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Abstract

The majority of semantic segmentation models
are unable to use temporal consistency in video
data. This leads to the fact that short-term per-
turbations in the input data can cause erroneous
predictions, which can have fatal consequences
in safety-critical applications such as autonomous
driving. We present an approach that integrates
the temporal consistency of video data as a priori
knowledge into the model. We achieve a much
more robust semantic segmentation in case of per-
turbations in the input data. Furthermore, our
approach improves the semantic segmentation for
input data that does not contain perturbations. In
both cases we demonstrate the qualitative and
quantitative advantages of our approach.

1. Introduction

The realization of highly automated driving requires the
intensive use of deep learning methods. One of the major
challenges when using deep learning methods in the auto-
motive industry are the high safety requirements for the
algorithms. The use of black box solutions causes a poten-
tial safety risk and is therefore not permitted. For this reason,
deep learning methods are needed that show comprehensi-
ble behaviour for us humans. In addition, the algorithms
must be reliable and robust in the case of perturbations in
the input data. These perturbations can be caused by sensor
errors, external contamination of the sensors, overexposure
or the occurrence of adversarial examples. Objects that
suddenly appear or disappear from one frame to another
due to inaccurate prediction or occurring perturbations can
have disastrous consequences. These aspects receive less
attention in the scientific community and are neglected in
public data sets.

One way to achieve robustness against perturbations is to
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use temporal consistency in video data. The vast majority of
previous deep neural networks have an independent single
image prediction of the currently recorded scene, i.e. the
same operations are performed for all input images and the
information already received from the previous time step is
discarded. For video processing in which there is a temporal
continuity of the image content, the use of the information
from previous time steps can overcome perturbations that
would otherwise lead to miss-classification.

With our approach, we are able to overcome perturbations
by incorporating the relevant information from earlier time
steps into the current prediction. The idea is to combine
the calculated feature maps from earlier time steps with the
current feature map to compensate for shortcomings in the
current prediction. This requires warping the feature maps
from previous time steps t_1 to t_,, into the time stage t,
where n is the number of previous time steps. Warping takes
place via the optical flow, following the idea of (Gadde et al.,
2017). According to our experiments, a naive combination
of the complete feature maps does not always lead to an
improvement of the results. There are two main reasons for
this:

1. It is in the nature of things that frames from previous
time steps are less relevant than the current frame. Ob-
jects that appear in the image for the first time, e.g.
because they have been covered by another object, can-
not be represented by warping.

2. The warping process depends on the quality of the
optical flow. Especially objects with a low pixel density
like pole where the optical flow is not precise enough
suffer in quality.

Therefore, a confidence-based combination of feature maps
is performed that significantly reduces these issues. The con-
fidence map gives us a confidence value for each pixel in the
image that estimates the confidence of the prediction. The
confidence map is obtained by probabilities from softmax
distributions, which we have calibrated to obtain a reliable
confidence estimate. We have observe that the confidence
maps have a relatively low value at the areas in the image
where we have inserted a perturbation, cf. (Hendrycks &
Gimpel, 2016). Therefore, we use the confidence values as
a measure of which areas of the feature maps t_; tot_,, we
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combine with the feature map ¢y. For the combination, a
weighting is used that can be derived from the confidence
values of the current and previous confidence maps. The
areas of feature maps that have a higher confidence than
the areas of the current feature map are combined. The
combined feature map fm_newy then serves as the new
feature map fm;_,.

To demonstrate the effectiveness of our approach, we use
semantic video segmentation applied to two test data sets:
One set of test data with artificially added perturbations,
such as image artifacts, masking and adversarial pattern.
And another one with the same images, but without any
perturbations. We show that our approach not only signifi-
cantly outperforms the perturbed data set but also slightly
improves the baseline on the clean data set. Our approach
is independent of the network architecture and does not
require any further training or fine-tuning.

2. Pipeline

The entire pipeline of our approach is shown for a single
time step to in Fig. 1. As an example DNN we use the ENet
architecture (Paszke et al., 2016), a ResNet based network
that has a very low runtime while providing a respectable
quality. However, the model can be exchanged with any
other architecture. The model was trained on an internal fish-
eye training data set with 17 classes. After the last layer, the
number of feature maps is 17 (referenced as fmyq in Fig. 1).
The calculation of the argmax' and the following coloring
lead to the baseline of semantic segmentation for the current
time step, which is in Fig. 1 referred as Segmentationg.

The confidence map of the current time step cmy is de-
termined by the probabilities from softmax distributions.
To obtain reliable confidence values, the confidence values
are calibrated by modifying the softmax layer (see subsec-
tion 3). Furthermore, we compared these confidence maps
with the epistemic uncertainty obtained by Monte Carlo
Dropout (Kendall & Gal, 2017). It has turned out that the
difference is usually fairly small, so we consider the softmax
as an runtime efficient alternative.

The confidence and feature maps are warped in a so-called
warp module (see box with red border in Fig. 1). The func-
tion of the warp module is to warp the feature or confidence
maps from past time steps into the current time step in order
to obtain a aligned representation. For warping we use the
optical flow that we create with FlowNet2 (Ilg et al., 2017).
Please note that we apply this model to fisheye camera im-
ages, although the model was trained on pinhole camera
images. This leads to slightly worse results at the lateral
areas of the image.

"For every pixel, the index of the maximum value along the
depth axis is determined.

This aligned confidence maps are processed in the so-called
thresh module (see box with green border in Fig 1) with
threshold values and a weighting. The resulting confidence
maps can be considered as a mask that is used for multiplica-
tion with the feature maps in the combine module (see box
with blue border in Fig 1). In the combine module, the fea-
ture maps from the warp module are multiplied by the thresh-
old confidence maps from the thresh module. The output of
the combine module are 17 feature maps, which are com-
posed pixel by pixel from the feature maps of time steps %
to t_,. The new confidence map is called cm_new; and
the robust semantic segmentation RobustSegmentationy.
Please note that all results in section 5 refer to n = 2.

3. Confidence Calibration

Confidence calibration describes the problem of predicting
probability estimates that are representative of the true prob-
ability of correctness (Guo et al., 2017). In other words, the
aim of confidence calibration is to achieve the best possi-
ble consistency in predicting confidence and accuracy. For
example, if the confidence of an image results in 90%, the
accuracy of this image should also result in 90%. (Guo
et al., 2017) has found that modern networks tend to be over-
confidence in predicting confidences. The reason for the
overconfidence of modern networks is the increased network
capacity, the use of batch normalization and weight decay.
A metric that indicates how well the network is calibrated
is the Expected Calibration Error (ECE). To the best of our
knowledge, the ECE metric has so far only been applied
for image classification. In contrast to image classification,
in semantic segmentation we do not calculate the gap be-
tween acc and con f per image but per pixel. This change
requires an additional loop over all images that average the
ECE. More formally, we describe the ECE for semantic
segmentation as

:EL: i ””” lace(Byny) — conf(By)|| (1)
=1 m—=1
with
acc(Bp) = ||B,i T Ze; l 1(9: = i) )
conf(By,) = MZ” 16; Di- 3)

We designate L as the number of images, M as the number
of interval bins in which the predictions are grouped’, B as
the number indices of pixels whose predictions (accuracy

>The number of interval bins in our case is 5, which leads to a
bin size of 20% (100%/5) each.
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Figure 1. Overview of our pipeline. The abbreviations “cm”, “fm” and “opt” stand for confidence map, feature map and optical flow
respectively. White areas in the cm mean a high and black a low confidence.

and confidence respectively) falls into the bin interval, n as
the number of pixel per image, ¢ as the prediction of the
class, p as the prediction of the confidence, y as ground truth
and ¢ as the number of pixel per image and bin.

To calibrate the DNN we use temperature scaling, which
consists of a single value added to the softmax layer. It was
found in (Guo et al., 2017) that this type of calibration is the
simplest and most effective at the same time. The extension
provides for a division of the input of the softmax layer z
with a scalar T' (see Eq. 4). The optimal temperature scaling
parameter was determined by Grid Search on our validation
data set. This allowed us to reduce the ECE from 1.9 to 1.1.
Relevant reference values from the literature could not be
found. A direct comparison with ECE values from the task
of image classification is not possible since the calculation
is different.
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4. Data set

In order to test our approach, we have created our own
data set consisting of a sequence of 1200 images which we
refer to as clean data set. The images were taken with a
fisheye camera and show scenes from the downtown area
of a German city. To generate ground truth data we use
the Tu-Simple-DUC model (Wang et al., 2018), which we
trained on a fisheye camera data set before. In order to test

the robustness of our network, a second data set was created
by adding perturbations to the first data set, which we refer
to as perturb data set. The perturbations can be divided into
3 different categories: Random patterns (random changes of
multiple color channels), real perturbations (e.g. caused by
packet loss) and adversarial patterns (generated from (Xie
et al., 2017)). Images to which a perturbation was assigned
were selected at random. Furthermore, the perturbations
were placed at random locations in the image and can occur
up to 6 times per image. In addition, perturbations also
occur over several frames to evaluate robustness over a
longer lasting perturbations. In total, 412 (33.67%) of 1200
images contain at least one added perturbation.

5. Results

We evaluate our approach qualitatively and quantitatively
on the basis of two data sets: One without added pertur-
bation pattern, which we call clean, and one with which
we call pertub, see section 4. For qualitative evaluation we
use the mean intersection over union (mloU) and the global
accuracy. The mloU for the clean data set could be clearly
improved from 62.39% to 63.20%. The IoU values per class
are listed in Table 1. Apart from the classes pole, traffic
light and rider, the values have increased significantly. One
reason for the deterioration of these classes can be found
in the inaccurate optical flow. A correct warping of the
class pole requires a very precise optical flow. The global
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accuracy, which indicates the percentage of pixels correctly
classified, could be increased from 95.31% to 95.56%. Eval-
uated on our perturb data set the baseline worsens to a mloU
of 57.51% and a global accuracy of 93.87%. With our ap-
proach we achieve a significant increase of the mloU from
over 2.3% to 59.86% and a global accuracy of 94.61%. Due
to the low confidence values at the locations of the perturba-
tion patterns, these locations are used for combination. In
this way, the negative effects of perturbations on prediction
can be overcome or mitigated.

The supplementary material contains Fig. 2, 3, 4 and 5
that show the qualitative results for the data set clean and
perturb. Four images are viewed in consecutive time steps.
(a) represents the input image, (b) the pseudo ground truth
(see section 4), (c) the baseline and (d) our approach. With
our approach we achieve a much more stable and robust
prediction in Fig. 2 and 3. Please note that our approach
generally looks much smoother than the baseline, although
the resolution is exactly the same. Even more clearly, the
improvement can be seen in Fig. 4 and 5 for our perturb data
set. Please note the image caption for further information.

Table 1. Quantitative results of our clean (abbr. “cle”) and perturb
data set (abbr. “per”). Comparison of the baseline (abbr. “Base”)
and our approach (abbr. “Ours”). All values are given in percent
and indicate the IoU.

Classes Base-cle| Ours-cle | | Base-per | Ours-per
Road 95.66 | 95.90 94.59 95.39
Sidewalk 73.13 | 74.06 70.19 72.42
Building 92.36 | 92.71 89.97 90.83
Wall 64.96 | 68.03 43.57 52.02
Fence 20.26 | 20.99 17.72 18.57
Pole 39.11 | 38.16 37.50 36.74
Traffic light | 47.86 | 47.26 46.32 45.50
Traffic sign | 48.32 | 49.98 46.15 48.08
Vegetation 85.30 | 85.86 79.47 81.26
Terrain 31.90 | 33.31 23.87 26.58
Sky 96.10 | 96.35 94.46 95.18
Person 4398 | 4540 42.39 44.21
Rider 40.13 | 39.12 29.81 37.22
Car 86.75 | 87.07 82.46 84.17
Truck 81.84 | 82.87 73.92 78.31
Bicycle 46.16 | 48.66 45.03 47.65
Road markings| 66.89 | 68.73 60.17 63.49
Mean IoU 62.39 | 63.20 57.51 59.86

6. Conclusion and Future Work

Safety-critical applications require reliable and robust al-
gorithms. We introduced an approach that allows a DNN
for semantic image segmentation to leverage consistency in
video data to make the prediction much more robust. With
regard to suddenly occurring perturbations in the input data,

our approach can drastically increase the robustness of the
prediction. But even under normal conditions a more stable
prediction can be achieved, which we have shown quali-
tatively and quantitatively. We see considerable potential
for improvement in our approach through better uncertainty
modeling. The knowledge of the exact localization of the
image regions where the DNN is uncertain is a crucial point
for the effectiveness of our approach. For this reason we
plan to replace the calibrated probabilities from softmax
distributions with different types of uncertainty modelling.
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Figure 2. Qualitative results from our clean data set. 4 images are shown in consecutive time steps. (a) input image, (b) pseudo ground
truth, (c) baseline, (d) our approach. It can be seen that the sidewalk in all pictures is much denser and has fewer holes. Furthermore, the
baseline shows a class change between motorcycle and car in column 2, as well as the disappearance of bicycle in columns 3, which does
not happen with our approach.
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Figure 3. Qualitative results from our clean data set. 4 images are shown in consecutive time steps. (a) input image, (b) pseudo ground
truth, (c) baseline, (d) our approach. The class truck is predicted much more stable compared to the baseline.
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Figure 4. Qualitative results from our perturb data set. 4 images are shown in consecutive time steps. (a) input image, (b) pseudo ground
truth, (c) baseline, (d) our approach. The perturbation pattern in columns 2 and 4 drastically destroys the prediction of the baseline, while
our approach drastically reduces the influence of the perturbation on the prediction. Please note that the perturbation patterns in the image
are amplified for visualization reasons.
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Figure 5. Qualitative results from our perturb data set. 4 images are shown in consecutive time steps. (a) input image, (b) pseudo ground
truth, (c) baseline, (d) our approach. In the first column the class road marking is wrongly detected by the baseline and the ground truth.
In the other columns it can be seen that the perturbations in the input data affect our approach much less. Please note that the perturbation
patterns in the image are amplified for visualization reasons.
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