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Abstract— Although, due to recent deep learning techniques,
person detection seems to be solved in the computer vision
domain, it is still an issue in mobile robotics. On a robot only
limited computing capacities are available. The challenge gets
even more difficalt when operating in an environment, with
people in poses different from the standard upright ones. In
this work the environment of a supermarket is considered.
Unlike most scenarios targeted by the community, persons not
only occur in standing postures, but also grasping into the
shelves or squatting in front of them. Furthermore, people are
heavily occluded, e.g. by shopping carts. In such a challenging
environment, it is important to perceive people early enough
and in real-time in order to enable a socially aware navigation.
Classical person detectors often suffer from a high posture
variance or do not achieve acceptable real-time detection rates.
For this reason, different components from the 3D object
detection domain have been used to create a new robust person
detector for mobile application. Operating on 3D point clouds
allows fast detections in real-time up to our goal distance of ten
meters and above using the Kinect2 depth sensor. The detector
can even differentiate between typical postures of customers
who stand or squat in front of shelves.

I. INTRODUCTION

In this paper we consider the scenario of a mobile robot

operating in a supermarket. In continuation of our earlier
research in the field of assistive shopping guides for do-it-
yourself stores [1], our long term goal is the development
of a robot for the autonomous detection of out-of-stocks in
retail stores during opening hours. Perceiving humans like
customers and employees early and having information about
their posture, should enable our mobile robot to safely and
politely navigate through the store.
The scenery of a supermarket waits with several challenges
for a robot when detecting people and their postures to reason
about further behaviors. The narrow, long corridors, as shown
in Fig. 2a, require a detection of persons in distances of up
to ten meters and above. Furthermore, the detection needs to
be robust against different poses, like grasping, squatting and
bending poses, as well as occlusions by shopping carts, goods
on pallets, or other humans. Fig. 2 shows some situations
from a typical supermarket. Besides these environmental
constraints, there are also hardware limitations determining
the choice of an appropriate person detector for the given
scenario.
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Fig. 1: Example scene and output of our supermarket person
detector (Section IIT). The green box indicates a standing,
the red box a squatting person.

In this paper we present a person detection and pose esti-
mation system for mobile robotic platforms which directly
operates in the metrical 3D space and thus, enables high de-
tection rates on a standard consumer CPU. More specifically,
we combined a fast, depth based person candidate generation
technique with components commonly used in the 3D object
detection and map registration domain. Experiments showed
that our system outperforms classical RGB and depth detec-
tion approaches commonly used in robotics and is also able
to robustly estimate the posture of people.

The remainder of this paper is structured as follows. The next
section briefly describes the State of the Art of vision-based
person detection. Our own 3D person detector is proposed
in detail in section III followed by a section on evaluation
results.

II. RELATED WORK

Considering the task of person detection in color images,
deep learning approaches, keep breaking records and are
probably the first choice when it comes to vision tasks.
Detectors like [2] perform incredibly good on upright pedes-
trians. In addition to simple bounding boxes, modern ap-
proaches can also estimate human skeletons [3], and it is
even possible to do a per pixel segmentation [4]. With [5]
and [6] deep learning has already arrived in the world of
3D data. There, the 3D information are converted into a
voxel grid structure in order to apply convolutional neural
networks. Unfortunately, deep learning approaches require
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Fig. 2: A typical shelf corridor in a supermarket (a) and
3D point clouds of human poses in this environment (b - d).
The poses differ greatly from pedestrians on the street. Here,
people grab into a shelf (b), squat in front of a shelf (c), or
push a shopping cart (d) which causes heavy occlusions.

specialized hardware with a high power consumption if real-
time detection rates should be reached. This conflicts with
the limited battery capacity of our mobile robot. Furthermore,
in complex applications, like in [7], several modules for lo-
calization, navigation, person tracking, emergency handling,
and other application specific services run in parallel and
need to share hardware resources. Another drawback of deep
learning is the need for a lot of data for training, which is
hard to acquire in scenarios where no public data sets are
available, like in our target supermarket environment.

More suitable for a mobile platform with limited resources
are classical detection approaches. Here, the HOG-Detector
[8] or its part-based extension [9] are famous representatives.
Although, both approaches run on the CPU, they hardly reach
real-time detection rates. This is because of the high number
of image scales which need to be classified in order to detect
persons of different sizes and distances. In [10] this problem
is addressed by reducing the number of scales by means of
scaling the classifiers instead.

By adding depth information, the detection can be acceler-
ated even more. In [11] and [12] the number of candidates to
be classified by an HOG-Detector are drastically reduced by
exploiting depth or point cloud information. Depth images
can also be used for classification directly. The HOD-
Detector in [13] adapts the HOG idea on depth images
and outperforms its RGB counterpart due to suboptimal
illumination conditions in their data set. In [14] the HOD
detector is applied after a graph based segmentation. In this
way, frame rates of 30 Hz on a single CPU core could be

reached. In [15] a segmentation based on 3D point clouds
is combined with a depth template matching as detector and
thus, reaches detection rates of more than 30 fps on a single
CPU core. Those classical image detectors (color and depth)
are mostly designed for the detection of upright persons.
Therefore, they seem to be inflexible with respect to a high
pose variance as given in our scenario. To overcome these
restrictions, in [16] for example, eight separate classifiers had
to be trained in order to detect lying people in all orientations
with the drawback of an increased detection time.

While some approaches utilize metrical 3D representations,
like 3D point clouds, only for a segmentation as a preprocess-
ing step, the number of detectors which also do the detection
task on this representation is rare. Nevertheless, metrical 3D
data seem to offer more potential when it comes to a higher
number of poses. In [17] for example, the task of lying
person detection was solved by a single detector in real-
time using metrical 3D data only. The detection of upright
people in 3D point clouds was also done before [18], [19].
Both approaches employ simpler features and segmentation
strategies compared to the proposed solution.

3D data seem to offer several advantages for a person
detection system like in our scenario. Besides the possibility
for easy and fast candidate generation based on geometric
constraints, the variance of human shapes in 3D data on a
parts scale appears to be drastically lower than variances in
color images even under presence of unusual poses.

Hence, we decided to develop a 3D person detection system
by ourselves in order to create a new person detector suitable
to fulfill the constraints of our supermarket scenario.

III. PERSON DETECTION APPROACH

An overview of our detection system is shown in Fig.
3. During the preprocessing, a 3D point cloud is constructed
from a single depth image. The aim of the following segmen-
tation step is to extract clusters which consist either of all
points belonging to a person, or all points belonging to other
objects, i.e. negative samples. For each candidate cluster, a
feature vector is computed and normalized afterwards. In the
last step, a classifier assigns each cluster either to the positive
human class, i.e. standing or non-standing person, or to the
negative non-person class.

In the following the single steps are explained more in detail.

A. Preprocessing

Since we want to operate in the metrical 3D space, we have
to convert the depth image, i.e. the input of our system, into
a 3D point cloud at first. Converting 512 x 424 depth pixels
results in a point cloud of more than 200,000 3D points. In
order to handle this huge amount of data, a voxel grid filter
as in [12] is used to create a down-sampled version of the
input scene. As cell size of the filter we chose 6x6x6 em?,
which is approximately the mean distance between points
in the unfiltered cloud in a distance of 10 meters and thus,
matches our specifications. In addition to the reduction of
data, the filter also provides a consistent point density.
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Fig. 3: Overview of our system architecture. After converting the input depth image into a point cloud in the right coordinate
frame, we apply a segmentation step in order to generate candidate clusters. For each cluster a feature vector is calculated

afterwards, which finally are classified successively.

B. Candidate Generation

Since a point cloud is stored as an unordered list of points,
neighborhood operations are more expensive than in 2D
images where pixels are stored in a fix grid structure. Hence,
for 3D point clouds we need a more complex approach for
candidate generation than the sliding window approach on
images. A sliding box, i.e. the 3D variant, would result in
low frame rates otherwise. For this reason, we adopted the
candidate generator of [15] for cluster extraction. In order
to reduce the search space, a structure labeling is applied to
the point cloud resulting in four different height bands. The
ground plane band consists of all points on the ground which
do not have to be considered for clustering. The elevated
structures band at the other end contains all points at a height
where no people are assumed. Given the assumption, that
there will always be a free space above the heads of people
the object band and a free space corridor are defined. If there
is a high point density in the free space corridor, there will
not be any person below this area. All remaining points of
the object band, not filtered due to a high point density in the
free space, are projected onto a 2D histogram in the ground
plane. After smoothing with a Gaussian kernel, connected
components are extracted in the histogram using the Quick
Shift algorithm [20]. Each connected component corresponds
to one candidate cluster. We expect that persons close to each
other or close to shelves can be better separated by using
the Quick Shift segmentation than by a simple Euclidean
clustering. For our scenario, we limited the ground plane
height to 0.05m, the object band to 2.05m and the free space
corridor to 2.25m. The bin size of the ground plane histogram
was set to 0.06m in both directions.

These parameters performed best for separating people from
other objects and from each other in the given supermarket
environment.

C. Feature Computation and used Features

After extracting candidate point clusters from the captured

scene, each cluster is processed separately. The remaining
task of the system is to decide which cluster represents a
person. To do so, a feature vector for every cluster is calcu-
lated in the next step. We can utilize different features for a
description. Since we are confronted with a high percentage
of occluded people, we expected features covering only a
small local area of a cluster to be well-suited in our scenario.
In particular, the IRON features previously used for map
matching [21] and lying person detection [17], the FPFH
[22], and SHOT [23] features from the registration and object
recognition domain have been considered. All these features
compute a histogram as descriptor and describe the curvature
of an object by exploiting local surface normals. As it can
be seen in Fig. 4, normals of people differ from the irregular
and confused surfaces of shelves containing the products. To
improve occlusion handling further, we included a layering
process similar as introduced in [19] into our system (see
Fig. 5). The main idea is to divide the cluster into several sub
clusters along the vertical dimension and calculate separate
features per sub cluster. Concatenating all of them together
results in a more specific feature representation of the com-
plete cluster. In order to ensure a fixed size feature vector,
we use a fixed number of layers from the ground to the top
of the cluster.
Since a local feature is calculated for each point in a given
layer, we have to combine all of them into a common
representation. This is achieved by calculating the average
feature histogram per layer, where empty layers due to
occlusions are represented by empty histograms. The whole
process is visualized in Fig. 5. We conduct experiments in
Section IV-B in order to find the optimal number of layers
for our supermarket scenario.
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Fig. 4: The surface normals of a shelf (top) and the normals
for a squatting and a standing person (bottom).

Additionally, we compared the VFH [24] as a global feature
to the local features for people detection in our scenario.

D. Classification

To assign a class label (person/no person) to a point
cluster, we need to classify the feature vectors computed
in the previous step. We evaluated the performance of the
popular machine learning techniques AdaBoost [25] and
Support Vector Machines (SVM) [26] on our feature vectors.
The achieved results are presented in the next section. In
addition, we replaced the classifier with a 1-vs-1-multi-class
SVM, which not only enables a detection of persons in
different poses, but also to distinguish between their postures
as presented in section IV-D.

IV. EXPERIMENTS

In this section, we evaluate the performance of our 3D
point cloud person detector. Several parts of the system are
exchangeable. For this reason, we want to show at first the
best configuration for our scenario. Then, this configuration
is compared to other available detectors, i.e. detectors based
on HOG-features [27] and [10], the depth template detector
from [15] and an adapted variant of the system in [17].
Furthermore, we include the approach of [3] as a deep
learning representative. Finally, it is shown how the system
can be used to differentiate between different postures.

» Histogram
per layer

—

Feature vector

FEEEE R

Average histograms

Fig. 5: Feature extraction process. A point cloud cluster is
grouped into a fixed set of layers. Per layer, an average local
feature descriptor is calculated. Concatenating the histograms
results in the feature vector of the cluster.

A. Supermarket Data Set

For training and test we need a data set which contains
people in different postures, including squatting and grasp-
ing, as well as people with shopping carts. Furthermore, the
data must be available as RGB- and depth images in order
to compare our point cloud detector against other types of
detectors. Since to the best of our knowledge such a scenario
was never treated before we recorded our own dataset!.
For training, data in a local mid-sized German supermarket
and in our lab has been recorded using a Kinect2 sensor. We
manually annotated the ground truth in each frame into three
categories: standing people, squatting people, and others,
which contains e.g. all postures between sitting and standing.
All samples are in a distance up to 18 meters. Besides the
positive samples, about 50,000 negative examples have been
sampled from images containing no persons.

For testing, we recorded data in the supermarket only, but
on a seperate day to prove generalization capability. Our test
set also contains people up to a distance of 18 meters and
the same categories as the training set.

The distribution of both data sets is given in Table 1. Note,

standing | squatting | other | #persons | #images
Training 6511 9041 375 15927 15309
Test 3702 707 638 5047 8201

TABLE I: Number of persons and total number of images
in our supermarket data sets. The persons are additionally
subdivided into postures.

!Unfortunately, due to German data protection legislation we are not
authorized do make the dataset available.
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Fig. 6: Comparison of different module combinations of our
person detector on a subset of our data set. AB: AdaBoost,
L: Number of layers

that both contain persons with different levels of occlusions,
labeled as in [28].

B. Finding the Best Detector Combination

As mentioned at the beginning, our system has several

exchangeable components comprising the number of layers,
the kind of features, and the type of classifier. We compared
all combinations by using AdaBoost as classifier, because
it is trained much faster than a nonlinear SVM. The best
combinations were than trained with the SVM, in order to
compare both classifiers. The most interesting results are
visualized in Fig. 6 as detection error tradeoff curves. Note,
that, due to large training times, we used only a subset
of our data in order to find the best detector combination.
In Fig. 6, the dashed lines show the influence of dividing
a candidate point cloud cluster into different numbers of
layers when using the FPFH as descriptor exemplarily.
As expected, increasing the number of layers provides an
explicit performance boost because the detector can handle
occlusions in a better way. But the improvement is limited
to five layers for the FPFH, since more subdivisions result in
very thin layers which in turn seem to reduce descriptiveness,
especially for squatting postures. We repeated this layering
approach for all tested features. The best result per feature is
presented in Fig. 6 with dotted lines. As it can be seen, FPFH
in five layers stands as the best feature-layer-combination
deploying AdaBoost. Replacing the classifier with a non-
linear SVM using the RBF kernel function afterwards, lead
to a remarkable increase of the detection performance.
In conclusion, our best detector combination divides each
point cloud cluster into five layers, calculates FPFH-features
and uses a nonlinear SVM. As we will show in Section
IV-D, switching from two-class SVM to multi-class SVM
additionally enables our detector to differentiate between
standing and squatting postures.

C. Results

We compared our supermarket person detector with the
RGB approaches [27] and [10], which we call PartHOG
and FPDW respectively. Furthermore, we tested the skeleton
estimation framework OpenPose [3] as representative for
deep learning approaches, because it is already trained on a
lot of different human poses. OpenPose is meant to run on a
graphics card, but also offers a much slower implementation
which runs on the CPU only. As a reminder, on our platform
we have limited battery capacity which does not allow us to
use high energy consuming GPUs for such an approach. But
for completeness, we also benchmarked our detector against
both variants of this modern deep learning system.

As 3D competitors, we employed the upper body depth
template [15] and the NDT-Detector from [17].

All detectors were retrained on our data set which is
described in section IV-A, except for the depth template
and OpenPose. The first calculates a mean upper body
depth patch. Due to the diverse poses in our training data,
retraining in this case resulted in a worse performance than
the original model available online. OpenPose on the other
hand requires skeleton annotations, which our data set does
not provide. However, OpenPose was trained with about 1.5
million samples and hence, it should outperform all the other
competitors.

The results of all detectors can be found in Fig. 7. For
evaluation, we oriented ourselves to [28] and use detection
error tradeoff curves. Since the depth and the RGB sensor
have different fields of view, we only included and evaluated
samples visible in both images.

As Fig. 7 shows, except for the deep learning approach our
3D supermarket person detector works best in the presented
scenario. By doing just a single false detection every ten
images, we reach a detection rate of over 70%. The best
competitor suitable for our platform performs 10 percentage
points worse. Note that the resolution of the RGB image
of the Kinect2 is much higher, compared to the depth image
(1920 x 1080 vs. 512x424). The fact that the FPDW achieves
better detection results than the same detector that was
retrained on our data shows that this approach has problems
with the high pose variance. The bad performance of the
NDT-Detector is most probably caused by the NDT-map
representation, which is restricted up to a certain distance.
Considering samples up to 4.5m only, the performance of
the NDT-Detector increases drastically. In this case, its
performance is between the retrained PartHOG and FPDW
at 0.1 false positives per image. Overall the results indicate
that depth information are competitive to color images, even
if the resolution of the depth images is much smaller.

As expected, OpenPose as deep learning representative has
a higher detection performance on our data set than all
the other approaches. But OpenPose was trained on about
1.5 million positive training samples, which is over 94
times more compared to our 15,927 person point clouds.
Suprisingly, there is a relatively large performance difference
between the CPU and GPU version. OpenPose runs almost
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Fig. 7: Evaluation results on our supermarket test set. Dashed
lines stand for approaches, which were retrained on our data,
dotted lines indicate models available online. The blue cross
represents our detector using the multi-class-SVM where no
threshold variation is possible.

10 percentage points better on the graphics card. Neverthe-
less, we are not able to use it on our robot due to the hardware
and battery limitations as already mentioned.

Aside from the pure detection performance, detections in
real-time are mandatory for robotic applications. For this
reason, we measured the mean computation time of all
detectors. As hardware we used an Intel Core i7-7700H CPU
for all approaches, except for the GPU implementation of
OpenPose. There, we used a GeForce GTX1060 graphics
card. All CPU detectors run on a single CPU core. This is
important for our application because our robot has to carry
out further high level tasks which require CPU computing
capacities too. As Fig. 8 indicates, our supermarket person
detector provides a good trade-off between detection per-
formance and computation time without the need of a high
energy consuming graphics card. Fig. 8 also illustrates that
OpenPose on CPU is more than 30 times slower than our ap-
proach and hence, does not meet our real-time requirements.

D. Differentiating Standing and Squatting Postures

Since our system is able to detect persons in different
poses reliably, we came up with the idea to also differentiate
between standing and squatting postures. Therefore, we
substituted the two-class SVM in our system by a 1-vs-1-
multi-class SVM. This allows the system to directly detect
people as standing, squatting or other. The posture could be
used as indicator whether a person will remain at the same
place for a while or not, which is a useful information when
doing social navigation.

For evaluation of the posture estimation, we decided to leave
out the other class in our test set, because it is hard to
define rules when a certain posture counts as standing or
as squatting and thus, the transitions between all classes
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Fig. 8: Mean computation times and miss rates at 0.1 false
positives per image. Note: While all approaches run on the
CPU, OpenPose is meant to run on a GPU.

are fluent. In addition, we only consider samples with an
occlusion ratio up to 35% (i.e. the reasonable class according
to [28]) in order to have sufficient information available for
the task at hand.

As Table II shows, our system is able to correctly classify
nearly 97% of the detected standing persons. In the squatting
class, the system even makes no mistake. Fig. 1 shows
an example, how the detector can differentiate between the
postures.

As it can be seen in Fig. 7, our system is still able to reliably
detect more than 70% of all the persons in the test set by
doing just one false positve every ten images, when using a
multi-class-SVM.

V. CONCLUSIONS

In this work, we had the objective of detecting persons
in a supermarket environment with a mobile robot. Due
to several advantages of 3D data, we experimented with
different components from the 3D object detection and map
registration domain in order to achieve this goal. Thereby, we
were able to create a system for detecting people in typical
poses of that scenario. Humans can be detected correctly in
real-time up to ten meters and above on a standard customer
CPU. Furthermore, our robust detector is able to differentiate
between postures and thus, offers a good starting point for a
socially aware navigation strategy based on our approach.

ground truth
standing squatting
-8' standing 1521 (96.9%) 0 (0%)
& | squatting 48 (3.1%) 267 (100%)

TABLE II: Confusion matrix including per class accuracies
for discriminating standing and squatting people by using a

multi-class-SVM.
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