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Abstract— A successful rehabilitation after surgery in hip
endoprosthetics comprises self-training of the lessons taught
by physiotherapists. While doing this, immediate feedback to
the patient about deviations from physiological gait patterns
during training is important. Such immediate feedback also
concerns the correct usage of forearm crutches in three-point
gait. In the project ROGER, a mobile Socially Assistive Robot
(SAR) to support patients after surgery in hip endoprosthetics
is going to be developed. The current implementation status of
the robotic application developed for the use in a real-world
scenario is presented below.

I. INTRODUCTION

Patients recovering from a minimally invasive surgery
in hip endoprosthetics have to play an active role in their
rehabilitation process to facilitate improvement of their gait.
While therapists focus on hands-on therapy mainly, repetitive
training is in the responsibility of the patients themselves.

Against this background, documented SAR-assisted self-
training of patients is expected to have a promising medical
as well as economic potential as a new trend in rehabilitation
care. An example of a SAR-assisted self-training system was
already demonstrated in [1], [2] with a robotic rehabilitation
assistant for walking and orientation self-training of stroke
patients in late stages of the clinical post-stroke rehabilita-
tion, practicing both mobility and spatial orientation skills.
The results of these studies showed that the robot motivated
the patients for independent training and encouraged them
to expand the radius of their training in the clinic. So, a
statement frequently repeated by many patients after training
with the robot was: ”I have never gone this far alone.” [2]

Robot-assisted self-training is also the context and the
motivation of the ongoing research project ROGER (RObot-
assisted Gait training in orthopEdic Rehabilitiation) running
from end 2016 till end 2019. Based on the already demon-
strated ability to accompany patients under real clinical
environment conditions, the focus of ROGER is the real-
time analysis of the gait patterns together with the correct
usage of forearm crutches in three-point gait (see Fig. 1).
Giving corrective feedback to the patient already while doing
training, gait deviations made once should not influence the
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Fig. 1: Patient during SAR-assisted self-training where the robot
drives in front of the user while observing his gait pattern and
posture.

patients gait in the long term [3]. A further focus is the
integration of the real-time analysis of gait patterns in a real
world robotic application that is supposed to be tested with
patients in a clinical environment. In the ROGER project,
the standard treatment by therapists stays unchanged, while
the SAR-assisted gait training is only additional.

The remainder of this paper is organized as follows:
Sec. II first discusses related work in the field of mobile
rehabilitation robotics with the focus of gait analysis and the
sensors used for this purpose. In Sec. III, our SAR-assisted
training process is introduced. Based on this, Sec. IV presents
the ROGER prototype with the used camera system and the
essential human-robot interaction (HRI) and navigation skills
required for a robot coach that can operate autonomously
in such a challenging real-world environment like a clinic.
Using these functionalities, in Sec. V important gait patterns
and methods to analyze and assess them are introduced.
Sec. VI presents the concept and results of first functional
tests with 20 patients conducted under clinical everyday
conditions at the Waldkliniken Eisenberg in October 2017
and March 2018. We also give an outlook on pending
comparative user studies with volunteers from the group of
hip endoprosthetics operated patients with and without using
additional SAR-assisted training. So clinical impact can be
reported at first after the studies are finished in October
2019.
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II. RELATED WORK

A. Mobile rehabilitation robotics in clinical environments

ROGER belongs to the field of SAR, which is defined
as “provision of assistance through social (not physical)
interactions with robots. [...] A SAR system uses noncontact
feedback, coaching, and encouragement to guide a user
during the performance of a task” [4]. Although other gait
training systems like exoskeletons and treadmills also exists,
this paper focuses on SAR systems which are mobile and
non invasive.

Although SARs have shown promising results in a number
of domains, including skill training, daily life assistance, and
physical therapy [5], there is no SAR project known to us that
aims in the same direction as ROGER - the development of
a mobile robotic training companion which can accompany
patients fully autonomously during their gait training within
a clinical setting. The ROREAS project [6] addressed the
walking and orientation self-training of stroke patients to
improve their basic mobility skills and self-confidence but
did not support gait training.
In [7] the CLARC project is presented, where a SAR
helps clinicians perform comprehensive geriatric assessment
procedures in clinical environments. While the geriatric
assessment is a different focus than that of ROGER, both
approaches base on similar basic robotic skills, like naviga-
tion in real environments, person perception by a Kinect2,
HRI, and both approaches use the MIRA framework [8].
In [9] and [10] smart walkers were developed, which use
a laser scanner for detection, and then record the motion
trajectories.

B. Mobile gait analysis using a Kinect2

Using a laboratory system for gait analysis, e.g. a Vicon-
System with 10 infrared cameras (Bonita 10), [11] a very
accurate 3D motion analysis is possible. Because of it’s high
precision it is used by the biomechanic research and sport
science community. But these laboratory systems are station-
ary, expensive, and markers need to be placed manually to
build a gait model. They are therefore not usable for a gait
training with a mobile robot.

Sensors such as Kinect or Kinect2 are low-cost sensors and
an alternative to the expensive laboratory systems as shown
in [12], [13], [14]. There, the sensors are mounted statically
on a treadmill or in a laboratory environment for evaluating
temporal parameters and joint angles, proving their ability to
analyze the user’s gait cycle in real-time.

In [15] a Kinect is used for fall detection of elderly people.
The Kinect’s results are usable, however the authors note
that movements near the wall, furniture or poorly reflective
clothes complicate the detection. In [16] the author investi-
gated a static Kinect2 for fall risk analysis of elderly people
and, therefore analyzed gait parameters like step length, step
duration, cadence, and gait speed. In the result, they inferred
that the Kinect2 is an excellent low-cost alternative.

A mobile version of a fall detector was developed by
[17]. Their robot is able to follow the user, and the Kinect

can be used to evaluate the user’s gait pattern in order to
predict whether the user is about to fall. An obstacle-free
environment is assumed for a smooth procedure. Similarly
the authors in [18] describe a six-wheeled mobile robot with
a Kinect2 mounted on-top to drive in front of the subject and
evaluated parameters such as walking speed and step lengths.

In all cases, the temporal results of the Kinect or Kinect2
were well in agreement with the reference system. Also, the
calculation of the angles at hip and knee joint is unprob-
lematically. However, the angles to the ankle joint pose a
problem due the fact that the skeletal point estimation in the
foot area tends to be very inaccurate. None of these systems
is able to navigate autonomously and avoid obstacles or give
an immediate acoustic or visual feedback to the subject.

III. GAIT TRAINING SESSION

In the following, the phases of a ROGER-typical SAR-
assisted gait training session are outlined, which is imple-
mented as a statebased training application (see Sec. IV-A),
and tested in a series of functional tests with users (see Sec.
VI).

The robotic gait coach is planned to assist patients who
have just received medical consent to walk with three-point
gait on crutches at second day after operation. The duration
of one session is 5 to 20 minutes, adjustable by the patient
appropriate for their state of health or predefined by a
physiotherapist. Training sessions take place each day until
release from clinic, twice a day. It also always takes place at
the same hallway in the clinic. To ensure the patient’s privacy,
the starting and ending dialogues of the training take place
in a separate waiting room beside the training hallway.

To initiate a training, the patient has to go to the robot, log
in by using a personalized RFID transponder and takes a seat
at the hip chair. After that the robot turns until its display
heads in direction of the sitting patient, approaches and starts
to interact by speech e.g. “Hello, I am your robotic gait
coach! At first I’d like to remind you of the procedure and
the focus of our training session.”. Furthermore, the right use
of three-point gait on crutches and the correction of already
known gait deviations of the patient are shown by video. At
the end of the introduction, the patient is asked to rate their
physical condition and choose the preferred duration of the
training. After that, the robot asks, “Are you ready? After
confirming on my display I move to the hallway, and we are
going start training.” While driving to the starting position in
the hallway, the robotic gait coach generates a temporarily,
non-identifying, color-based model of the patient’s clothing
(see Sec. IV-A) to recognize her or him among bystanders
on the training hallway.

During the training session, the robotic gait coach leads
the patient by a certain constant distance and keeps the
patient at a suitable position in the sensoric field of view
in order to continuously keep a good view on the patient
during the training session [19] (see Sec. IV-A). By analyzing
the gait and posture while training, several gait features are
extracted (see Sec. V-A) which are rated by comparison
with thresholds (see Sec. V-C). If a gait deviation has been
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detected, the robotic gait coach gives speech-based and GUI-
based feedback to the patient, e.g. “Take care of the same
step length for both legs.”

At the end of the hallway, the robot stops, turns around
and waits. As soon as the patient is sensed behind the robot
again, the robot continues the training. Along the hallway
hip chairs are set up providing resting places. After the
recognition of the sitting patient, the robot starts approaching
the patient, i.e. reducing the distance to her or him, to
create the necessary distance to physically interact with the
robot’s touch display [20], while stating “I notice you want
to pause the training. Do you want to gather strength or
rather finish the training?”. Depending on the choice of the
patient the training is continued after the patient stands up or
is terminated by guiding the patient to the waiting room to
do the closing dialogue, e.g. “You walked 100 m very well.
For the next training, please pay attention to the usage of
crutches and straighten your upper body.”. After finishing
the regular training time a similar dialogue appears, too.
Finally, physiotherapists are able to check the results of each
training session, and may furthermore adjust the focus of
the next training session. Depending on the way the robot is
integrated into the clinic infrastructure the physiotherapists
might also be able to follow the gait training session in real-
time.

IV. MOBILE ROBOT AS A GAIT COACH

Based on the scenario in Sec. III, there is a set of
distinct challenges a robot system has to tackle to make
a successful training session possible. Sec. IV-A will focus
particularly on the challenges imposed by the requirement
of an autonomous SAR. In Sec. IV-B specific results to
demonstrate the autonomy obtained from function tests in
clinical environment are presented.

A. System architecture

An application for a SAR-assisted gait training has an in-
herently complex nature, and we therefore use a hierarchical
system structure consisting of multiple abstraction layers (see
Fig. 3) in combination with the robotic middleware MIRA
[8].

1) Hardware Layer: Consisting of various sensors and
actuators for obstacle avoidance, person perception, and HRI,
the hardware layer resides at the bottommost level. Sensors
and actuators are mounted on a customized SCITOS platform
[21] with a relatively small footprint of 45 cm× 55 cm, a
height of 1.5m and a maximum driving speed of up to
0.9m/s (see Fig. 2 and [19] for a detailed description).

As the main sensor for gait assessment, we use a back-
ward-directed Kinect2, to observe the patient during gait
training. While guiding, unconcerned persons can be encoun-
tered, too, and have to be treated with great care in order to
not violate the person’s comfort zone [22]. In these situations,
it would be possible to lose sight on the patient if the camera
was mounted at a fixed position. This especially appears
if cameras have a relatively narrow field of view, like the
Kinect2 with a vertical field of view of 70◦. To compensate

this, our robot is equipped with an actively controlled pan-tilt
unit in order to counter this movement [19].

The major interfaces for interaction with the robot are
two touch displays mounted at different heights. This setup
allows the standing or sitting patient to comfortably use the
robot.
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Fig. 2: Sensors and actuators of our robot platform.

2) Skill Layer: By using the raw sensor information and
the actuators of the hardware layer, the skill layer realizes
the core functions of our robotic gait coach. The skills can be
categorized in modules for person perception, gait analysis,
navigation, and HRI. In the following, we will discuss the
main modules only and refer to the given references (see
Fig. 3) for more technical details and experimental results.

Person Perception: The person perception is comprised
of a joint person tracking and re-identification module [26].
Since hospital staff and guests can also move in the hallways
during training, the re-identification is a crucial skill and is
used to distinguish the patient among detected bystanders.
The tracker is based on a multivariate Kalman filter and
is able to estimate the positions and velocities in 3D. As
detection module, a body part detector [24] is employed.
Additionally, generic distance-invariant laser-scan features
detect legs and persons even with mobility aids, i.e. crutches,
walkers and wheelchairs [25]. With these detection modules,
we are able to track persons up to a distance of 8m.
For re-identification, a metric-learning approach with color
and texture features is utilized [27]. This person perception
module was already benchmarked in the ROREAS project [6]
with results showing the suitability for this application.

Gait Analysis: For gait analysis, the estimation of 3D
skeletons is essential. Based on the skeleton representation
of a patient, features for assessment can be extracted in
a straightforward manner. The Kinect2 is our sensor of
choice, since in conjunction with Microsoft’s SDK [28] we
can make use of an already fully functioning 3D skeleton
tracker which robustly estimates a 25-joint-skeleton in real-
time (30 fps). Thus, we were able to concentrates on the
core of the ROGER project, the extraction of gait features
from the skeleton obtained by the Microsoft’s SDK and their
assessment to distinguish pathological from physiological
gait patterns. This approach sped up the project by avoiding
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Fig. 3: Hierarchical architecture of the robot’s functional system. A detailed description of the skills developed within the ROGER and
ROREAS [6] projects together with the results obtained from functional tests can be found in the red highlighted references.

the tedious development of our own skeleton estimation
system. Further details on the extracted gait features and
assessment algorithms are presented in Sec. V.

Navigation: To assure a safe navigation in a dynamic
environment, the problems of localization, obstacle detection,
and motion planning have to be solved. Our localization
system is based on an adaptive Monte Carlo approach,
and detecting obstacles is performed through an occupancy
grid mapping approach. Both systems for localization and
obstacle detection are generically designed to process both
2D laser scans and 3D information [30], [31]. Based on
the estimated robot pose and obstacles in the vicinity, we
generate motion commands with a multi-objective motion
planner which utilizes evolutionary algorithm for optimiza-
tion [33]. To guarantee the best conditions for estimating
the skeleton of the patient by the Kinect2 during training,
we take advantage of the versatile properties of our motion
planner to keep the patient in an optimum distance and angle
relative to Kinect2.

HRI: Since touch displays are our major interface, the
HRI modules simply encompasses modules for displaying
graphical user interfaces. Furthermore, a speech synthesis
system generates [35] spoken language in real-time, making
it possible to customize the gait correction instructions to
patient’s needs.

3) Behavior Layer: Each behavior realizes a directly
observable function of the robot by managing the interplay
of the modules in the skill layer. Basically, behaviors can
be regarded as small state machines, parameterizing and
coordinating the activation and deactivation of skills. The
mainly used behaviors of the applications are “Guide User”
(using the skills, e.g. “Evolutionary Motion Plannning”,
“Keep in View”) and “Gait Correction” (using the skills,
e.g. “Gait Feature Extraction” and “Gait Assessment”) for
analyzing the patients’ gait while guiding them through the
clinic hallways.

4) Application Layer: Top layer of the hierarchical system
architecture is the application as interface for guiding the

patient through the whole training. The application is imple-
mented as a state machine realizing the described training
procedure (see Sec. III).

B. Environment and functional tests for the robot’s autonomy

The typical environment for SAR-assisted self-training in
clinic buildings are hallways. In general, clinic hallways are
stretched-out and straight which contributes to a good view
on the exercising patient. However, there are often situations
where the robot needs to navigate around bystanders or
obstacles, e.g. carts with medical supplies. As SAR-assisted
self-training aims to be seamlessly integrated into the usual
clinical day-to-day activities, the robot will subsequently also
operate in this environment.

To assess the performance of our navigation skill, we
performed several functional tests, first in our lab building
and after that in the clinical environment. Since our robot
enhances the system of our previous project ROREAS, we
refer to [1] for a summary of previously conducted tests. In
the following paragraphs, we will only present the results of
the navigational skill “Keep in View” which is specific to
the project ROGER.

We determined the performance of the obstacle avoidance
and the ability to keep a polite distance to bystanders when
driving to a specific position (still not guiding a patient). This
test took place on two floors of the clinic during a work day
and comprised the robot commuting between both ends of a
floor. To assess the performance, we counted the number of
collisions with obstacles which would force an emergency
stop and the number of close encounters with persons in a
radius of 0.6m to evaluate if the robot proactively avoided
obstacles and kept a polite distance to bystanders. The total
mileage driven by the robot was 2 800m, while the robot
encountered 44 persons in a radius of 3m. During this test,
no collisions occurred but 8 close encounters with persons
which were primarily caused by clinic staff intentionally
moving close to overtake the robot and missing detections
of the person tracker because of adverse light conditions.
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To assess the performance of keeping the patient at an op-
timum distance and angle relative to Kinect2 while guiding,
additional tests were conducted in our lab. For these tests,
a 140m long track resembling the clinic environment was
set up. On this track eight test subjects were guided from
start to end and back at a distance to the robot of 2.5m
(±0.5m). In total, 30 test runs were recorded resulting in a
overall mileage of 4 200m. With the combination of motion
control of the robot’s drive and the camera tracking of the
pan-tilt unit, we could keep the test subject in the Kinect2’s
field of view in 99% of the time [19].

All integrated robotic skills, e.g. the person tracker or
the re-identification module have significant influence on
the working SAR-assisted training. But during the devel-
opment of the application, most skills are also still under
development. So, we utilize a control interface on a tablet
computer (control tablet), which was specifically developed
for this purpose in order to provide an interruption-free
testing process. Using this control tablet during the functional
tests, the observer was able to make real-time adjustments
to skills, e.g. person detection, and compensate erroneous
decisions of those skills. This way, the functional tests
including those with users were enabled to start much earlier
than this would have been possible by the readiness level of
the respective skills. Moreover, the developers got objective
and situation-specific feedback about the function of their
algorithms.

V. GAIT ASSESSMENT
A. Gait Features and their Extraction

Besides the aforementioned requirements on hardware
and basic robotic skills, detection and evaluation of gait
features are crucial in the scope of a mobile robot which is
designed for SAR-assisted gait training. Therefore, a group
of physiotherapists was asked to recommend a set of typical
gait pattern related anomalies they usually pay attention
to. On the basis of this list, together with the results of
conducted accuracy investigation for a static Kinect2 setup
[29], a subset of gait features was defined the robot needs
to be able to detect in a reliable way. The subset is made
up of step length, stance duration, step width, trunk lean,
flexion/extension of knee and hip joints as well as the crutch
position which is not supported by the Kinect2 SDK.

In continuation to the investigations on the accuracy
between Kinect and Vicon made with a static setup [29],
further investigations were also done in the gait laboratory
with a Kinect2 mounted on the robot and a Vicon system
simultaneously. The Vicon system which was used in the
static as well as in the dynamic setup is a static marker based
motion capture system. The results gathered for the dynamic
setup are depicted in Fig. 4 for the joints of the lower body.
Considering the dynamic setup the comparison of the Vicon
as reference system with the joint positions estimated by the
Kinect2 showed, that the standard deviations of the errors are
between 3 and 5 cm (see Fig. 4). So the Kinect2 sensor can
also supposed to be appropriate for gait feature assessment
on a mobile platform.
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Fig. 4: Histograms of the errors between Kinect2 and Vicon system
and their standard deviations (SD) for the lower body joints.

Most gait parameters are defined by the spatio-temporal
heel and tip movement respectively. Although the investiga-
tions showed that the accuracy of the foot position estimation
is comparable to the ankle position accuracy, it also showed
that the Kinect2 SDK had issues with stable tracking of the
foot positions. Since the whole gait feature tracking depends
on a stable estimation of the foot position during the gait
phases, the presented gait feature assessment uses the ankle
positions due to their more accurate estimation instead the
more error-prone foot positions.

Following this assumption, the step length is defined as the
Euclidean distance between the ankles during one gait cycle.
A gait cycle consists of swing phase and a stance phase of
each leg. The consecutive gait cycles of both legs are a stride.
In addition to the step length the stance duration for the foot
is defined as the time between two consecutive maximum
step lengths while the respective foot stands on the ground
and the opposite foot is swinging. Unlike the step length,
the step width is the minimum norm distance between the
left and right ankle. Fig. 9 shows the step length and stance
duration during a sequence of four gait cycles for a patient
with a total hip replacement of the right hip joint.

Although the Kinect2 skeleton does not provide the pose
of body parts, the poses can be obtained by linking adjacent
skeleton joints. Thus, the angle of the knee joint is defined by
the direction vectors between knee to hip skeleton point and
knee to ankle skeleton point. In order to determine the flexion
and extension for both hips joints, corresponding shoulder
and knee points are used. In contrast to the joint angles, the
forward lean of trunk is defined to be the angle between the
line from mean hip joint to mean shoulder joint and the line
perpendicular to the mean hip joint (see Fig. 5, right).

B. Forearm Crutches and their Detection

Since the robotic gait coach’s focus are patients shortly
after their endoprosthesis operation, forearm crutches are
mandatory to avoid overstressing the joint. Before receiving
medical consent for self-training, a physiotherapist gives an

1https://bit.ly/2RUGbcz
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Fig. 5: Sequence of lean of trunk, hip flexion, and knee flexion over
a period of 23 s for a patient with a total hip prosthesis (right hip)1.
The gait impairment results in the unequal progression of the knee
flexion curves.

introduction on how to use crutches in three-point gait and
accompanies the patients during their first training. As noted
above, it is consequentially highly favorable to also cover
the aspect of correctly performing a three-point gait in SAR-
assisted gait training. Given the capabilities of our platform,
a possible approach is to use depth data obtained from the
Kinect2’s 3D-sensor. To make best use of existing and mature
libraries, the depth image is first converted to a point cloud
suitable for processing using the Point Cloud Library [36]
(PCL). The converted point cloud is then roughly segmented
in smaller point clouds based on the patient’s skeleton since
we know that crutches ought to be near its forearms/hands.
This allows the efficient use of standard segmentation and
fitting algorithms on a reduced subset of points. For example,
using RANSAC [37] allows segmentation of the crutch-
candidate point clouds in real-time (30 fps) while giving
reasonable accuracy and robustness (see Fig. 6).

Fig. 6: Sample image of a crutch detection (left: green, right: red)
in a Kinect2 point cloud.

After the crutches are found in the scene, further analysis
is now possible. An example can be seen in Fig. 7 where the
height of the crutch tips over the ground (top) as well as the
distance of the foot (operated leg) to the line connecting
both crutch tips is shown (bottom). Because patients in
our scenario are asked to walk in three-point gait, the
distance should be relatively constant over time since one
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Fig. 7: Top: Vertical height of the estimated crutch tips (left:
blue, right: orange) and initial contact times with the ground
plane (dashed) Bottom: Distance of the foot (operated side) to the
connection line of both crutch tips. For three-point gait the dashed
horizontal line would be ideal, and distance minima should be close
to crutch-ground contact markers.

of the requirements in three-point gait is to always support
the implant with two crutches during stance phase. High
distances at the marked contact points with the ground and
noticeable peaks in the distance curve in contrast provide
a strong hint that the patient moves and sets its crutches
before actually lifting the heel and thereby offloading the
body weight to the healthy leg. In this situation, the operated
hip is unsupported and often still under the pressure, possibly
causing discomfort or instabilities in the patient’s gait.

C. Assessment of Gait Features

In addition to the gait feature extraction, the mobile gait
training robot should be able to distinguish pathological from
physiological gait patterns. Furthermore, the classification
has to be executed in real-time while the patient walks behind
the robot.

To classify whether detected step lengths, stance dura-
tions, step widths, trunk leans or joint flexions are within
the physiological ranges, thresholds will be determined by
physiotherapists.

For this purpose, semi-automatic trainings with patients
with hip endoprosthetics were performed in order to film
their walks and capture the patients skeleton movements
provided by the Kinect2 at the same time. Subsequently, a
subset of videos were picked out to be annotated by four
physiotherapists.

When an error occurred, the sequence was labeled and
timestamps corresponding to the beginning and end of the
sequence were marked. Simultaneously, the gait features
were extracted from the previously captured skeleton infor-
mation and were also stored with their timestamps. In several
iterations the physiotherapists watched the selected videos of
six patients (approximately 1 h of video footage in total) and
each time focused on an other gait error from the predefined
list which should be detectable by the robot afterwards. In
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Fig. 8: Histograms show the distributions of pathological (error
class) and physiological (no-error class) step length symmetries. A
symmetry of 0.0 means perfect symmetry between left and right leg,
whereas symmetries of ±1.0 indicates that one leg makes twice the
step length of the other leg respectively. By evaluating the F1 score
a threshold can be found which separates both classes most suitable.
In this case the best symmetry threshold is -0.17 (precision: 0.85,
recall: 0.88, F1 score: 0.87), which means that step lengths with
symmetry values less than -0.17 can be considered as a pathological
deviation from the normal gait and needs to be corrected.

a consecutive evaluation, gait feature values of sequences
in which all physiotherapists confirmed the gait error are
considered to be part of the error class. In contrast, values
of sequences without any annotations belong to the no-error
class. For assigning the physiotherapists annotations with the
gait feature values the timestamps are used.

Since the physiological gait feature deviation covers a
wide range, comparing absolute values with thresholds is
not an expedient approach. In some cases a more reasonable
way is evaluating the gait similarity between both legs during
one cycle. The similarity is defined by the ratio of lengths,
durations or angles between the leg with and that without
hip endoprosthesis respectively.

In Fig. 9 a sequence of four consecutive strides of a patient
with total prosthesis of the right hip is shown. It can be
seen that the step length of the not operated leg is shorter
than that of the operated leg with prosthesis. During a gait
cycle, the patient tried to reduce the time standing on the
operated leg to avoid discomfort. This is the reason the stance
duration of the not operated leg is greater compared to the
stance duration of the leg with prosthesis. Thus, the ratio
between step length and stance duration of both legs is an
appropriate instrument to classify whether the patients’ gait
is physiological or pathological and needs to be corrected
during training.

The ability to separate both classes was evaluated by the
F1 score which was computed for different threshold values.
The most suitable threshold corresponds to the highest F1
score. In Fig. 8 histograms of the error class and the no-
error class for physiological step length and the best fitting
classification threshold are shown.

Current work concentrates on the evaluation of thresholds
to separate pathological gait errors from physiological devi-
ation as prerequisite for coming functional tests with users.
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Fig. 9: Sequence of stance durations of a patient with a total
hip prosthesis (right hip). To avoid pain, the patient acquires
a pathological gait pattern which manifests in differing stance
durations (different width of orange and blue areas) and step lengths
(blue line).

VI. FUNCTIONAL TESTS WITH USERS

Before evaluating the gait coach performance with patients
in a clinic, it must be assured that all required robotic skills
and behaviors for HRI and human-aware navigation (see
Fig. 3) do work as expected in a clinic setting. So we
performed several functional tests, first in the hallways of our
lab building [20] and after that in the clinic with volunteers
(staff members, no patients) [19], [29].

In addition to these tests, in October 2017 and March
2018 we performed functional tests especially to develop
methods to assess the gait patterns of 20 patients under real
world conditions. Typical trials with patients had durations
of about 10min (including short pauses if needed) where
the patients each walked 200m on average. While being
guided by the robot, the patients were recorded by the
onboard Kinect2 observing the patient. As described in Sec.
V-C, physiotherapists were able to establish thresholds for
important gait features based on these videos. These tests
were accompanied by technical staff using a control tablet
to compensate erroneous decisions of those skills which were
still under development.

In the last project phase beginning in May 2019, the final
prototype of a robotic gait coach is going to be evaluated
within further field tests with a sample size of 60 patients
(30 getting robot training, 30 in the control group). The goal
is to investigate the effect of additional SAR-assisted gait
training with corrective feedback for a faster achievement of
a physiological gait pattern. Besides of this, socio-emotional
factors like safety, joy of use, and co-experience [38] play
an important role for the acceptance and success of a SAR-
assisted training. Thus, sociological studies will be run in
parallel to evaluate the acceptability and user-friendliness of
the robotic gait training by the patients.

VII. CONCLUSIONS AND OUTLOOK

Up to now, in our ongoing ROGER project we developed
a robotic gait coach, which can navigate in clinic hallways
accompanying and observing the self-training of patients. By
recognizing gait deviations the robot will be able to give
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corrective feedback immediately under real clinic environ-
ment conditions. Giving this feedback in an objective way
and being patiently, the robot is supposed to motivate the
patient and promote its self-confidence. The feasibility and
the advantages of self-training with a robotic accompaniment
shall be further investigated in succeeding studies. By doing
further real world tests, we can also improve our navigation
and person recognition methods to enhance the autonomy
of the robot. Also, the process of training can be further
enhanced by integrating the robot into the clinic information
system to yield improved interfaces to physiotherapists for
evaluating and adjusting the training plans.
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