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Abstract—Aging public roads need frequent inspections in or-
der to guarantee their permanent availability. In many countries,
this includes the standardized visual assessment of millions of
images. Due to the lack of sophisticated approaches, often, the
evaluation is done manually and therefore requires excessive
manual labor. GAPs is the most extensive publicly available
dataset that provides standardized, high-quality images for train-
ing deep neural networks for pavement distress detection. We
further enlarge this dataset and provide refined annotations.
By conducting extensive experiments on the GAPs dataset, we
improve the performance of automated visual road condition
assessment. We evaluate the performance gain of several modern
neural network architectures and advanced training techniques.

Index Terms—Pavement distress detection, Convolutional Neu-
ral Networks, Deep learning dataset

I. INTRODUCTION

Public infrastructures are suffering from aging and there-
fore need frequent inspection. Distress detection and solid
management for maintenance are the keys to guarantee their
permanent availability. Therefore, condition acquisition and
assessment must be applied to the whole road network of a
country frequently.

Following German federal regulations, the surface charac-
teristics have to be evaluated i.a. regarding substance condi-
tion. The substance condition is captured with camera systems
and has to be evaluated by visual inspection of the recorded
images. Current evaluation is done manually and therefore
requires excessive manual labor. This includes tasks like
finding very thin cracks, that appear only in few pixels of
the image. Therefore, the period between the actual inspection
and the final evaluation may be up to several months. In the
meantime, small damages, like cracks, can lead to substantial
downtimes with a high impact on the population.

∗This work has received funding from the German Federal Ministry
of Education and Research as part of the ASINVOS project under grant
agreement no. 01IS15036.

In the research project ASINVOS1, we aim to automate
this process to a high degree by applying machine learning
techniques. The basic idea is to train a self-learning system
with manually annotated data from previous inspections so that
the system learns to recognize underlying patterns of distress.
Once the system can identify intact infrastructure robustly, it
can reduce the human amount of work by presenting only
distress candidates to the operator. This helps to speed up the
inspection process significantly and simultaneously reduces
costs. Furthermore, inspection intervals can be reduced, which
helps to remedy deficiencies in time.

Therefore, in [1] we presented the German Asphalt
Pavement Distress (GAPs) dataset, which was the first high
standard dataset in the pavement distress domain that provides
high-quality standardized images and is large enough to allow
the training of deep neural networks with high accuracy. This
dataset already attracted much attention and had been used by
several research groups from different countries, e.g. [2] and
[3]. Due to many requests, as part of this paper, we enlarge the
dataset by 500 additional images from an additional Federal
highway. We also refined the annotations in order to provide
data with even higher quality. Additionally, we created an
MNIST- or CIFAR-like subset consisting of 50k samples such
that a faster training is possible. This enables research groups
to compare with the state of the art at a low cost.

In this paper, we conducted extensive experiments on the
GAPs dataset. This includes the evaluation of several state-of-
the-art network architectures and training techniques known
to work well on other computer vision datasets. Additionally,
we analyzed questions like ”How many context is necessary
for distress detection?” and ”Which network complexity is
necessary to perform at a high level and reasonable speed?”.

1ASINVOS: Assistierendes und Interaktiv lernfähiges Videoinspektiossys-
tem für Oberflächenstrukturen am Beispiel von Straßenbelägen und
Rohrleitungen (Interactive machine learning based monitoring system for
pavement surface analysis)
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II. RELATED WORK

With first attempts published in the early nineties e.g., [4],
automating the distress detection process has already been
addressed by researchers for almost three decades. Therefore,
a wide variety of different approaches have been presented
ranging from traditional image processing techniques to deep
learning approaches more recently. Since the typical pave-
ment assessment processes are carried out using 2D image
recordings, the related work section is focused on 2D image
processing approaches. However, some authors have shown
the effectiveness of using 3D data for distress detection [5].
We refer to [6] for a more detailed list of depth based 3D
approaches.

The algorithms developed for 2D image-based evaluation of
the pavement surface can be divided into two major categories:

• computer vision algorithms designed explicitly for crack
detection, mostly by applying image value thresholding
and

• algorithms for general distress detection that use implicit
or explicit local feature extraction.

A. Crack Detection

The first group of algorithms uses image processing meth-
ods to detect road distress structures that can be extracted by
thresholding afterward. Therefore, preprocessing algorithms
are applied in order to reduce illumination artifacts. Under
the assumption that crack structures can be identified as
local intensity minima, this group of algorithms usually uses
thresholding in the image space to find crack candidates.
The resulting crack image is further refined by morphological
image operations and by searching for connected components.
Approaches belonging to this category are presented in [7],
[8], as well as in [9], where the closed source but publicly
available CrackIT toolbox is presented. Other variants of this
category, e.g. use minimal-path-based [10] or graph-based [11]
crack candidate analysis for further refinement, that is also
used by the well known CrackTree approach [12]. Although
most authors focus on crack detection, thresholding techniques
are also used for pothole detection [13].

B. Feature-based Distress Classification

The algorithms of the second category apply classifiers to
local regions of the image in order to extract crack or distress
regions. Traditional image processing approaches mostly apply
explicit feature extraction. Using a Support vector machine
(SVM) is very common among these traditional approaches.
For example, this classifier is applied to Histogram of Oriented
Gradient (HOG) features [14] or Local Binary Patterns (LBP)
[15], [16]. A recently proposed approach has been applied to
frontal-facing images by integrating an image clustering step
to extract the street surface first of all [17].

More recent approaches tend to use implicit feature-
extraction by using Convolutional Neural Networks (CNNs).
Approaches based on CNNs mainly differ regarding network
architecture, predicted distress classes and whether downward
or frontal-facing input images are processed.

One of the first attempts to apply CNNs in the domain
of pavement distress detection is presented in [18]. The
network architecture shares some similarities with LeNet-5
[19] but utilizes ReLU activation and four convolution/pooling
layers for detection pavement cracks on downward facing road
images. Also applied to downward facing road images, but
utilizing VGG-based CNNs [20] are the approaches presented
in [21] and [1]. While the former approach is focused on crack
detection, the latter addresses all distress types addressed by
the federal German pavement assessment process.

With the tremendous distress detection improvements over
traditional image processing techniques archived by CNNs
[1], [12], distress detection in frontal-facing images it getting
more common. This kind of image is often processed by a
further processing step to constrain distress detection to the
pavement area. This step can be carried out using traditional
image segmentation techniques like graph-based hierarchical
clustering [22] or using CNNs like SegNet [3]. The network
architectures used for processing frontal-facing images are
based on state-of-the-art image processing networks. [23]
for instance compares InceptionV2 and MobileNet for the
detection of eight different distress classes while [3] applies
Squeeze-Net for distress detection. [2] present a Feature Pyra-
mid and Hierarchical Boosting Network which is used for
crack detection in frontal-facing images.

In this paper, we focus on distress detection in downward
facing road images. Frontal-facing images do not provide the
resolution necessary to detect minimal damages. This can be
seen in many approaches trained on frontal-facing images,
since they often miss tiny cracks, that are still detected by
approaches applied to downward facing road images.

C. Datasets

Although a lot of different methods have been presented so
far, there is still a lack of publicly available datasets that are
of decent size and are recorded in a standardized way. This
hampers comparability since most publications are using own
datasets that have been generated using consumer cameras and
are labeled in different ways.

The datasets published so far do often consist of less
than 500 images, e.g., [2], [8], [9], [12], and do not offer
the necessary diversity to train a universal pavement distress
detector. Although, some datasets have been released recently
that do offer a decent size like [24] with 700k Google Street
View images or [23] with 15k smartphone images, these
datasets are using frontal-facing images and do not provide
the level of resolution required for formal road assessment.

III. DATASET

The GAPs dataset2 is the most extensive dataset in the pave-
ment distress domain that provides standardized, high-quality
images. Due to many requests, we provide 500 additional
images from an additional Federal highway to enlarge the
dataset even more. Now, it consists of 2468 HD road surface

2The GAPs dataset is available at
http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/.
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images. We also provide a sub-sampled dataset containing 50k
images to allow for fast training and comparison to the state of
the art in an MNIST- or CIFAR-like fashion. Most important,
we improved the annotations. The level of detail is increased
by labeling distress by several small bounding boxes that
enclose the distress tightly. Additionally, all annotations were
checked for correctness by several experts. In the following,
we refer to this dataset as GAPs v2.

A. Standardized Data Acquisition

The data acquisition is based on the specification by the Ger-
man Road and Transportation Research Association (FGSV) –
the so-called Road Monitoring and Assessment (RMA) [25].
The image data of the GAPs dataset have been captured by
the mobile mapping system S.T.I.E.R (Fig. 1), that is certified
annually by the German Federal Highway Research Institute
(BASt) since 2012. This vehicle is equipped with several
high-resolution cameras, i.a. two slightly overlapping bird-eye-
view photogrammetrically calibrated monochrome cameras
capturing the pavement’s surface in detail. The surface camera
system is synchronized with a high-performance lighting unit.
This allows continuous capturing of road surface images even
at high velocities (ca 80 km/h) and independent of the natural
lighting situation. The cameras capture images at a resolu-
tion of 1920×1080 pixels, which means each pixel covers
1.2mm×1.2mm of the surface. For more details regarding the
data acquisition process and the measurement vehicle, we refer
to [1]. Following the German FGSV-regulations, the surface
defect classes shown in Fig. 2 must be detected.

B. Improvement of the GAPs dataset

The GAPs v2 dataset3 is a significant improvement over the
original GAPs dataset [1]:

3The GAPs v2 dataset is available at
http://www.tu-ilmenau.de/neurob/data-sets-code/gaps/.

Fig. 1: Mobile mapping system S.T.I.E.R

Fig. 2: Surface defect classes in GAPs dataset. The class
cracks comprises all sorts of cracks like single/multiple crack-
ing, longitudinal/transversal cracking, alligator cracking, and
sealed/filled cracks.

TABLE I: Class distribution of GAPs dataset.

(a) Full dataset
Class Fraction
Intact road 89.71%
Cracks 7.28%
Applied patches 1.72%
Inlaid patches 0.75%
Potholes 0.30%
Open joints 0.24%

(b) 50k dataset
Class Fraction
Intact road 60%
Cracks 20%
Applied patches 10%
Inlaid patches 5%
Potholes 3%
Open joints 2%

1) More data: The GAPs v2 dataset includes a total of
2 468 gray valued images (8 bit), partitioned into 1 417 training
images, 51 validation images, 500 validation-test images, and
500 test images, following the partitioning suggestions of
[26]. Using these images, 692 377 patches of surface defects
and 6 035 404 patches of intact road are extracted. Tab. I(a)
shows the unbalanced class distribution of the full dataset.
The pictured surface material now contains pavement of four
different German federal roads.

2) Refined annotations: The images have been annotated
manually by multiple trained operators at a high-resolution
scale such that actual damage is enclosed by a bounding box
and the non-damage space within a bounding box has a size of
lower than 64×64 pixels. All annotations of the first version
of the GAPs dataset have been refined, such that the non-
damage space within a bounding box is even smaller than that
restriction. Conflicting annotations have been resolved (GAPs
v1 had only one annotator per image).

3) More context: While GAPs v1 offered only patches of
size 64×64 extracted within the annotated regions and the
intact surface regions, GAPs v2 offers several patch sizes
showing more context (see Fig. 4). The defect region is still
ensured to be within the 64×64 center region of each patch,
but the surroundings may help to make correct decisions. In
Sec. V we show the benefits of this context information.

4) 50k subset available: Since deep learning benefited most
from small size real-world datasets, we also created a smaller
subset for fast experiments. Inspired by the MNIST and
CIFAR datasets, we created a training set of 50 000 samples.
Additionally, the validation set, validation-test set, and test set
contain 10 000 samples each. Tab. I(b) shows the chosen class
distribution of the 50k subset. The samples for each class
were chosen randomly until the desired number of samples
was reached. The classes are left unbalanced, but the dominant
classes of intact road and cracks are not that dominant as in the
full dataset. The relative fraction of the non-dominant classes
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TABLE II: ASINVOS net for patches of size 160×160.
Abbreviations: D – dropout (dropout probability), in – input,

conv – convolution, pool – max pooling, fc – fully connected layer,
out – softmax output

type filter size stride regular. output size # paramet.
in 1×160×160
conv 5×5 (64) 1×1 — 64×156×156 1 664
conv 3×3 (96) 1×1 D (0.1) 96×154×154 55 392
pool 2×2 2×2 96×77×77
conv 4×4 (128) 1×1 D (0.2) 128×74×74 196 736
conv 3×3 (160) 1×1 D (0.2) 160×72×72 184 480
pool 2×2 2×2 160×36×36
conv 3×3 (192) 1×1 D (0.3) 192×34×34 276 672
conv 3×3 (224) 1×1 D (0.3) 224×32×32 387 296
pool 2×2 2×2 224×16×16
conv 3×3 (256) 1×1 D (0.3) 256×14×14 516 352
conv 3×3 (256) 1×1 D (0.4) 256×12×12 590 080
pool 2×2 2×2 256×6×6
conv 3×3 (256) 1×1 D (0.4) 256×4×4 590 080
conv 2×2 (256) 1×1 D (0.4) 256×3×3 262 400
flat 2304
fc (1000) D (0.5) 1000 2 305 000
fc (500) D (0.5) 500 500 500
out (2) D (0.5) 2 1 002

5 867 654

among themselves are similar to the original dataset. We have
chosen this distribution in order to focus more on the distress
than on the intact road. The experiments in Sec. V confirm,
that this approach is an excellent choice since observations
for classifiers trained on the small subset transfer to identical
classifiers trained on the full dataset.

IV. DEPLOYED NETWORK ARCHITECTURES

A. AsinvosNet

As a baseline, we use the ASINVOS net that was the best
performing neural network on GAPs in [1]. The ASINVOS
net was designed for processing patches of size 64×64. It
has eight convolutional layers, three max-pooling layers, and
three fully connected layers resulting in 4.0M weights and
is similar to a VGG-model [27]. In order to process larger
patch sizes, we slightly modified the convolutional part of the
network, such that the first fully connected layer is applied to
the identical number of 2304 neurons as in the 64×64 patch
size version. Tab. II shows the filter sizes of the ASINVOS net
for processing inputs of size 160×160. It has ten convolutional
layers, four max-pooling layers, and identical fully connected
layers as the original ASINVOS net. In sum, the modified
ASINVOS net has 5.9M weights. Thus, dropout is needed as
regularization to perform well on unknown data.

B. Residual Networks

The ASINVOS net needs extensive regularization to com-
pensate for a large number of weights in order to avoid
overfitting of the training data. Furthermore, the high number
of weights in combination with a high dropout rate requires
many training epochs to adapt all network weights.

To overcome these problems, we opted for Residual Net-
works (ResNets) as proposed in [28], which are often referred
to as pre-activation Residual Networks. This is a modern
network architecture that speeds up training and inference
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Fig. 3: Structure of the used 18 layer Residual Network. The
shortcut connections bypass the residual blocks and improve
gradient flow. The network consists of 18 convolutional layers,
while every ResNet-block consits of two layers.

compared to the VGG-based networks used in [1]. The basic
idea of ResNets is to introduce residual connections. This
connections act as a bypass for blocks of convolutional layers
(ResNet-blocks) and connect the output of the previous block
with the output of the current block. Since the output of the
previous block and the current block are added (See Fig. 3),
the current block can concentrate on solving the residual
and is therefore often called Residual Block. Furthermore,
the introduced shortcut connections improve the gradient flow
through the network an enables training of deeper networks.

C. Transfer Learning

Convolutional Neural Networks are known for learning
features that generalize well between different tasks. There-
fore, weights of a CNN trained on one task can be used
for initializing a CNN to be trained on another task. This is
known as transfer learning. In this paper, we use weights of a
ResNet50 trained on ImageNet.

However, ImageNet provides colored (3-channel) images
as input for the CNN whereas GAPs provides gray-value (1-
channel) images. Thus, the weights of the first convolutional
filter need to be adapted. We sum the weights for each position
and output dimension channel-wise in order to process 1-
channel images. The result is equal to triplicate the gray-
value channel as 3-channel input. Since gray-value (3-channel)
images are included at a small portion in ImageNet, at least
the textural filters in the first layer should be reusable.

Another difference is the number of output classes in Ima-
geNet and GAPs. Since we cannot map any of the ImageNet
classes on the distress types, the weights of the last layer are
likely useless. Thus, we initialize these weights randomly.

D. Adversarial Training

This technique initially was proposed to withstand adver-
sarial attacks that try to fool a neural network. The basic
idea is to manipulate samples of the dataset such that the
CNN would make false decisions and use these adversarial
samples additionally for training. This can be done directly by
modifying the loss with an additional backward and forward
pass without the need for actually creating the modified
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samples. We follow the approach of [29] by using the fast
gradient sign method (FGSM).

In our case, the primary goal is not to withstand adver-
sarial attacks but to improve the classification performance.
We found that creating adversarial samples is an effective
way of data augmentation that addresses weak points of the
currently trained CNN. In Sec. V we compare the efficiency
of adversarial training with typical data augmentation.

V. EXPERIMENTS

A. Experimental Setup
In this section, we report distress detection results that can

be achieved on the GAPs dataset using different network
architectures and techniques known from the literature to
improve network performance. All networks have been trained
on the training dataset of the 50k subset for 80 epochs, what
has been verified to be a reasonable number of epochs on
the validation dataset. We opted for the 50k subset as default
dataset since the results on the smaller subset are comparable
to the full dataset and even outperform the networks trained
on the full dataset if data augmentation is applied (see Sec.
V-D). We have used SGD with a momentum of 0.9 as the
optimizer and a batch size of 64. The learning rate was varied
in five steps between 0.005 and 0.08 (0.005, 0.01, 0.02, 0.04,
0.08) and every single experiment was repeated three times
in a row. We computed F1 score and Balanced Error Rate
(BER) for every experiment, which is in compliance with [1]
where these measures have been found to be most useful to
measure performance on the GAPs dataset. Furthermore, we
also report G-mean (GME) values to address the imbalanced
class distribution of the dataset. Therefore, mean values over
the trials of the best learning rate are reported. Standard
deviation is given when sensible, but usually omitted since
deviation for the best learning rate is low. Most experiments
are carried out using a ResNet with 34 convolutional layers
(ResNet34) since this model has been proven to fit well on the
data. However, the effects of different network architectures
have been analyzed in Sec. V-G.

B. Patch Size
We first analyzed if the neural network can benefit from

additional context. Therefore, we have trained a ResNet34
on different patch sizes of the dataset. As shown in Fig.
5, the network greatly benefits from increasing the patch
size, since the F1 score improves significantly up to a patch
size of 160×160 pixels. Therefore, it becomes evident that
the suggested patch size of 64×64 in [1] hampers detection
performance and should no longer be favored.

However, it becomes also obvious that the patch size does
not increase much on the valid-test dataset with larger patch
sizes. In fact, it even starts to decrease slightly on the test
dataset.

TABLE III: Result obtained using a ResNet34 and a patch
size of 160×160 pixel on the evaluation subsets of the GAPs
50k dataset. ↓ highlights that a lower score is better, whereas
↑ highlights that a higher score is better.

Normal Crack

Fig. 4: Visualization of context captured by the different patch
sizes

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

ResNet34
160×160

.9284 .0592 .9408 .8982 .0857 .9141 .8709 .1090 .8902

As network inference performance decreases with the patch
size (See fig. 5), we have decided in favor of a patch size
of 160×160 pixels as it reflects a good trade-off between
detection quality and inference speed. Therefore, the results
on all subsets of the dataset are given in Tab. III.

C. Data Augmentation

Data augmentation often is used if the training dataset is
of small size and is not diverse enough. Although the full
gaps dataset is of a decent size, the 50k subset may not
cover the same variety. Therefore, we want to show how data
augmentation can improve the performance on the 50k dataset
and are comparing the results to the full dataset in the next
section. Since the pavement is captured from a bird-eye view
in the GAPs dataset, we decided to randomly add rotation and
a bit of translation to the patches in the training phase. The
rotation was perturbed in the range of −90◦ to 90◦, and a
small translation offset of up to 5 percent of the patch size
was added.
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Fig. 5: Performance of ResNet34 trained on different patch
sizes. The green line shows the inference performance reached
with the different patch sizes on a NVIDIA TitanX graphics
card.
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Fig. 6: Performance of ResNet34 trained on different patch
sizes and with and without data augmentation on GAPs 50k.
Results are very close and only a slight benefit can be observed
on the valid-test subset if data augmentation is used.

The results for different patch sizes are given in Fig. 6.
Although the performance increases for small patch sizes, the
effect almost vanishes for larger patch sizes on the valid and
valid-test dataset. Having a look at the test subset however
(Fig. 6 and Tab. IV), discovers that the small improvement
on the valid-test subset results in a much more significant
improvement on the test subset. Therefore, neural networks
can significantly benefit from data augmentation on the 50k
GAPs dataset since it dramatically increases there generaliza-
tion abilities.

TABLE IV: Effect of applying data augmentation to the 50k
dataset. Results on test subset can be improved significantly
(patch size 160×160, ResNet34).

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

No aug. .9284 .0592 .9408 .8982 .0857 .9141 .8709 .1090 .8902
Data aug. .9290 .0583 .9417 .9045 .0804 .9194 .9041 .0820 .9174

D. Full Dataset

We provide the GAPs dataset with a smaller 50k subset
to enable researchers to test different networks and training
techniques and to obtain results even with low computational
resources. To show how the results obtained on the GAPs
50k dataset can be transferred to the full GAPs dataset, we
compared both datasets by training a ResNet34 with patch
size 128×128. While the patches of the full dataset are used
unaltered, we have trained the model on the 50k dataset
with the additional data augmentation described in V-C. The
first thing that becomes obvious from the results of the
training without data augmentation given in Tab. V is that
the full dataset indeed offers a broader range of pavement
characteristics. However, considering the difference in scale,
the performance gap between the two datasets is not very
huge. It even can be seen, that data augmentation can close the
gap on the valid-test dataset and even performs better on the
test dataset. That said, the 50k dataset seems to cover almost

all different characteristics of damage and regular street, but
adding rotation to the patches still increases variety.

TABLE V: Comparison between training on the GAPs 50k
dataset with data augmentation and the full GAPs dataset.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

50k .9174 .0686 .9313 .8863 .0954 .9042 .8573 .1201 .8792
50k data aug. .9148 .0718 .9280 .8969 .0868 .9128 .8929 .0921 .9070
Full DS .9007 .0822 .9177 .8517 .1219 .8780 .8667 .1106 .8892

E. Transfer Learning

Transfer learning is known for producing excellent results
across different domains. It has already been applied to the
pavement distress detection domain and has lead to a signif-
icant performance boost [30]. Therefore, we have compared
the training of a ResNet50 from scratch and a ResNet50 which
weights have been pretrained on the ImageNet dataset.

Analyzing the training progress curves reveals that the best
model on the valid-test dataset is obtained within 10 training
epochs if transfer learning is used and if the learning rate
is below 0.04. This is significantly faster than the model
trained from scratch that reaches optimal performance after
40 epochs and indicates a good weight initialization. However,
the transfer learning model reaches an even better performance
with higher learning rates. For these learning rates, the faster
learning process cannot be observed any longer.

Analyzes of the results obtained with the best models in
Tab. VI reveal that there seems to be no real benefit from
using transfer learning on the GAPs dataset. The scores on all
the different subsets are almost the same and are even slightly
better for the model trained from scratch.

TABLE VI: Comparison between ResNet50 trained from
scratch and ResNet50 pretrained on ImageNet.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

from scratch .9375 .0511 .9489 .9004 .0839 .9157 .8942 .0898 .9096
transfer .9324 .0561 .9438 .8970 .0863 .9135 .8889 .0950 .9041

F. Adversarial Training

Adversarial Training implicitly creates additional training
samples and can be used as a goal-driven data augmentation.
We applied this training technique while training networks on
the 50k dataset and have also tested how the methods perform
in combination with classical data augmentation (Sec. V-C).
As a first result, adversarial training improves training stability
as the results obtained are almost identical to all the different
learning rates used in the experimental setup. As a second
result, adversarial training hampers generalization on the test
dataset if no traditional data augmentation is applied (See Tbl.
VII). This is probably caused by the reduced diversity of the
50k dataset. If further data augmentation is applied, however,
the results on the test dataset are catching up, leading to almost
identical results with the traditional data augmentation ap-
proach. Since adversarial training requires additional training
time for executing the backward and forward pass, the given
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results do not justify the use of adversarial training on the 50k
dataset.

TABLE VII: Effect of adversarial training with and without
traditional data augmentation.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

No aug. .9284 .0592 .9408 .8982 .0857 .9141 .8709 .1090 .8902
Data aug. .9290 .0583 .9417 .9045 .0804 .9194 .9041 .0820 .9174
Adverserial .9256 .0615 .9385 .8981 .0853 .9145 .8459 .1276 .8724
Adv. + aug. .9392 .0501 .9498 .9004 .0833 .9166 .9023 .0837 .9157

G. Network Architectures

The experiments with the ResNet34 and ResNet50 showed
that the results obtained by both network architectures are
very similar. Since inference time is crucial in the ASINVOS
project, we tried to find out how much layers are needed to
solve the detection problem with reasonable results. Therefore,
we ran further experiments with a ResNet with 18 layers and
created a ResNet with only convolutional 10 layers, that was
also applied on the GAPs dataset (see Tbl. VIII). Furthermore,
we have evaluated the dataset using the publicly available
CrackIt toolbox [9] (Version 1.5 - 1-May-2016). However,
as the error measures indicate, the algorithm was not able
to perform well on the dataset using the parameter settings
recommended by the authors, and the results are at random.

TABLE VIII: Comparison of Residual Networks with different
depth. All experiments where carried out on patches of size
160×160 pixels of the GAPs 50k dataset using data augmen-
tation.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

ResNet10 .9467 .0457 .9542 .8965 .0864 .9135 .8949 .0882 .9117
ResNet18 .9413 .0483 .9517 .8979 .0852 .9147 .9062 .0800 .9195
ResNet34 .9290 .0583 .9417 .9045 .0804 .9194 .9041 .0820 .9174
ResNet50 .9375 .0511 .9489 .9004 .0839 .9157 .8942 .0898 .9096
CrackIt .5712 .5000 .3530 .5714 .500 .4752 .5714 .500 .3387

Surprisingly, the 10 layer ResNet performed quite well
considering its low complexity. However, although it performs
very well on the validation dataset, its generalization abilities
seem to suffer from the low number of layers. Together with
the ResNet50 which, in contrast, suffers from its high number
of layers, its performance on the test dataset is significantly
lower compared to the 18 and 34 layer networks. Therefore,
ResNets with 18 and 34 layers seem to perform well on the
GAPs dataset. If inference time is of relevance, the ResNet18
probably is a good choice.

H. Multi-class Classification

The experiments in this paper are firmly focused on the
distress detection problem. Nevertheless, we also present a
baseline for the classification of all the different distress
classes. Utilizing the results we have obtained on the distress
detection problem, we have chosen a patch size of 160×160
pixels of the GAPs 50k dataset in combination with data
augmentation. We have trained ResNets with 18 and 34 layers
and also integrated test with class weighting to address the
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Fig. 7: Confusion matrix for the multi-class classification
problem on the valid-test dataset using a ResNet18. Values
below 1.0% are faded out for clarity.

imbalanced class distribution. Therefore, weights have been
chosen to resemble equal class distribution.

As can be seen from Table IX, the classification perfor-
mance drops significantly if the network should distinguish
between the different distress classes. Although adding class
weights or applying deeper networks seem to increase the
performance on the test dataset, the classification results
remain at a low level. This problem arises from the fact that
it is sometimes quite hard to differentiate between certain
distress classes. This is even true for experts of the field, and
an additional frontal view is sometimes required to distinguish
e.g. between an applied and an inlaid patch (see Fig. 7).

TABLE IX: Baseline results for multi-class classification with
ResNet34 using data augmentation. We use the macro version
of the F1 score for multi-class evaluation.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

ResNet18 .5678 .1957 .7527 .5368 .2115 .7764 .4018 .3066 .6019
ResNet18
Class weights

.5451 .2121 .7409 .5072 .2274 .7608 .4445 .2894 .6324

ResNet34 .5859 .1751 .7573 .5088 .2292 .7538 .4635 .2859 .6464

VI. CONCLUSION

We extended the GAPs dataset and improved the annota-
tions. Furthermore, we created a CIFAR-like 50k subset that
allows fast experimental evaluations regarding different neural
network models, parametrization, and training techniques.
Experiments showed that observations on this 50k subset
generalize well to the full GAPs dataset.
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TABLE X: Comparison between the ASINVOSnet proposed in
[1] and the ResNet34 architecture. Results are obtained using
data augmentation.

valid valid-test test
algorithm F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑ F1 ↑ BER ↓ GME ↑

ASINVOSnet
64×64

.8328 .1391 .8606 .7576 .2010 .7967 .8131 .1566 .8391

ResNet34
64×64

.8479 .1269 .8723 .8479 .1270 .8725 .8444 .1318 .8664

ASINVOSnet
160×160

.9311 .0574 .9425 .8752 .1035 .8964 .8473 .1280 .8710

ResNet34
160×160

.9290 .0583 .9417 .9045 .0804 .9194 .9041 .0820 .9174

Based on the 50k subset, we performed extensive ex-
periments in order to identify possible performance gains
in automated road condition assessment and were able to
significantly improve detection performance compared to the
network architecture presented in [1] (See Tbl. X). Our results
show that

• more context improves the performance,
• data augmentation leads to better generalization,
• transfer learning does not help to improve the perfor-

mance on the GAPs dataset,
• adversarial training may be useful to improve the stability

against bad parametrization,
• the ResNet architecture should be favored over VGG-like

models, and
• ResNets with 18 layers are capable of performing equally

with deeper models.
While the results on distress detection are promising, the

distinction of distress types still leaves space for future work.
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