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Abstract— An essential feature for navigating socially with a
mobile robot is the upper body orientation of persons in its
vicinity. For example, in a supermarket orientation indicates
whether a person is looking at goods on the shelves or where
a person is likely to go. However, given limited computing
and battery capabilities, it is not possible to rely on high-
performance graphics cards to run large, computationally
expensive deep neural networks for orientation estimation in
real time. Nevertheless, deep learning performs quite well
for regression problems. Therefore, we tackle the problem of
upper body orientation estimation with small yet efficient deep
neural networks on a mobile robot in this paper. We employ
a fast person detection approach as preprocessing that outputs
fixed size person images before the actual estimation of the
orientation is done. The combination with lightweight networks
allows us to estimate a continuous angle in real time, even
using a CPU only. We experimentally evaluate the performance
of our system on a new, self-recorded data set consisting of
more than 100,000 RGB-D samples from 37 persons, which is
made publicly available. We also do an extensive comparison of
different network architectures and output encodings for their
applicability in estimating orientations. Furthermore, we show
that depth images are more suitable for the task of orientation
estimation than RGB images or the combination of both.

I. INTRODUCTION

In this paper, we tackle the problem of orientation es-
timation of persons with a mobile robot in a supermarket
environment. In continuation of our previous research [1],
our long term goal is to let the robot navigate through the
store during opening hours autonomously, i.e. in the presence
of customers and employees, in order to automatically detect
out-of-stocks. Since supermarkets consist of very narrow
and long aisles, it is important to have a robust situational
awareness that enables a social navigation behavior. An
essential feature in this context is the upper body orientation
of humans indicating e.g. whether a person will enter an aisle
or not. Furthermore, the upper body orientation is useful for
calculating a person’s social space [2] or to approach persons
from the right direction [3] when asking them to step aside.

In order to estimate the upper body orientation as a contin-
uous angle around the axis perpendicular to the ground, we
make use of modern deep learning techniques. Starting with
the AlexNet [4], deep learning was very successful in solving
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Fig. 1: Overview of our approach: Person images segmented
with a person detector [5] are fed into a fast convolutional
neural network (CNN) to allow precise real-time orientation
estimation on mobile platforms.

computer vision problems over the last few years. Especially
its robustness, the huge generalization capabilities, and the
fact, that relevant features are learned automatically, con-
tribute to the great success of deep learning. The major draw-
backs on the other hand are the huge amount of data required
for training and its computational complexity that often
requires high-performance graphics cards in order to reach
an inference in real time. Since mobile robots are usually
restricted with respect to computation and battery capabili-
ties, we are not able to use such high-performance hardware
on our platform. Therefore, we reduce computational costs
by relying on lightweight networks. In addition, we separate
the person detection task from orientation estimation. Instead
of applying an end-to-end approach, we only process fixed
size image patches of persons previously extracted by a
person detector as shown in Fig. 1. These patches are free of
background which simplifies the acquisition of training data
and makes the approach generic for unknown environments.

Modern robots can detect people in RGB images as well as
in 3D data due to RGB-D sensors like the Kinect2. Therefore,
we examine and compare the performance of our system with
different input types. In particular, we trained several neural
networks for orientation estimation using depth and RGB
images as well as a combination of both. Since there is no
public data set available with these kinds of input and with
highly precise ground truth labels, we recorded our own.

In summary, our main contributions are:
1) a new data set with more than 100,000 RGB-D samples

of 37 persons for upper body orientation estimation
2) we modify the existing network architecture of [6] and

do an extensive experimental comparison to the more
recent MobileNet v2 [7], different input types (RGB,
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depth, RGB-D), output encodings, and runtimes
3) a complete system for continuous orientation estimation

suitable for real-time mobile robotic applications on
CPU or GPU, comprising of a lightweight network
architecture, uncertainty modeling, and a data set

4) we have made our data set and our code including
network weights publicly available to the community1

II. RELATED WORKS

Extracting the upper body orientation from a single input
image can be realized in two ways. It can be directly
estimated or it can be derived from a skeleton estimation,
in which the orientation is part of its solution. The idea of
the latter one is to calculate joints and bones of the human
body in a first step and then to derive the orientation, i.e.
the normal vector of the sternum, via geometrical relations.
There are various approaches for skeleton estimation in the
literature, e.g. [8], [9], [10], [11]. For extracting orienta-
tion from skeleton data, 3D joint positions are necessary.
Obviously, the accuracy of extracted orientations strongly
depends on the precision of the joint estimations. However,
an accurate skeleton estimation is computational expensive
and often requires powerful graphics cards for real-time
inference. Hence, it is less suitable for a mobile platform.

For our application environment, a direct estimation of the
upper body orientation is therefore more appropriate. In this
case, features extracted from the input image are mapped to
an orientation [12], [13], [14], [15]. More recent approaches
directly feed the input into a deep neural network [16], [17],
[18]. Similar to estimating the upper body orientation is the
estimation of the head orientation [19], [6]. The head pose
could be an indicator of the direction in which a person
is looking. Since we want to let our robot operate in a
supermarket, we think this is a less robust feature for social
navigation because people keep changing their view from
shelf to shelf. However, the idea for estimating the head’s
orientation is the same: mapping an input image to one or
more orientation angles. Therefore, some approaches were
developed for estimating both orientations [15], [17].

Estimating orientation directly, head or torso, can be done
in two ways, either by classification or by regression. A large
part of the literature formulates orientation estimation as a
multi-class classification problem [12], [13], [15], [14], [16],
[17]. For this purpose, continuous orientation angles, ranging
from 0◦ to 360◦, are discretized into a fixed set of orientation
classes. Often eight classes are used, each covering a range
of 45◦. A drawback of treating orientation as classification is
that during training, neighboring classes are evaluated just as
incorrectly as more distant classes, even if two samples differ
only by a few degrees. In [20] this problem is addressed by
introducing a cost relaxation for neighboring classes into the
SVM classifier. Nevertheless, the inherent discretization error
is quite large when doing classification of orientations. Given
45◦-bins, a perfect classifier and a set of equally distributed
data samples between 0◦ and 360◦, the mean absolute error

1Our code and data set are available at:
https://www.tu-ilmenau.de/neurob/data-sets-code/rgb-d-orientation/

would be at least 11.25◦. Increasing the number of classes,
on the other hand, increases computation time and also the
number of required data for training.

Estimating continuous angles, i.e. formulating it as regres-
sion problem, promises more accurate estimates since there
is no discretization error. Examples for such approaches are
[19] and [21]. One issue with regression is the periodicity
of the angle. Predicted angles above 360◦ must be equal
to their corresponding angles in the range of [0◦, 360◦). In
[6] this problem is addressed by using two output neurons
in a neural network encoding the sine and cosine of the
estimated angles. Calculating the arctangent subsequently
results in angles in the range of [0◦, 360◦). The approach
was successfully adopted for orientation estimation of objects
in street scenes [22]. Furthermore, in [6] a specially tailored
loss function, called von Mises loss, is used to assess multiple
values of the same angle equally during training. Two output
neurons are also used in [18], in which both represent the x-
and y-components of the direction vectors of persons.

Based on related literature, we decided to rely on the direct
orientation estimation from a single input for our system.
Since we want to be as accurate as possible, we employ a
deep neural network with two output neurons for regression.
Futher details on our approach are given in Sec. IV.

III. RGB-D ORIENTATION DATA SET

Over the years, a considerable amount of data sets to
train and benchmark orientation estimation of persons were
made publicly available with RGB [23] and RGB-D [24]
data. However, to the best of our knowledge, none of them
meets our requirements of synchronized depth and RGB
data streams in combination with highly precise ground
truth labels suitable for regression. Therefore, we decided
to record our own data set using a highly precise external
ARTTRACK tracking system [25], which tracks markers us-
ing four IR-cameras with a positional precision of 0.4mm±
0.06mm [26]. One major drawback of external tracking
systems is their limited field of view, so that recorded
samples usually contain repetitive backgrounds. We tackle
this issue during data generation by subtracting a learned
background model based on depth information. We recorded
our data set with five synchronized Kinect2 RGB-D devices,
placed almost in a half circle around the recording area (see

Fig. 2: Left: Camera setup used for recording. Middle: Rod
with IR markers attached at the back of each subject. Right:
Binned histogram of ground truth angles in our data sets
visualized as polar plot. The sample count is encoded in
radial, the ground truth label in the angular dimension.
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data set persons samplesmale female
training 14 7 57717

validation 4 3 19368
test 4 5 31420

Fig. 3: Data provided in our data set. Top: Synchronized
RGB and depth images. Lower left (left to right): Cropped
point cloud, mask, masked depth image and masked RGB
image. Lower right: The distribution of our data set.

Fig. 2). This sensor configuration provides an acceptable
distribution of ground truth labels and, more importantly,
prevents interferences between the depth measurements of
opposing sensors. In order to generate ground truth labels,
two IR markers on each subject were captured by the external
tracking system. To reduce the influence of the markers in
our data, they were attached above the persons’ heads, using
a thin metallic rod under the clothes on the back (Fig. 2).
A ground truth label was then generated by projecting the
orthogonal vector from the IR markers onto the ground plane
in camera coordinates.

We aimed to split the data set in a 50-25-25 manner
for training, validation, and test, respectively. However, we
made sure that no person appears in more than one set.
Furthermore, we tried to equalize the persons’ attributes
regarding gender, clothing, and especially the clothing color.
Since it is not possible to meet all these constraints, we have
given a preference to the test set in order to get a better
statement for generalization capabilities. Therefore, the final
split of our data set slightly differs from our intended ratio.
Statistics and examples of our data set are shown in Fig. 3.
All recordings took place in December with volunteers of
our university. Hence, the clothes vary from thick jackets to
normal office wear for this time of the year. The majority of
persons are of Caucasian origin. However, one person with
Middle Eastern and two with Asian appearance are included
too. To get a high pose variance, we recorded different every
day actions like walking around, using a cell phone, or
talking to the instructor.

IV. DEEP LEARNING-BASED ORIENTATION ESTIMATION

Our goal is to estimate the orientation of persons with
a mobile robot in real time. Therefore, we only con-
sider lightweight network architectures, neglecting compu-
tationally expensive state-of-the-art architectures such as
ResNet [27] or ResNext [28]. Furthermore, since treating
orientation estimation as classification task limits precision,
we focus on continuous regression only. Due to the promis-
ing results for continuous head pose estimation in [6], we
decided in favor of the biternion net architecture as baseline
for deriving a suitable network architecture for upper body
orientation estimation.

TABLE I: Biternion net architecture [6] for different input
sizes. Abbreviations: Conv - 3×3-convolution with stride 1
and no padding, BN - batch normalization, ReL - rectified
linear activation function, Pool - non-overlapping max pool-
ing (pool size), D - dropout (dropout probability), FC - fully
connected layer, Act - output activation function.

square small square medium large
nin×46 ×46 nin× 68 ×68 nin× 123×54

Conv+BN+ReL 24×44 ×44 24× 66 ×66 24× 121×52
Conv+BN+ReL 24×42 ×42 24× 64 ×64 24× 119×50
Conv+BN+ReL - - 24× 117×48
Pool(2×2) 24×21 ×21 24× 32 ×32 -
Pool(3×2) - - 24× 39 ×24
Conv+BN+ReL 48×19 ×19 48× 30 ×30 48× 37 ×22
Conv+BN+ReL 48×17 ×17 48× 28 ×28 48× 35 ×20
Conv+BN+ReL - - 48× 33 ×18
Pool(2×2) 48× 9 ×9 48× 14 ×14 -
Pool(3×3) - - 48× 11 ×6
Conv+BN+ReL 64× 7 ×7 64× 12 ×12 64× 9 ×4
Conv+BN+ReL 64× 5 ×5 64× 10 ×10 64× 7 ×2
Pool(2×2) - 64× 5 ×5 -
D(0.2)+FC+ReL 512 512 512
D(0.5)+FC+Act nout nout nout

In the following, we first revisit the biternion net archi-
tecture. Afterwards, we apply it to the task of upper body
orientation estimation and examine the impact of different
input types and output encodings. Finally, we introduce an
adapted version of the biternion net architecture slightly
boosting the performance, and compare it to recently pub-
lished MobileNet v2 [7].

A. Biternion Net Architecture as Baseline

The biternion net architecture is inspired by the ImageNet
winning VGG architecture [29], which in general consists
of two stages. In the first stage, multiple convolutional
layers followed by one max-pooling layer are used to extract
meaningful features. Unlike the original VGG architecture,
Beyer et al. [6] further added batch normalization [30] in
order to reduce the covariate shift in the internal activation
to speed up training. In the second stage, two fully-connected
layers perform the head orientation estimation task. In con-
trast to classical regression, directly estimating the angle in
radians using a single output neuron (nout = 1), Beyer [6]
proposed to encode the angle using both sine and cosine
component (nout = 2), which they call biternion encoding.
This output encoding is bijective in the interval of [0◦, 360◦)
and takes periodicity into account. In order to prevent co-
adaption and also to improve generalization abilities, dropout
[31] is applied before each fully-connected layer. In total,
Beyer [6] proposed three slightly modified versions of the
biternion net architecture, each tailored to the fixed size of
the RGB images (nin = 3) of the data set applied to. In
the following, we refer to the different input sizes as square
small, square medium, and large. For further architecture
details, see Tab. I.

Besides handling periodicity using biternion encoding
only, [6] also addresses discontinuity in the loss function
by turning to the von Mises cost function. The von Mises
cost function is derived from the von Mises distribution [32],
which is a close approximation of the normal distribution on
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TABLE II: Mean absolute errors in degrees (averaged over
3 runs) obtained on test set by applying the biternion net
architecture using different input types and output encodings.
For each combination, the best result across the input sizes
is printed in bold. The overall best approach is underlined.

single output biternion output
square
small

square
medium large square

small
square

medium large

Depth 11.15 10.30 10.68 6.25 5.89 5.68
RGB 28.53 27.21 23.65 19.92 16.99 16.74
RGB-D 11.45 13.52 13.98 9.48 10.44 9.05

the unit circle and, therefore, suited for handling periodicity.
Since this cost function clearly outperforms the commonly
used mean squared error in [6], we decided in favor of the
von Mises cost function in all experiments too.

B. Application to Upper Body Orientation Estimation

In order to examine whether the promising results of
the biternion net architecture can be transferred to upper
body orientation estimation, we conducted a first set of
experiments on our data set. Since our data set comes
with both RGB and depth images for all samples, we were
able to compare three different types of input: RGB, depth,
and RGB-D. However, since both images provide different
statistics, a combined input as four-channel image would
lack of representational power. To take different statistics
into account, we replicated the first layers of the networks
(see dashed line in Tab. I) and joined the independent
branches right before the first pooling layer. Fusion is done
by concatenating the feature maps of both branches and by
applying a 1×1-convolution that combines the features pixel
by pixel and halves the number of feature maps. In this
way, the subsequent structure remains identical. In addition
to different input types, we evaluated both output encodings:
single output and biternion output as well. Thus, a total of 18
(3 input types × 3 input sizes × 2 output encodings) different
networks are compared in this first set of experiments.

1) Training: All networks were implemented using Ten-
sorflow [33] and trained using eight NVIDIA GTX 1080Ti
graphics cards. For parameter optimization, we used stochas-
tic gradient descent (SGD), a fixed momentum of 0.9 and a
batch size of 128. As initial learning rates, we used 0.0001,
0.001, 0.01, and 0.02, respectively. During training, the
learning rate was further adapted using a polynomial learning
rate decay. For data augmentation, we randomly flipped
the images horizontally. The final weight configuration was
chosen within 800 epochs based on the performance on the
validation set. To ensure reporting meaningful results only,
we repeated each experiment three times in a row with
different random seeds and averaged the results on the test
set. For further details on the training procedure and other
hyper parameters, we refer to the implementation.

2) Results: Tab. II shows results of the first set of experi-
ments. It is obvious that the biternion output encoding clearly
outperforms classic regression using a single output neuron
by a large margin. Since this coincides with the findings in
[6], we omitted the single output encoding in subsequent

TABLE III: Modified biternion net architecture [6] for dif-
ferent input sizes. Abbreviations are the same as in Tab. I.
Except for the last two convolutions, ”same”-padding is used.

square small square large large
nin× 48 ×48 nin× 96 ×96 nin× 126×48

2×Conv+BN+ReL 24× 48 ×48 24× 96 ×96 24× 126×48
Conv+BN+ReL - 24× 96 ×96 24× 126×48
Pool(2×2) 24× 24 ×24 - -
Pool(3×3) - - 24× 42 ×24
Pool(3×3) - 24× 32 ×32 -
2×Conv+BN+ReL 48× 24 ×24 48× 32 ×32 48× 42 ×24
Conv+BN+ReL - 48× 32 ×32 48× 42 ×24
Pool(2×2) 48× 12 ×12 48× 16 ×16 -
Pool(3×2) - - 48× 14 ×12
Conv+BN+ReL 64× 10 ×10 64× 14 ×14 64× 12 ×10
Conv+BN+ReL 64× 8 ×8 64× 12 ×12 64× 10 ×8
Pool(2×2) 64× 4 ×4 64× 6 ×6 64× 5 ×4
D(0.2)+FC+ReL 512 512 512
D(0.5)+FC+Act nout nout nout

experiments. Moreover, depth information seem to be better
suited for estimating the upper body orientation than color
information. Combining both inputs does improve the per-
formance but cannot compete with pure depth information.
Therefore, we have not pursued combined inputs any longer.
Regarding the input size, the results are very close, with the
largest size slightly ahead. As a larger input size also means
that the number of computations increases, we did not fix
the input size at this time.

C. Modified Biternion Net Architecture and MobileNet v2

While comparing different input types and output encod-
ings, we noticed that the trained networks tend to misestimate
the orientation when the person is close to the edges of the
image. We assume that this behavior results from applying
convolutions without appropriate padding since it is not pos-
sible to integrate complex features from these areas without
padding. In order to verify this assumption, we replaced
all convolutions, except the last two ones close to fully-
connected layers, with convolutions with ”same” padding,
i.e. padding of 1 pixel. Due to this change, the features maps
remain larger as well. We tried to compensate this by adding
a third pooling layer to all networks. In addition, we removed
all bias weights from the convolutional layers since each
convolutional layer is followed by a batch normalization. As
a final step, since the results for square small and square
medium (see Tab. II) are very close to each other and in favor
of a fair comparison to the smallest version of MobileNet v2,
we dropped the less efficient architecture for square medium
but added an architecture for inputs of size 96×96. In the
following, we refer to this new input size as square large.
Tab. III summarizes all architectural changes. Note that the
overall number of parameters for the modified square small
and large networks are still of the same magnitude as for
the original biternion net architectures. Thus, the results for
both are still comparable.

However, the architectures used so far are relatively small.
Therefore, we decided to include MobileNet v2 [7] as a
more sophisticated but still suitable architecture for mobile
applications in our experiments as well. The MobileNet v2
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TABLE IV: Mean absolute error in degrees (averaged over
3 runs) obtained on test set for different architectures and
input types. For the MobileNet v2 architecture, only the best
result and the result of the network with similar number of
weights (α = 0.5) are given. For both input types, the best
result is printed in bold. The overall best result is underlined.

square
small

square
large large

Depth Biternion net architecture 6.25 - 5.68
Mod. biternion net architecture 5.73 5.54 5.44
MobileNet v2 (α = 1.0, Adam) - 5.35 -
MobileNet v2 (α = 0.5, Adam) - 5.79 -

RGB Biternion net architecture 17.36 - 13.64
Mod. biternion net architecture 11.54 10.61 9.87
MobileNet v2 (α = 1.0, Adam) - 8.13 -
MobileNet v2 (α = 0.5, Adam) - 9.58 -

architecture was designed especially for processing RGB
images and, therefore, might improve our results for esti-
mating the upper body orientation using RGB images. The
architecture is based on the ResNet architecture [27] but
uses inverted residuals with shortcut connections located
between the thin bottleneck layers. To further reduce the
number of computations, lightweight depthwise convolutions
[34] are used in the intermediate expansion layers. For
further details on the architecture, we refer to [7]. The
MobileNet v2 architecture provides two hyper parameters
to adjust its complexity. First, the input size which is fixed
to 96×96 (smallest possible size) in our case. Second, the
width multiplier that multiplies the number of features maps
in the whole architecture by a factor α. We decided to vary
the width multiplier in four steps between 0.35 and 1.0 (0.35,
0.5, 0.75, 1.0). Note that for α = 0.5, the overall number
of parameters in the resulting network is almost equal to the
one of the network of our modified biternion net architecture.
In order to apply the MobileNet v2 architecture to the task
of upper body orientation estimation, we dropped the final
fully-connected layer and added the fully-connected stage,
used in our modified biternion nets architecture as well.

1) Training: The training procedure is almost equal to
the one described in Sec. IV-B.1, except of a small weight
decay of 0.00005, which was added to penalize large weights.
However, during the first experiment set, we noticed that
higher learning rates often lead to better results. Therefore,
we included another three higher initial learning rates (0.03,
0.04, 0.05). For the MobileNet v2 architecture, we used the
publicly available pretrained weights on the ImageNet data
set [35] to initialize the weights in the first stage. For depth
information as input, we summed up all three weights for
each position and output channel, which is equal to triplicate
the depth information and to feed them in as a three-
channel input. In addition, since fine tuning the MobileNet v2
architecture with a small number of samples using SGD
might be challenging, we also tried the Adam optimizer [36]
with initial learning rates of 0.0001, 0.001, 0.01, 0.02, and
0.03, respectively.

2) Results: The results of our second extensive set of
experiments are depicted in Fig. 4. Furthermore, important
results for each architecture are summarized in Tab. IV.

TABLE V: Mean absolute error in degrees (each aver-
aged over 3 runs) obtained on test set by applying the
MobileNetv2 architecture using either SGD or Adam as
optimizer. The overall best result is printed in bold.

Depth RGB
α 1.0 0.75 0.5 0.35 1.0 0.75 0.5 0.35

SGD 5.87 5.89 5.94 6.31 10.57 10.16 11.02 11.97
Adam 5.35 5.43 5.79 6.38 8.13 8.66 9.58 11.52

Comparing our modified biternion net architecture to the
original architecture, it turns out that the modified one leads
to better results. Even more, for depth information (see
Fig. 4 left), the modified biternion net architecture beats its
MobileNet v2 (α = 0.5) counterpart with similar number
of parameters and can compete with the more complex
MobileNet v2 with α = 1.0. For RGB images (see Fig. 4
right), the margin between both biternion net architectures
becomes even larger, but they do not reach the performance
of the MobileNet v2 architecture. Tab. V compares the best
networks based on the MobileNet v2 architecture. It turns
out that the performance increases while the depth multiplier
increases. Furthermore, optimizing using Adams constantly
leads to better results. However, initial trials for optimizing
the biternion net archtitecture using Adam as well did not
lead to promising results.

Similar to previous experiments, depth information clearly
outperform RGB by a large margin, even for MobileNet v2,
which was designed especially with regard to RGB images.
We assume that estimating the upper body orientation from
RGB images is just more challenging. The results in Fig. 4
(right) support this assumption as the most complex archi-
tectures (MobileNet v2 with α = 0.75 or 1.0) lead to the
best results. Hence, if available, depth information should
be preferred for fast orientation estimation.

The best networks (MobileNet v2 with α = 1.0) achieve a
mean absolute error of 5.17◦, 5.43◦ and 5.44◦, respectively.
However, the MobileNet v2 archtitecture with α = 1.0 has
more than three times as many parameters and requires
three times as long for inferring a single sample as the
second best networks (modified biternion net architecture
with large inputs), which achieve a mean absolute error
of 5.51◦, 5.28◦ and 5.52◦, respectively. In favor of fast
inference and the opportunity to apply dropout sampling
during inference as well (see Sec.V), we decided to stick
to the modified biternion net architecture.

D. Best Network Analysis

Since the best configuration for our network has been
selected, we turn to a deeper analysis on the test set. In Fig. 5
(left), the performance of our best network is visualized using
a confusion matrix. It can be seen that the main diagonal is
densely occupied, and that there is no dominating orientation,
even though our training set is not completely balanced with
respect to the ground truth angles. The mean absolute error as
a function of the sensor distance strongly correlates with the
distances covered by our data set (Fig. 5 right). Therefore,
we conclude that recording further samples covering larger
distances could further improve the quality of our approach.
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Fig. 4: Mean absolute error in degrees obtained on test set for different input sizes, architectures, and initial learning rates
on depth inputs (left) and RGB inputs (right). Each marker represents results averaged over 3 runs.

Furthermore, we analyzed the error per person as shown in
Fig. 6 (left). While the mean absolute error for most persons
is close to the overall mean, person 13 is an exception. We
took a look at the samples that received the largest errors
(examples are shown in Fig. 6 right) and found that most
of the large errors result from unusual poses. In particular,
person 13 is often shown while swinging around a large
handbag. We assume that our network does not generalize
well on such uncommon appearances.

E. Inference Time

Since our robot navigates through a supermarket during
opening hours, it is required that the orientation estimation
runs in real time. Therefore, we measured the inference time
of our network on three different devices suitable for use
on a mobile platform: NVIDIA Jetson TX2, NVIDIA AGX
Xavier and an Intel Core i7-7700H CPU. To further speed up
inference, we deployed three different versions: a pure Ten-
sorflow graph, a frozen Tensorflow graph and an optimized
graph using NVIDIA TensorRT [37]. The frame rates for
all platforms are shown in Tab. VI. For predicting a single
image patch, all platforms enable inference in real time, even
the pure CPU implementation (see first column in Tab. VI).
Thus, we are able to enhance the capability of our network
by applying additional sampling during inference in order to
estimate the network’s uncertainty as well (see Sec. V-B)).
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Fig. 5: Left: Confusion matrix with 1◦ bin division of our
best network. Right: Histograms for the mean absolute error
(left y-axis) and the amount of samples (right y-axis) as a
function of the distance to the sensor (x-axis).

V. ROBOTIC APPLICATION

With the findings of our experiments at hand, we deploy
our network for orientation estimation to our mobile robot
and compare its performance to other suitable approaches.
So far, the network was always fed directly with image
patches from our data set. These patches are free from
background and cropped to persons. However, data captured
by the Kinect2 mounted on our robot must be preprocessed
in order to become background free and cropped. To do
so, we deployed the 3D person detector presented in [5].
This approach is designed to enable real-time detection rates
even on a single CPU core of a mobile platform. It operates
on point clouds and outputs a point cloud cluster for each
detected person. After detection, we back-project each cluster
onto the image plane of the Kinect2 and then crop the
projection to the encasing bounding box of the human. The
resulting image patches are free of background objects and
are input for our network. The whole procedure is visualized
in Fig. 1 and in the accompanied video to this paper.

A. Quantitative comparison to other Approaches

At first, we compare our system to other modern ap-
proaches suitable for estimating or extracting the upper body
orientation as continuous angle on our test set. In particular,
we include the regression approach of [21] based on 3D
point clouds and the skeleton estimation methods [9] and
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Fig. 6: Left: Mean absolute error per person on our test set.
Right: The three samples with the largest and the three ones
with the lowest absolute error including person ID.
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TABLE VI: Frames per second on different computing
devices with respect to different batch sizes. Abbreviations:
TF - pure Tensorflow graph, TFF - frozen Tensorflow graph,
TRT - graph optimized using NVIDIA TensorRT.

Single
Prediction

Sampling Batchsize
20 40 60 80 100

Je
ts

on
T

X
2 TF 262.9 39.9 20.8 14.1 10.6 8.6

TFF 361.8 33.4 17.2 11.6 8.7 7.0
TRT 520.5 69.1 36.2 24.6 18.3 14.6

Je
ts

on
X

av
ie

r TF 261.9 116.4 66.2 47.1 35.2 29.1
TFF 424.9 120.8 65.9 45.3 34.7 28.2
TRT 675.8 177.5 101.0 69.2 53.4 43.9

i7

TF 222.0 9.6 4.7 3.1 2.3 1.9
TFF 317.0 10.7 5.3 3.5 2.6 2.1

[10] as references. In contrast to our previous experiments,
we now apply the preceding person detector to each frame
for patch extraction since the mentioned approaches do
a detection in the whole input image as well. As each
approach produces some false negatives, we report results
on a subset of the test data based on a shared blacklist
only. We also ignore false positive detections since we focus
on orientation estimation. For the skeleton approaches, we
extract orientations by calculating the cross product of the
shoulder-to-shoulder and center-hip-to-shoulder-vector and
projecting the resulting vector onto the ground plane. Results
of this comparison are shown in Tab. VII. Note that [21] is
the only reference trained on our data because our data set
does not provide skeleton labels. This limits the value of
the comparison for [9] and [10]. However, we want to give
an insight on how modern skeleton estimation approaches
perform on orientation tasks. The results indicate that it is
not necessary to rely on expensive skeleton computation if
only the upper body orientation is of interest. Estimating
orientation directly is much faster and significantly accurate
in the context of navigation tasks. Furthermore, deep learning
seems to outperform classical approaches like [21]. Tab. VII
also shows that switching from perfectly masked image
patches to patches from a detector causes a slight decrease
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Fig. 7: Left: Point cloud person detections including one false
positive and corresponding sampling distributions. Orienta-
tion estimates are displayed with green arrows. Right: Depth
patches of back-projected point clusters.

TABLE VII: Comparison to other approaches. [9], [10]
and our networks run on a NVIDIA AGX Xavier. Runtimes
(in frames per second) include detection and orientation
estimation. For [21] and our pipeline we used the person
detector of [5].

approach [9] [10] [21] Mod. biternion MobileNet v2
MAE 23.69 14.69 14.76 6.64 6.14

Runtime 0.89 1.65 10.78 13.43 13.11

in performance.

B. Sampling during Inference and Qualitative Results

Modeling uncertainty can be useful for certain tasks. One
obvious application is to skip uncertain estimations, e.g. in
subsequent navigation modules of a robot. Another one is
temporal tracking of orientations using a Kalman filter to
achieve a more robust and combined estimate.

However, by default most neural networks are not capable
to represent uncertainty. In [38] a link between dropout and
approximated Bayesian inference is examined. According
to this, it is possible to obtain uncertainty information by
applying dropout at inference time as well. Luckily our
network makes use of dropout before both fully-connected
layers comprising most of the weights. Hence, we can easily
model uncertainty by enabling dropout during inference and
replicating the input patch several times. In order to obtain
meaningful uncertainty estimates, we followed the recom-
mendations in [39], [40] and used 100 stochastic forward
passes for each patch. Nevertheless, 25 passes already seem
to perform similarly. As shown in Tab.VI, we can still enable
real-time inference. However, since dropout is applied in
the second stage only, the inference speed could further be
optimized by separating the two stages of the network and
replicating only the input for the second stage.

Fig. 7 shows an example using the sampling approach.
For each detection, a normal distribution for the orientation
was calculated out of 25 samples. Obviously, the estimation
for the non-human object is very uncertain. This shows, that
the additional uncertainty information might also be used as
an indicator for false positive person detections. Applying
sampling to all true and false positive detections obtained
by our detector pipeline on the test set proofs this claim, as
shown in Fig. 8.

In addition, we have observed qualitatively that our ap-
proach provides sufficiently accurate orientation estimations
for our navigation tasks up to 10 meters distance, although
the training set contains samples up to 6 meters only. Typical
failure cases are squatting persons and heavy occlusions in

0° 20° 40° 60° 80° 100° 120°
Standard Deviation

0.00
0.04
0.08
0.12
0.16
0.20

Re
l. 

Oc
cu

rre
nc

e Uncertainty histogram (25 samples)

True Positives
False Positives

Fig. 8: Relative occurrence of angular standard deviations
when sampling over true and false detections on our test set.
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the upper body area. Both cases are not covered by our data.
We believe that sampling is very helpful in these situations
too, but it remains future work to further examine all effects.

VI. CONCLUSION

We have presented a system for estimating the continu-
ous upper body orientation of persons using deep learning.
To determine appropriate network architectures, input types
and output encodings, we have conducted a comprehensive
series of experiments. Due to the application of lightweight
networks and the processing of fixed size image patches,
our system runs in real time on a mobile platform, even on
the CPU only. Furthermore, the fast runtime enables dropout
sampling during inference for detecting false positives and
enhancing subsequent tasks. For training and evaluations, we
recorded an RGB-D data set with 37 persons. In total, it con-
sists of more than 100,000 samples with precise continuous
ground truth labels. Our code, the network weights, and our
data set have been made publicly available to the community.

Since typical failure cases on our robot are mostly caused
by the preceding person detector, e.g. when detections are
missing or extracted patches are over or under segmented,
it remains future work to improve this part of the overall
system. We see great potential in using multi-task learning,
for combining person detection and orientation estimation in
a single neural network operating on raw patches directly.
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