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ABSTRACT

With the rise of deep learning within medical applications,
questions about classification confidence become of major in-
terest as misclassifications might have serious impact on hu-
man health. While multiple ways of confidence estimation
have been proposed, most of them suffer from computational
inefficiency or low statistical accuracy. We utilize a modi-
fied version of the method introduced by DeVries et al. for
one-shot confidence estimation and show its application for
colorectal cancer liver metastases growth prediction. Further-
more, we propose a psychologically motivated generalized
training framework called ”deep metamemory” comparable
to the idea of curriculum learning, which utilizes confidence
estimation for efficient training augmentation with improved
classification performance on unseen data.

Index Terms— deep learning, certainty estimation, cur-
riculum learning, colorectal cancer, tumor growth prediction

1. INTRODUCTION

Due to their paramount performance in a wide range of tasks,
deep neural networks have been applied for highly demand-
ing tasks like autonomous driving [1], earth-quake prediction
[2], or medical image analysis [3][4]. All these domains set
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hard limits for the maximum misclassification rate. Within
the medical domain, this issue is of particular importance,
as the consequences of false classifications might lead to no
or mistreatment and subsequently even death. Big and com-
prehensive datasets are rare, leading to a situation where the
base population is often not sufficiently represented within the
training dataset. In turn, this leads to a potentially higher mis-
classification rate as it becomes more likely that a classifier is
applied to cases outside the known problem space.

Uncertainty estimation describes the process of giving
a profound guess on the probability of an appropiate classi-
fication resulting in a grounded estimate ci ∈ {0, 1} ∈ R
for sample i with a known maximum misclassification rate of
mi = (1− ci).

Uncertainty estimation for neural networks has recently
shown to be of emerging interest. Most work on this topic
focusses on the utilization of approaches of variational infer-
ence, e.g. Monte-Carlo Dropout [5], Stochastic Batch Nor-
malization [6], or model ensemble techniques [7]. Variational
inference methods, i.e. approximating probability densities
through optimization [8], are mostly based on the idea of find-
ing specific parameters of an assumed well-known probability
distribution over the network’s posteriors to give a statistically
founded estimate on its variation. The majority of the men-
tioned techniques require either the network to be run numer-
ous times or to provide a multitude of instances of the same
or a partly modified network, resulting in significantly higher
computational effort.

Late research has also focussed on a special type of prob-
abilistic networks, called Bayesian Neural Networks (BNNs)
[9]. BNNs differ in that way as they inherently provide a
probabilistically well-grounded framework for uncertainty.
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This is implemented by keeping track of the networks train-
ing process through maintaining not only one fixed weight
for each connection, but by modelling each weight as a
probabilistic function. Unfortunately, BNNs are thus compu-
tationally inefficient with respect to the classification goal and
their application is restricted by time-consumption in training
and application phase.

A popular way to gain confidence estimates is to interpret
the output probabilities themselves, following the assump-
tion that higher output activations tend to be associated with
a higher probability of a confident estimate [10]. However,
while this is often the case when a classification criterion is
appropriate, it may not necessarily be applicable to any case.

In contrast, this work tries to provide a generalized frame-
work for a one-shot uncertainty estimate for deep neural net-
works, and furthermore utilizes this estimate for knowledge
gain within training with a focus on small datasets as typically
faced within clinical studies. Using a reinterpretation of meta-
knowledge in terms of neural networks, we propose a novel
neural network design implementing probability estimation
with inherent knowledge of error in an integrated training
process called deep metamemory. Our approach provides
an efficiency enhanced training and an improved overall clas-
sification performance through uncertainty-driven knowledge
acquisition. It does not require an extensive redesign of the
network architecture but only minor modifications and is ap-
plicable to nearly arbitrary network designs.

2. BACKGROUND

Estimation of classifier knowledge can be seen as second-
order knowledge, as it is based on knowledge itself. Within
human learning, cognitive psychology deals with this topic
within the scope of metacognition (a term for thinking about
thinking). Within this domain, knowledge about knowledge is
referred to as metamemory [11].

Meta-knowledge may intuitively be assumed to be diffi-
cult to estimate, as the estimation of the confidence might
seem to require the actual knowledge about the sample’s la-
bel as well as the belonging to the familiar population. How-
ever, research in psychology shows that this is not necessarily
the case. While humans might not be able to correctly reply
to a given question, they are reasonably well in estimating
whether they can find a fairly justified answer, i.e. give an
estimate on problem difficulty with respect to current knowl-
edge [12].

3. BASE APPROACH

Commonly, learning in neural networks is modeled using nu-
merical optimization over the network weights w with respect
to the network loss L as a function of the network’s output p

and the ground truth y, i.e. to solve minL(p, y) . The pro-
posed approach (see Sec. 4) is based on the confidence es-
timation technique of DeVries et al.[13]. Within their work,
they propose the augmentation of the original network with
another network for confidence estimation. This additional
network has a single-neuron output representing the confi-
dence estimate ci(xi) ∈ R : 0 ≤ ci ≤ 1 for sample i with
input xi based on the output of one of the original network’s
hidden layers (e.g. the pre-output layer). DeVries et al. intro-
duce a derived output probability function p′i employing the
current confidence estimate ci for inducing hints yi (i.e. the
ground-truth) into the training procedure:

p′i = ci · pi + (1− ci) · yi (1)

The classifer is trained using the binary crossentropy for the
derived probability estimate:

Lp = −
m∑
k=0

log(p′i,m) · yi,m (2)

with m being the number of outputs. However, this procedure
can be applied to arbitrary loss functions. A separate loss
function is introduced for assigning hints with costs:

Lc = −
∑

log(c) · λ (3)

where λ is a scaling parameter dynamically adapted while
training to enforce the classifier to always produce the same
overall confidence loss β for hinting independent of the net-
work’s overall confidence:

Lc ≈ β (4)

This is necessary to preserve learning, as it otherwise con-
verges to a solution where the classifer does a) take hints for
every decision while certainty converges to 0 (∀xi : ci → 0),
thus not learning the actual problem, or reversed, b) ∀xi :
ci → 1, so no confidence loss is produced (i.e. Lc = 0, in-
dependent of the actual input). Case b reduces the problem
to the original one with no (reasonable) confidence estimate,
while a prevents the network from learning the actual training
task itself. The parameter β therefore is an additional design
parameter and has to be chosen before training. However, De-
Vries and Taylor show that the actual quality of the estimates
does not highly depend on the concrete choice of β within
a wide range of reasonable values [13]. The overall loss is
formed as:

L = Lp + Lc (5)

enforcing a simultaneous optimization of the training as well
as the confidence estimation task.

4. METHODS

4.1. Metamemory Importance Sampling

Humans actively utilize metamemory for selective learning
(Sec. 2). This process, interpretable as information weight-

IEEE Int. Symposium on Biomedical Imaging (ISBI), pp. 1298-1302, IEEE 2019 



ing, can directly be integrated into the neural network train-
ing process in a bootstrapping-like manner. Given a confi-
dence estimation method, we propose the following cyclic al-
gorithm:

1. Predict classifier confidences C = c0, ..., cn∀xi ∈ X
with ci = c(xi) and samples X

2. Calculate confidence based sampling probabilities Π =
π0, ...πn.

3. Set importance weights for training sample generator
G according to the sample importances Π

4. Train network for one epoch with generator G

Sampling probabilities πi for samples xi are calculated as
the normalized inverse classifier certainty estimate:

πi =
1− ci∑

k=0,..,|X|
(1− ci)

(6)

To stabilize the training, we transform sampling probabil-
ities π′i into a logarithmic equal distribution within an interval
I = [0.1, 1] using inverse transform sampling RSlogeq (πi),
prohibitting very high or low sampling probabilities:

π′i = RSlogeq

 1− ci∑
k=0,..,|X|

(1− ci)

→ [0.1, 1] (7)

4.2. Model augmentation

The network gets augmented by an additional confidence es-
timation network with one sigmoid confidence output appen-
dend after the pre-output fully-connected layer.

In contrast to the approach from DeVries[13], we inte-
grate the choice of β into our network. The network receives
an additional β-estimation lane, consisting of a constant input
of 1 and an additional layer with one neuron, whose scalar
product output ŷβ = β̂ is interpreted as the current estimate
of β. This route is trained together with the actual training
time optimization. ŷβ is adapted with respect to the confi-
dence estimation error using the mean squared error between
the estimated and the actual β parameter:

Lβ = ||ŷβ − β||2 (8)

We start with a target value of β = 1 and adjust β after
each epoch according to:

β′ =
1

n

n∑
i

Lp,i + Lc,i , β ← β′ (9)

to not significantly exeed the average loss induced by training
and confidence estimation. Adjusting β to be directly cor-
related to the task loss adjusts inter-class-margins’ width to

be correlated to the actual classifier performance and, thus,
should lead to a more grounded confidence estimate.

The weight wβ̂ can directly be interpreted as the confi-
dence loss weighting variable λ. This is a remarkable differ-
ence to the approach from [13], as λ is optimized together
with the actual training task. As already mentioned, the pro-
posed augmentation can be applied to any existing or pre-
trained network.

As the models confidence guess is based on an inner layer,
the confidence task could also interfer with the actual training
task. To circumvent this, the confidence estimation is trained
after an initial cooldown period as we experienced major in-
terferences to mainly occur within the very early training.

5. EXPERIMENTS

We train our model given the above definition using the Adam
optimizer [14] with an initial learning rate of lr = 1 · 10−3.
We reduce lr by half at plateaus of at least 15 epochs with no
improvement. The training is stopped after 35 epochs with no
improvement.

5.1. Metrics

We chose to use the Matthew’s correlation coefficient Φ
on the validation data set as the evaluation metric, as it is
zero-centered and balanced, making it the perfect measure
when no class weight choice is possible at training time.
We furthermore provide the values of accuracy (ACC), F1
score, true positive rate (TPR or sensitivity), true negative
rate (TNR or specifity), positive predictive value (PPV) and
negative predictive value (NPV), and area under the ROC
curve (AUC). Significance tests were done using two-tailed
z-test with 10,000 iterations of bootstrapping [15].

5.2. Cifar-10

We first evaluated our approach using the Cifar 10 dataset
[16]. Therefore we chose a convolutional neural network with
four blocks of 3x3 convolutions (32, 64, 128 and 196 fil-
ters), batch normalization, leaky ReLU activation and 2x2
max-pooling, followed by two additional fully-connected lay-
ers with 128 neurons each, followed by a 10-neuron softmax
output layer. We compared training with augmentation and
confidence importance sampling (metamemory) versus train-
ing without confidence augmentation as a baseline (BL). We
also trained one model using the confidence augmentation but
without confidence importance sampling (conf. only) for an
approximation of the error induced to the training problem by
an additional confidence estimation task. We used micro av-
eraging and 1-vs-all classification (which obviously leads to
higher accuracy values). We did not provide PPV and NPV
as they reduce to TPR and TNR with 1-vs-all classification:
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BL metamemory conf. only sig.
ACC .952 .955 .917 ***
F1 .763 .774 .576 ***

TPR .759 .775 .579 ***
TNR .973 .975 .952 ***
MCC .737 .746 .533 ***
AUC .971 .969 .909 ***

BL and importance sampled metamemory outperformed con-
fidence augmentation only with respect to all tested metrics
and p-values markedly below 1 ·10−3 (***). Although a gen-
eral trend can be seen, there were no significant differences
between the baseline and the proposed metamemory approach
(α = .05). Spearman’s rank correlation coefficient between
confidence and target class probability was measured

rS =
cov(rgc, rgpy )

σrgcσrgpy
= .508 (10)

5.3. Cifar-100

We also evaluated our approach on the more complex Cifar-
100 dataset.

BL metamemory sig.
ACC .986 .988
F1 .334 .385 *

TPR .336 .384 *
TNR .993 .994
MCC .332 .380 *
AUC .568 .592 *

The effects of metamemory importance sampling over the
baseline approach were significant for F1, TPR, MCC and
AUC (α < .05 *). As expected, confidence estimation ac-
curacy was correlated to problem difficulty with rS = .225,
which is significantly lower than rS on the Cifar-10 dataset.

5.4. Radiologic image data

We expect our method to be especially beneficial when train-
ing data is rare, which is typical for clinical studies. We ap-
plied our method to an enlarged set of the data from [17]
with masked 2D-views of colorectal cancer liver metastases
in computed tomography images:

samples lesions scans patients
592 320 138 75

As we have few data, we employ a very simple convolu-
tional neural network with batch normalization, one 8-neuron
ReLU-layer and an additional softmax output with a total of
79,127 parameters with 4-fold cross-validation. The network
is pretrained using an autoencoder architecture to reduce the
possible parameter space. Tumor growth classification was
done using the Response Evaluation Criteria in Solid Tumors

(RECIST) lesion assessment, which utilizes the maximum di-
ameter Ø within one slice. For sample i, we used the lesion
baseline xi,0 as well as one followup scan xi,t to predict the
RECIST lesion progression status yi,t+1:

yi,t+1 =

{
1 if Øi,t+1/Øi,t ≥ 1.2

0 otherwise
(11)

which equals the lesion progression status according to the
RECIST progessive disease lesion assessment criterion. As
the test set was markedly smaller than for Cifar-10 and Cifar-
100, we also report standard deviations:

BL Metamemory sig.
ACC .736± .018 .712± .020
F1 .298± .040 .341± .037

TPR .408± .053 .543± .054 **
TNR .787± .018 .739± .019 **
PPV .234± .036 .248± .032
NPV .893± .014 .911± .014
MCC .157± .047 .213± .045
AUC .604± .037 .675± .036 *

Significant differences were noted with stars (p < .05∗,
.02 ∗ ∗). TPR and TNR differences reflect class preference,
while AUC shows superiority for the metamemory approach.
Averaged Spearman’s rank correlation between confidence
and target class probability over all folds was rS = .251.

6. DISCUSSION

As shown in Sec. 5.2, our proposed metamemory importance
sampling seems to reduce interferences of the confidence es-
timation with the classification task, as it performed signif-
icantly better than the confidence estimation network only,
while preserving a significant correlation to test time classi-
fication performance. The results in Sec. 5.3 show that the
approach might also be beneficial with respect to the final
classification performance. This improvement becomes even
clearer for smaller dataset sizes which are typically found in
clinical studies, as shown in Sec. 5.4, although due to few data
significance could not be shown with respect to all metrics.

The process of metamemory importance sampling might
seem similar to the idea of curriculum learning [18]. How-
ever, there are major differences. First, sample difficulty is
determined not by a human expert or heuristically but de-
duced within the training process. Difficulty might vary with
respect to the current learning state of the network, just as hu-
man learning difficulty depends on prior knowledge and un-
derstanding. Also, curriculum learning modifies the training
time working set based on a monotonically increased diffi-
culty function. In contrast, our approach is cyclic and defines
difficulty based on the network’s current state, meaning sam-
ples get omitted and re-introduced as needed. Future research
will further analyze the training time reduction potential as
well as the improvements for the classification performance.
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