear only in a few pixels of the image. Thus, the period 
between the actual inspection and the final evaluation may be up to several months. In the 
meantime, small damages, like cracks, can lead to substantial downtimes with a high 
impact on the population. 
In the research project ASINVOS*, we aim to automate this process to a high degree by 
applying machine learning techniques. The basic idea is to train a self-learning system 
with manually annotated data from previous inspections so that the system learns to 
recognize underlying patterns of distress. Once the system can identify intact infrastructure 
robustly, it can reduce the human amount of work by presenting only distress candidates 
to the operator. This helps to speed up the inspection process significantly and 
simultaneously reduces costs. Furthermore, inspection intervals can be reduced, which 
helps to remedy deficiencies in time. 
To achieve the goal of automated condition assessment, we utilize a deep neural network. 
In order to train it, we created a large dataset containing high-quality standardized images 
with detailed annotations [1] (see Section 3). Due to our extensive analyses and neural 
network architecture optimizations (see Section 4), this deep-learning based road image 
analysis system can detect distress of the surface at a very high quality. 
In this paper, we show how we embedded the detections results in the analysis process. 
The basic idea is to highlight potential pavement distress such that the operator can focus 
on regions most critical for the assessment. This speeds up the inspection process and 
enhances the operators’ concentration since they must process only relevant information. 
If desired, the deep neural network can also be applied to pre-annotate all images and 
making suggestions for the type of distress. 

2. RELATED WORK 

With first attempts published in the early nineties, e.g. [2], automating the distress 
detection process has already been addressed by researchers for almost three decades. 
Therefore, a wide variety of different approaches have been presented ranging from 
traditional image processing techniques to deep learning approaches more recently. Since 
the typical pavement assessment processes are carried out using 2D image recordings, 
the related work section is focused on 2D image processing approaches. However, some 
authors have shown the effectiveness of using 3D data for distress detection [3]. We refer 
to [4] for a more detailed list of depth-based 3D approaches. 
The algorithms developed for 2D image-based evaluation of the pavement surface can be 
divided into two major categories: 

 computer vision algorithms designed explicitly for crack detection, mostly by 
applying image value thresholding and 

 algorithms for general distress detection that use implicit or explicit local feature 
extraction. 

2.1. Crack Detection 

The first group of algorithms uses image processing methods to detect road distress 
structures that can be extracted by thresholding afterward. Therefore, preprocessing 
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algorithms are applied in order to reduce illumination artifacts. Under the assumption that 
crack structures can be identified as local intensity minima, this group of algorithms usually 
uses thresholding in the image space to find crack candidates. The resulting crack image 
is further refined by morphological image operations and by searching for connected 
components. Approaches belonging to this category are presented in [5], [6], as well as in 
[7], where the closed source but publicly available CrackIT toolbox is presented. Other 
variants of this category for example use minimal-path-based [8] or graph-based [9] crack 
candidate analysis for further refinement, that is also used by the well-known CrackTree 
approach [10]. 

2.2. Feature-based Distress Classification 

The algorithms of the second category apply classifiers to local regions of the image to 
extract crack or distress regions. Traditional image processing approaches mostly rely on 
explicit feature extraction. Using a Support vector machine (SVM) is very common among 
these conventional approaches. For example, this classifier is applied to Histogram of 
Oriented Gradient (HOG) features [11] or Local Binary Patterns (LBP) [12], [13]. A recently 
proposed approach has been applied to frontal-facing images by integrating an image 
clustering step to extract the street surface first [14]. 
More recent approaches tend to use implicit feature-extraction by using Convolutional 
Neural Networks (CNNs). Methods based on CNNs mainly differ regarding network 
architecture, predicted distress classes and whether downward or frontal-facing input 
images are processed. 
One of the first attempts to apply CNNs in the domain of pavement distress detection is 
presented in [15]. The network architecture shares some similarities with LeNet-5 [16] but 
utilizes ReLU activation and four convolution/pooling layers for detection pavement cracks 
on downward facing road images. Also applied to top-down facing road images, but using 
VGG-based CNNs [17] are the approaches presented in [18] and [1]. While the former 
method is focused on crack detection, the latter addresses all distress types addressed by 
the federal German pavement assessment process. 
With the tremendous distress detection improvements over traditional image processing 
techniques archived by CNNs [10], [1], distress detection in frontal-facing images it getting 
more common. This kind of image is often preprocessed to constrain distress detection to 
the pavement area. This step can be carried out using traditional image segmentation 
techniques like graph-based hierarchical clustering [19] or using CNNs like SegNet [20]. 
The network architectures used for processing frontal-facing images are based on state-of-
the-art image processing networks. [21] for instance compares InceptionV2 and MobileNet 
for the detection of eight different distress classes while [20] applies Squeeze-Net for 
distress detection. [22] present a Feature Pyramid and Hierarchical Boosting Network 
which is used for crack detection in frontal-facing images. 
In this paper, we focus on distress detection in downward facing road images. Frontal-
facing images do not provide the resolution necessary to detect minimal damages. This 
can be seen in many approaches trained on frontal-facing images since they often miss 
tiny cracks, that are still identified by methods applied to downward facing road images. 

3. DATASET 

The GAPs dataset* is the most extensive dataset in the pavement distress domain that 
provides standardized, high-quality images. Due to many requests, we provide 500 
additional images from an additional Federal highway to enlarge the dataset even more. 

                                            
*
 The GAPs dataset is available at http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/ 

World Road Congress 2019, Abu Dhabi, UAE, 2019



 [4] 26th World Road Congress 

Now, it consists of 2468 HD road surface images. We also provide a sub-sampled dataset 
containing 50k images to allow for fast training and comparison to the state of the art in an 
MNIST- or CIFAR-like fashion. Most importantly, we improved annotations. The level of 
detail is increased by labeling distress by several small bounding boxes that enclose the 
distress tightly. Additionally, all annotations were checked for correctness by several 
experts. In the following, we refer to this dataset as GAPs v2. 

3.1. Standardized Data Acquisition 

 
Figure 1 - Mobile mapping system S.T.I.E.R. middle: Labeling as expected by German FGSV-regulation. 

right: fine labeling of different distress types using bounding boxes. 

The data acquisition is based on the specification by the German Road and Transportation 
Research Association (FGSV) – the so-called Road Monitoring and Assessment (RMA) 
[23]. The RMA process standardizes data acquisition on a systematic basis and provides 
nationwide uniform parameters to ensure objective analyses of surface conditions as well 
as a high degree of quality. The key aspects are longitudinal and transversal evenness, 
skid resistance and surface distress. Mobile mapping systems, equipped with high-
resolution cameras and laser-based sensors, are the state of the art in the RMA context. 
The image data of the GAPs dataset have been captured by the mobile mapping system 
S.T.I.E.R (Figure 1), that is certified annually by the German Federal Highway Research 
Institute (BASt) since 2012. This vehicle is equipped with several high-resolution cameras, 
i.a. two slightly overlapping bird-eye-view photogrammetrically calibrated monochrome 
cameras mounted left and right at the rear of S.T.I.E.R's roof rack. These two cameras 
capture the pavement's surface in detail with images at a resolution of 1920x1080 pixels, 
which means each pixel covers 1.2 mm x 1.2 mm of the surface. The surface camera 
system is synchronized with a high-performance lighting unit. This allows continuous 
capturing of road surface images even at high velocities (ca 80 km/h) and independent of 
the natural lighting situation. Within the scope of the standard RMA workflow, a sequence 
of left and right surface camera images is stitched together in driving direction. The result 
is a continuous sequence of surface images that represent 10 meters of the entire driven 
traffic lane. According to the FGSV-regulation, the surface damage detection and analysis 
process is based on these images. For this, an inspection grid is applied to each 10-meter-
image. A single grid cell has a longitudinal length of 1m and a transversal length of 1/3 of 
the lane width. If a grid cell contains relevant surface damage, the whole cell is assigned to 
this damage type. Once the damage detection and classification is done, the measured 
raw-data is used to calculate condition variables and finally condition grades ranging from 
"very good" to "very poor" using a weighting scheme defined by the FGSV. The presented 
conventional labeling approach is sufficient for indicating the level of safety and comfort for 
road users, but due to the lack of the precise damage location labels in terms of pixel 
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coordinates, this labeling is not appropriate to train a classifier and therefore, must be 
improved in detail as shown in Figure 1 right. 
For more details regarding the data acquisition process and the measurement vehicle, we 
refer to [1]. Following the German FGSV-regulations, the surface defect classes shown in 
Figure 2 must be detected. 

3.2. Improvement of the GAPs dataset 

The GAPs dataset [1] have been improved in several ways: 

3.2.1 More data 

The GAPs v2 dataset includes a total of 2,468 gray valued images (8bit), partitioned into 
1,417 training images, 51 validation images, 500 validation-test images, and 500 test 
images, following the partitioning suggestions of [24]. Using these images, 692,377 
patches of surface defects and 6,035,404 patches of intact road are extracted. Table 1 
shows the unbalanced class distribution of the full dataset. The pictured surface material 
now contains pavement of four different German federal roads. 
 

Table 1 - Class distribution of GAPs dataset. 

Class Full dataset 50k dataset 

Intact road 89.71 % 60 % 

Cracks 7.28 % 20 % 

Applied patches 1.72 % 10 % 

Inlaid patches 0.75 % 5 % 

Potholes 0.30 % 3 % 

Open joints 0.24 % 2 % 

 

3.2.2 Refined annotations 

The images have been annotated manually by multiple trained operators at a high-
resolution scale such that a bounding box encloses actual damage and the non-damage 
space within a bounding box has a size of lower than 64x64 pixels. All annotations of the 
first version of the GAPs dataset have been refined, such that the non-damage space 
within a bounding box is even smaller than that restriction. Conflicting annotations have 
been resolved (GAPs v1 had only one annotator per image). 

3.2.3 More context 

While GAPs v1 offered only patches of size 64x64 extracted within the annotated regions 
and the intact surface regions, GAPs v2 offers several patch sizes showing more context 
(see Figure 3). The defect region is still ensured to be within the 64x64 center region of 
each patch, but the surroundings may help to make correct decisions. In Section 4.2 we 

Figure 2 - Surface defect classes in GAPs dataset. The class cracks comprises all sorts of cracks like 
single/multiple cracking, longitudinal/transversal cracking, alligator cracking, and sealed/filled cracks. 
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briefly outline the benefits of context information. 

 
Figure 3 - Visualization of context captured by the different patch sizes 

3.2.4 50k subset available 

Since deep learning benefited most from small size real-world datasets, we also created a 
smaller subset for fast experiments. Inspired by the MNIST and CIFAR datasets, we 
created a training set of 50,000 samples. Additionally, the validation set, validation-test set, 
and test set contain 10,000 samples each. Table 1 shows the chosen class distribution of 
the 50k subset. The samples for each class were randomly selected until the desired 
number of samples was reached. The classes are left unbalanced, but the dominant 
classes of intact road and cracks are not that dominant as in the full dataset. The relative 
fraction of the non-dominant classes among themselves is similar to the original dataset. 
We have chosen this distribution in order to focus more on the distress than on the intact 
road. The experiments in Section 4.2 confirm that this approach is an excellent choice 
since observations for classifiers trained on the small subset transfer to identical classifiers 
trained on the full dataset. 

4. SYSTEM OVERVIEW 

During the RMA data acquisition process, 10-meter images are generated. Each of these 
images must be reviewed, and distress regions have to be tagged within the 10x3 RMA 
grid. To automate this process, first, the correct grid position must be found. Therefore, the 
lane must be detected. Next, the distress detector has to be applied to the image to find 
potential distress regions. Finally, the RMA grid and the detection results have to be 
combined. The whole processing chain is outlined in Figure 4. 
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Figure 4 - Outline of the whole process chain. First the lane is extracted, and the RMA grid is fitted to the 

image. Afterwards, the distress detection is combined with the RMA grid in order to generate distress 
candidates that need to be reviewed by the operator. 

4.1. Lane Detection 

To detect the lane, we need to extract information about limiting structures. For example, 
road markings, curbs, sidewalks, bikeways, and other limiting elements are of relevance. 
Since these structuring elements occur in various appearances, we decided in favor of a 
neural network to robustly detect them. We adapted the neural network for distress 
detection by changing only the output coding. This convolutional neural network can 
distinguish between road markings, roadsides, and regular road (Figure 5). It was trained 
on the GAPs dataset with additional annotations for road markings and roadsides. After 
training, it was converted to a fully convolutional network for image segmentation. 
 
 

 
Figure 5 - Workflow to distinguish regular road from road markings and roadsides. First, an adapted 

ASINVOSnet is applied. Subsequently, to get an accurate segmentation, the network's output is 
postprocessed and upsampled considering the network's properties. 

To detect the limits of the lane, we follow the workflow shown in Figure 5: First, we apply 
the neural network to the image. Then, a threshold is used to get binary masks. Finally, 
these masks are upsampled considering both the input shape and the overall stride of the 
neural network. Since the mask representing regular road is not sufficient to detect the 
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entire lane, we follow a fusion strategy as shown in Figure 6 to get a single mask of lane 
limiting structures. 
 

 
Figure 6 - Workflow for combing the masks representing road markings and roadsides. While roadsides are 

supposed to appear at the outer borders only, road markings can appear everywhere due to road narrows on 
both sides. 

Given the fused mask containing all lane limiting elements, we can estimate the lane's 
position. First, we sum up the elements along the driving direction to get the cross-section 
of the road. Next, the cross-section is divided into several segments using a threshold. 
Since road markings, like arrows, may lead to disconnected parts, we start from the largest 
central segment and follow a rule-based fusion strategy incorporating the specifications for 
legitimate roadway widths to finally detect the lane. 
For evaluating the lane detection, we used 1,637 manually annotated high-resolution road 
images, showing ten meters of a lane each. The images are taken from several German 
federal highways. Figure 7 shows exemplary results for lane detection. In 1,541 of the 
1,637 test images, the lane could be detected correctly (94.14%). Road markings in the 
middle of the lane can be handled correctly. Errors were mainly caused by faded road 
markings leading to missed lane limits. 
 

 
Figure 7 - Results for lane grid detection (green). Road markings in the middle of the lane (right) can be 

handled correctly. The mask showing potential lane limits is highlighted red. 

4.2. Training of the distress detector 

We have trained several neural networks with different network architectures and adapted 
training methods to obtain a capable distress classifier that is both accurate and 
reasonably fast. We have trained classic VGG-based deep neural networks that were also 
used in [1] as well as Residual Neural Networks (ResNets) [25] that represent a more 
modern network architecture. Furthermore, we have trained a traditional machine learning 
approach that extracts HOG features and Local Binary Patterns from the image patches 
and uses an SVM for classification. 
For comparison, the classifiers were trained on the binary decision problem (distress vs. 
no distress) and the 50k subset and additional data augmentation has been applied. The 
training was carried out on the 64x64 pixels training dataset only. The best classifier was 
selected on the valid-test dataset, and the final classification results were obtained on the 
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test dataset. We computed the F1 score, which considers both precision and recall, and 
have found to be most useful to measure performance on the GAPs dataset [1]. The 
results that are given in Figure 8 clearly show the benefit of the deep-learning-based 
detectors. The deep networks can learn a representation of distress, that performs much 
better than the hand-crafted features used in the classic machine learning approach.  
 

 
Figure 8 - F1-scores on test dataset for different distress classifiers. Patch size of 64x64 pixels is used. 

To further improve the performance, we tested if the detection can be improved by adding 
more context. Therefore, we trained the VGG-based network and the ResNet on different 
patch sizes of the GAPs dataset. Figure 9 reveals that both networks greatly benefit from 
additional context information. However, it also becomes evident that the ResNet is more 
suitable for distress detection. Since it also requires less computational power during 
training and inference, we opted for that network architecture and a patch size of 160 
pixels for the final distress detection system. Although the performance on the test dataset 
improves slightly for patch sizes above 160 pixels the additional performance comes at the 
cost of additional computational complexity. 

 
Figure 9 - Comparison between F1 scores on the test dataset for VGG-based network and Resnet for 

different patch sizes. 

All experiments presented so far are carried out on the 50k subset. Therefore, we also 
evaluated the classifier performance if training is performed on the full dataset. It turns out 
that the performance is almost equal for both datasets if no data augmentation is applied 
(F1 score of 0.8573 on the 50k dataset; F1 score of 0.8534 on the full dataset). Therefore, 
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the needed variance to train a versatile detector seems to be captured by the 50k dataset 
already. 
In a final step, we reduced the computational complexity of the classifier by reducing the 
number of network layers to the required minimum. While all other experiments have been 
carried out using 34-layer ResNets, we were able to reduce the number of layers to 18 
using stochastic depth and dropout.  
Exemplary results of the ResNet based distress detector are shown in Figure 10. 
 

 
Figure 10 - Examples of distress detection. The detection results are colored using a blue to red color map 

with blue indicating no distress. 

4.3. Embedding detection results into the RMA process 

The detection results generated by our system are promising already. However, as we 
have shown in [26] the network output does not always resemble probability values, 
especially if the data differs significantly from the training data. Therefore, the decisions 
taken by the neural network must be reviewed by a human operator to guarantee high-
quality standards. Operators can see the overlaid detection results as shown in Figure 10. 
Therefore, they can focus on regions where the network is probably uncertain, leading to a 
significant reduction in workload. Additionally, the detection results are transferred to the 
RMA grid based on thresholding (see Figure 11) such that operator just needs to change 
erroneous detection. Thus, the evaluation process is sped up. 
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Figure 11 – Embedding of the distress detection result into the RMA process. The operator needs to review 
the proposed distress detections only. As usual, the operator has also access to the frontal image and the 

GPS position. 

5. COMPARISON WITH HUMAN PERFORMANCE 

Validation of the system is carried out by comparing the results of our system (not 
reviewed by an operator) with the results of an RMA process carried out by a skilled 
human operator. The test data comprises 2.5 kilometers of a single lane on a German 
freeway (reference track 1) and 5 kilometers of city roads (reference track 2). 
Table 2 shows the high compliance of automated and human results. This shows that the 
human operator must intervene only rarely. Additionally, we observed that intact road is 
detected very securely. Taking the average number of 10-meter images with no distress at 
all into account, the number of images that can be skipped by a human operator is 30% for 
freeways and 14% for federal roads. Another speed-up is achieved by focusing on the 
highlighted distress regions only. In sum, the analysis process might be sped up by factor 
up to 2 based on limited observations that far. 
 

Table 2 - Compliance of automated distress detection with human results measured by accuracy. 

 reference track 1 reference track 2 

cracks 93% 91% 

inlaid patches 95% 96% 

applied patches 99% 96% 

potholes 98% 98% 

open joints 96% 100% 

6. CONCLUSION 

Frequent road inspections and a timely assessment of the recorded data are the keys for 
efficient road maintenance. The proposed system can largely improve the time-consuming 
process of distress detection on recorded road images. To get a deep neural network 
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capable of doing these analyses at human-like performance, we did extensive studies. 
First, we created a high-quality dataset. Then we evaluated several state-of-the-art deep 
neural networks for visual image analysis, by training them on our road dataset. Lastly, we 
derived our network architecture, which is both fast and accurate and outperforms 
classical machine learning and computer vision methods by far. Trials with operators have 
shown that a high-quality analysis process with humans in the loop can be sped up by 
factor up to 2. This does not only save human operation time but also improves the 
labeling quality by providing consistent detections as the automatic system does not suffer 
during the tedious process. 
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