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Abstract—For socially assistive robots in close contact to
people, a tactile sensor can be useful for gathering feedback and
inputs in the form of touch gestures. In this paper, we concentrate
on low-cost textile pressure matrix sensors since they are easy to
manufacture and due to their flexibility can be adopted to the
curved shape of a robot’s outer cover. Due to the matrix principle
for reading out, the setup suffers from artifacts when it comes
to activation of multiple sensor elements. We present a machine
learning approach for preprocessing the raw measurements from
the pressure sensitive array in order to get reliable pressure
patterns which can be used for gesture classification later on. By
means of that, an expensive hardware solution for capturing the
pressure values can be avoided.

Index Terms—textile pressure sensor, machine learning, matrix
of resistive sensors

I. INTRODUCTION

Tactile interaction is a useful medium for socially as-

sistive robots. In our research projects SERROGA [1] and

SYMPARTNER [2], we developed service robots for elderly

people living alone. Fig. 1 shows these robots with their

pressure sensitive matrix sensors used for recognizing simple

haptic gestures, like fondling, petting, tickling, stroking, or

slaping. Such tactile inputs can be used as intuitive feedback

for adaptation and personalization of the robot’s interaction

behavior, or as direct commands, e.g. for stopping the au-

tonomous navigation when the user touches and pushes the

robot. Details on these two applications and the classification

of the gestures are given in [3] and [4]. The recognition of

social touch gestures on artificial creatures is widely used [5],

[6], while the practical realization is often straight forward

using low-cost hardware like sensors made from conductive

fabric and piezoresitive materials. There is a broad community

dealing with classification and recognition of such social touch

gestures with own contests, like the Touch Challenge [7].

In [8] the force signals from the robot’s surface are not

only used for stopping the navigation but are also interpreted

directly as pushing forces used to control a motor-assisted

manual positioning. Although, the mentioned approach uses

capacitive touch signals, application of force or pressure

sensing would practically improve that behavior, if the mea-

surements are reliable and free of artifacts. Therefore, we have

developed a preprocessing of the raw sensor readings to enable

a resistive matrix sensor to be used for reliable multi-touch.

This improves applications that need accurate force patterns

from low-cost textile resistive sensors.

In contrast to textile low-cost sensors, there are very sophis-

ticated approaches for realizing sensitive robotic skin [9], but

these are not in the focus of this paper. A survey on artificial

skin and tactile sensing for socially interactive robots can be

found in [10].

This paper instead is focused on textile array sensors

which come along with a specific problem when it comes

to multiple activation points. Due to parallel pathways in the

rows and columns of a matrix of pressure sensitive resistors,

the activation of one sensor cell also influences other cells of

the same column and row leading to artifacts, especially in

multi-touch situations.

The main contribution of this paper is a tailored machine

learning-based approach, which is used to solve the otherwise

not efficiently solvable mathematical model for computing

the pressure values (resp. resistances) in a matrix of variable

resistors given the measurements of currents into the rows

and columns. This allows for the application of a very basic

circuit for reading out the resistance values compared to other

hardware solutions.
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Fig. 1. Robots equipped with textile pressure sensor arrays for recognition of
social touch gestures. left: Robot Max presented in [1] with touch sensitive
patch of fur at the head, right: Sympartner robot [2] with touch sensor at the
back for recognizing tactile feedback from a sitting or standing interaction
partner.
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Fig. 2. Principle of layered pressure array sensors
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Fig. 3. Parallel resistances (dashed arrow pathway) when reading out
resistance Ri,m. These cause cross-talk effects if not handled explicitely in
hardware or software.

II. RELATED WORK

The need for sensing the spatial distribution of pressure over

a sensor surface has led to various hardware solutions. In this

paper, resistive matrix sensors are addressed, since they are

very easy and inexpensive to build. Besides other approaches,

which use resistive textile material for interpolation of single

contact points by means of the idea of a voltage divider

[11], the most popular method for building touch sensitive

fabric sensors is a layered architecture resembling a matrix of

pressure sensitive cells. Fig. 2 shows the general structure of

such sensors. The usage of a flexible textile material allows

to overcome the shape restrictions of commercially available

sensors and, thus, enables designers to cover non-planar and

even flexible surfaces [12].

There are many examples for arrays of resistive sensors [13],

each coming along with the fundamental problem of cross-talk

when the matrix elements are to be read out, which typically

is done sequentially one after another. When one column and

one row are connected to a circuit that reads the resistance, the

other sensor elements form parallel loops of resistors (see Fig.

3), preventing the direct measurement of an individual cell’s

resistance. Typically, the range of the taxels’ (tactile elements’)

resistance is huge and non linear starting at > 10 kΩ in

uncompressed state and reaching values below 100 Ω under

pressure. This makes it possible to ignore the cross-talk effects

for certain applications, like gesture recognition [3] if most of

the cells are in the uncompressed state. However, the problem

is more critical, if the exact shape of wide spread activation

patterns matters.

In order to reduce the activation of parallel pathways, there

exist several approaches introducing a spacer layer in between

the electrodes and the piezoresistive layer. Büscher et al. [14]

used this for the realization of a data glove. Markham and

Brewer [15] added a nylon grid with 3mm spacing to prevent

multiple activations in their matrix. Unfortunately, such a

spacer only increases the threshold for activation (making

uncompressed resistors reach ∞), which significantly reduces

the sensitivity and cannot prevent the cross-talk effect if large

areas of the sensor are activated.

D’Alessio [16] discussed sources of cross-talk and measure-

ment errors in piezoresistive sensor arrays in detail. He also

mentioned lateral current in the piezoresistive layer introduc-

ing additional parallel pathways. In order to handle the cross-

talk in hardware, there are mainly two approaches. One option

involves more complicated circuits, which apply a feedback

voltage to the remaining rows and columns when one certain

pair is measured. This aims for reducing the current in the

parallel pathways to zero such that the measured current only

depends on the cell considered. Depending on the ratio of the

resistances in the matrix, the feedback current needs to be

comparatively high, which brings that approach to its limits

when the array is large or the resistances of the taxels are low.

The second popular solution is to switch all inactive rows and

columns to ground [17]. This also has its limitations regarding

the current that has to be provided by the respective drivers

and also increases complexity of the sensing circuit.

In contrast to these hardware solutions for handling the par-

allel resistive pathways, we suggest to compensate them in a

computational way. This is possible if there are measurements

of the total resistances for all row and column combinations,

which can be read out with a simple multiplexing solution.

One precondition for our approach is that the pressure pattern

is stationary for the duration of one read out cycle, which is

almost true for touch gestures and a sampling rate of about

360 cycles per second.

III. SENSOR HARDWARE

In this paper a stand-alone sensor matrix similar to the one

mounted at our Sympartner robot (see Fig. 1) is used.

A. Pressure Sensitive Matrix

The matrix consists of 16 × 16 cells that are formed by

12mm wide stripes of silver coated EMF shielding material

as row and column electrodes. The electrodes are placed on

a carrier fabric at a spacing of 6mm. These relatively large

gaps are intended to reduce the lateral current in the active

layer. The piezoresistive material is Eeontex™ with a surface

resistance of 20 kΩ/cm.

B. Electronics

As already claimed, we did not use any complex feedback

or grounding drivers. Fig. 4 shows the actual setup, which

is realized with an ATMEGA328P micro controller and two

analog 16 channel multiplexers (74HD4067). The resistive

matrix forms a voltage divider with a pull down resistor

Rref while the voltage is read at an analog digital converter
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Fig. 4. Electronics for read-out of the resistor matrix consists of two
multiplexers and an analog digital converter.
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Fig. 5. Resistance of one individual cell depending on the pressure applied;
The green curves show the standard deviation of ten measurements.

(ADC) input of the micro controller (10bit resolution). The

readout cycle makes use of the maximum ADC speed that

is about 100 kHz. Therefore, the resulting cycle rate for

a complete read-out of the matrix is 390 Hz. This high

sampling rate is used for recursive low pass filtering of the

raw measurements over time in order to reduce sampling noise.

Finally, the resulting matrices of ADC values are sent to the

PC asynchronously via USB at a rate of up to 100 Hz. The

actual processing of the systematic cross-talk errors and the

conversion into pressure values is done by an external PC. (see

Section V)

IV. PROPERTIES OF THE TEXTILE SENSOR ARRAY

A. Characteristics

In order to compute the actual pressure from a voltage

read at the ADC, the characteristics of one individual matrix

element need to be known. For that reason, we analyzed

the sensor setup and measured the resistance while a cell

was loaded with a series of defined weights. The experiment

was conducted 10 times. Fig. 5 shows the resulting curve of

resistance over pressure in a logarithmic scale. In contrast

to a version with a spacer material, the sensitivity of that

construction is excellent in the low pressure regions that are

typical for social interaction gestures.

In addition to the resistors inside the sensor array, there

are resistances in the external measuring circuit as well. First,

there is the reference resistor Rref which has a known value

of 1.78 kΩ in our case. Furthermore, the multiplexers generate

an additional parasitic resistance in the measurement branch,

which should be called Rpar here. By connecting a known

resistor instead of the sensor array and by measuring the

resulting ADC voltage, the value of Rpar could be determined

indirectly. In our case it was 326 Ω.

Given these characteristics, it should be possible to recon-

struct the weight/pressure distribution on the resistive matrix

by connecting each of the cells once to the ADC and measur-

ing the resulting voltage.

Unfortunately, there are several types of measurement errors

related to the given setup. First, there is the high variance

of the sensor readings, especially in the low pressure region,

which may be induced by the loose stacking of the layers,

moving around in between the pressure events. This noise is

non-deterministic and can hardly be corrected in software.

Furthermore, there are systematic sources of measurement

errors mainly resulting in cross-talk effects between the cells.

One source are lateral currents in the continuous piezoresistive

layer. By activating an individual cell and measuring its

neighbors, we found that this influence is relatively low. Only

5 thousandth of the voltage is coupled to the direct neighbors.

Therefore, this effect can be neglected in the following. An

inexpensive solution to prevent from such lateral currents is

the subdivision of the active layers into individual sensor cells.

The more relevant effect is related to alternative pathways

in the matrix (see Fig. 3 ). An activated cell Rj,n causes

the reduction of resistance in the parallel branches of other

cells (dotted lines in Fig. 3) and therefore, the resistance

values of measurements in the same row and column decrease

too. In crossing points of such rows and columns this effect

accumulates, leading to ”ghost” activations. Most state-of-the-

art approaches for readout hardware solutions address these

cross-talk activations.

B. Analytical Forward Model

It is possible to compute the currents and, thus, the voltages

at the ADC for a given matrix of resistors. For one combina-

tion of row and column that are connected to the input supply

by the multiplexers, there are 16 × 16 + 1 unknown current

values (through each of the resistors and the input current). On

the other hand, we have 16×16+1 given parameters (resistors

+ supply voltage) in order to build up a linear equation system

by means of Kirchhoff’s circuit laws.

Fig. 6 shows an example with n = 3 rows and columns.

The resulting linear equation system eq. (1) contains one

line resulting from Kirchhoff’s loop rule for the direct path

through R0,0 followed by (n − 1)2 lines for the indirect

pathways through the resistors of the matrix except for the

connected row 0 and column 0. Rext represents the external

resistors Rref +Rpar in Fig. 6. The remaining five lines result

from Kirchhoff’s nodal rule for each of the column and row

electrodes. There is one equation more than actually needed,

thus, one of the nodal rules can be left out. Therefore, the

resulting system contains n2+1 equations. The linear equation

system for the 16 × 16 array can be constructed in the same

manner yielding 257 equations.

Solving this system provides the input current iin for the

matrix, and by means of the reference resistor Rref the ADC
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voltage for one particular cell can be computed by Uadc =
iin · Rref . In order to get the full matrix of measured ADC

values, this equation system has to be solved 16× 16 times.

For correcting the measurement errors in a captured matrix

of ADC voltages, the inverse of that operation is needed. For

the known ADC voltages, the resistor values Ri,j in the matrix

and with these the actual pressure are the unknown variables.

Unfortunately, it is not that simple to invert the system. One

ends up with a heavily coupled non-linear equation system,

that is not solvable in real-time anymore.
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Fig. 6. Reduced example matrix with only 3×3 resistors. Row 0 and column
0 are selected in this case. Rref is the reference resistor generating the ADC
voltage and Rpar models parasitic resistances in the multiplexers.
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Rext R0,0 0 0 0 0 0 0 0 0

Rext 0 R0,1 0 R1,0 −R1,1 0 0 0 0

Rext 0 R0,1 0 0 0 −R1,2 R2,0 0 0

Rext 0 0 R0,2 0 0 R1,2 0 −R2,1 0
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R · I = U (1)

V. SIGNAL PROCESSING AND CROSS-TALK

COMPENSATION

The idea for correcting the cross-talk measurement errors in

software makes use of the analytical model and the pressure

resistance characteristics measured before. Since the inversion

is not possible analytically, we use the general function ap-

proximation capabilities of neural networks for representing

the inverse operation of the analytical forward model. The

actual processing of the measured ADC voltage values consists

of two essential steps. First step is the computation of the in-

dividual cells’ resistance values from the given ADC voltages.

During this step, the correction of the cross-talk effects needs

to be considered. After that, the resistances can be used to get

weight/pressure values using the characteristics of the cells

measured in section IV.

Using a naı̈ve approach ignoring the alternative pathways

at all, one can directly computes Rx,y . For that, first, the
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Fig. 7. The two convolutions in the first stage use 1×16 and 16×1 kernels
and are intended to compute row and column sums. Both results are scaled
up to the original 16× 16 input size and are concatenated with the input. In
the second stage, multiple parallel dilated convolutions with 3×3 kernels and
dilation rates ranging from 1 to 3 are used for embedding context information
[18]. In the final stage, multiple subsequent convolutions with 3× 3 kernels
perform the actual weight/pressure computation. All layers, except the first
two, use zero padding to keep the size of the output the same as the input.
All neurons are ReLUs [19].

current iin = Uadc/Rref can be determined. Then the voltage

over Rpar results from Upar = Rpar · iin, and Rx,y arises

from Rx,y = (Uvcc − Uadc − Upar)/iin. This naı̈ve solution

leads to systematic overestimation of the pressure values as

the resistances measured are lower than the individual cells

resistances. Fig. 8(c) and Fig. 9(c) show results for given input

patterns. The ”ghost” activation due to the cross-talk in the

matrix is clearly visible (e.g. additional blobs in Fig. 9 row

3).

Our proposed approach for pressure computation uses a con-

volutional neural network (CNN), which is trained for a map-

ping directly from ADC voltage matrices to pressure/weight

matrices. By means of that, the two steps of correcting the

measured resistance values and look-up the corresponding

pressure value in the characteristics are done at once.

A. Network Architecture for Approximation of the Inverse

Model

The network used is a convolutional feed forward network

with the architecture given in Fig. 7. The input is the matrix

of ADC voltages scaled to the range of [0,1]. The output

represents the normalized weight/pressure values. The kernels

in the first layer are intended to compute the row respectively

the column sums and provide these for further computation to

all the subsequent layers. This is motivated by the fact that

one strong activation influences the whole column and row.

The network has 4.544 trainable parameters, which is few

compared to typical CNNs used for image processing. The

small network also makes it possible to evaluate one matrix

in 2.2ms on a i7-3720QM CPU, which is fast enough for

processing the raw ADC matrices at the 100 Hz frame rate.

B. Training

The network has been trained on synthetic data generated

using the analytical forward model from section IV. For that

purpose, random pressure patterns were drawn in three dif-

ferent ways. First, by randomly selecting multiple rectangular

regions in the input matrix, in which a Gaussian blob was

added including a bit of noise. The first row of Fig. 8 shows an

example of such patterns. In a second version, the rectangles
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Fig. 8. Examples of synthetic datasets. (a) Ground truth pressure distribution, (b) The ADC voltage matrix resulting from the forward model applied to (a) and
input for deriving the pressure matrix. (c) Result using the naı̈ve approximation ignoring parallel pathways in the matrix, (d) Results of the CNN approach.

were filled with a constant value and some noise was added.

This leads to more separated activation blobs and is shown

in the second row of Fig. 8. The last version for generating

training data was simply drawing random matrices and scaling

them to the desired range. The sampled patterns are pressure

distributions, that get transformed into resistance patterns by

means of a lookup in the characteristic curve (Fig. 5) in order

to apply the forward model. Solving the equation systems

finally yields the ADC voltage matrices, which are inputs for

the network training. A total of 100,000 pairs of ADC voltage

and weight/pressure patterns were generated. The network was

trained with stochastic gradient descent and mean squared

error as loss function. The best epoch was selected based on

the error on a validation set containing another 30.000 pairs.

VI. EXPERIMENTAL RESULTS

Using the trained network, two experiments were conducted

to perform a quantitative and qualitative evaluation. First, the

network outputs on an additional synthetic test dataset were

compared to the ground truth patterns of pressure. The test

patterns were similar but not equal to the training set and had

pressure values up to 1 kg/cell. This cell wise comparison for

the prediction of the convolutional network yield an average

deviation of 11 g, which is pretty reasonable. Unfortunately,

for the whole 16×16 sensor these deviations sum up to about

2.8 kg. In contrast to that, the naı̈ve method in average has

deviations of 150 g in one cell and, therefore, a completely

invalid sum for the whole array. Besides the exact values for

each cell, the benefit of the proposed approach lies in the

reconstruction of the actual shape of the input patterns, which

involves suppression of wrong activations due to cross-talk.

The second experiment, in which the network was applied to

real data captured with the sensor array, illustrates this. The

CNN is able to reconstruct the shape of the pressure patterns in

a reasonable way, as shown in Fig. 9(d) while the naı̈ve method

(column c) fails to reconstruct the correct input shapes.

Regarding absolute pressure values in the real data ex-

periment, the ground truth is missing. The actual resistive

activation of the sensor depends on the exact shape and

pressure distribution inside the cells which is unknown. Ad-

ditionally, undefined amounts of an objects weight lies on the

insensitive area in between the cells. For that reason, we used

a fixed soft shape as interface to the sensor and increased the

weight successively. This additional experiment showed that

the results of the processed values scale proportionally with

the weight, but are at a nearly constant factor of 1.42 greater

than the exact load of the test weights. The standard deviation

of that scaling factor is about 10% for different shapes and

sizes of the interfacing object and, therefore, it is possible to

calibrate the sensor by scaling the network outputs with the

empirically determined factor.

VII. CONCLUSION

In this paper, we presented a machine learning approach

for correcting the cross-talk effects of a resistive array sensor.

The approach makes use of an analytically solvable forward

model of the current distribution in the resistor matrix and

aims to approximate its inverse using a CNN. Trained on

sythetic data, the network is able to directly map an ADC

voltage matrix to the correspondig pressure/weight matrix.

Compared to the naı̈ve method ignoring parallel pathways in

the sensor array at all, the network shows great improvements,

especially with respect to recovering the actual shape of the

pressure patterns. Our approach shows that it is possible to

implement a resistive sensor without sophisticated hardware

for reading the resistance values. Future work needs to show

if the improved pressure patterns gained with the proposed

method will increase the classification accuracy for gesture

recognition as well.
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Fig. 9. Examples of real pressure patterns captured with the 16x16 sensor array. (a) These objects have been pushed down on the sensor with increasing
weights in order to generate the input patterns, (b) The ADC voltage matrix measured with a mid range weight, (c) Result using the naı̈ve approximation
ignoring parallel pathways in the matrix, (d) Results of the CNN approach showing improved and better fitting shapes of activation.
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